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The Extended Parabolic Equation Method and Implication of
Results for Atmospheric Millimeter-Wave
and Optical Propagation

1. Introduction

During the three decades since the introduction of the stochastic parabolic wave equation by
Tatarskii and Klyatskin [Tatarskii, 1969], [Klyatskin, 1970], this theory of wave propagation
through random media has found much success in the applications, from laser beam propagation
through the atmosphere to image propagation. The applicability of this theory, however, is
limited by the fact that it only describes situations in which the paraxial approximation prevails.
Thus, the parabolic wave equation can be applied only when the smallest size of the permittivity
fluctuations [, and the wavelength A satisfy the condition [, >> A, i.e., the wavelength must be
the smallest spatial scale in the problem. Although extensions of this theory have been advanced
(see, for example, [Saichev, 1980a], [Ostashev and Tatarskii, 1995]), none have been
analytically treated at the level where corrections to the paraxial approximation have been
identified and compared to paraxial results.

The purpose of this memorandum is to provide a theoretical foundation for the extension of
the theory which results in an ‘extended’ parabolic equation capable of treating wide-angle
propagation in situations where the condition /, >> A is violated, thus potentially making the
extended theory formally applicable to millimeter wavelengths. Such a formulation is
potentially required in propagation situations in which the operating wavelength is on the order
of the spatial size of the inhomogeneities which make up the random medium. Such a theory
will find application in the study of, e.g., millimeter wave propagation through atmospheric
turbulence, in which the size spectrum of the turbulent eddys subtends a few millimeters, or in
optical propagation through dust and sand storms where the wavelength can be on the order of
the size of the inclusion. Most importantly, however, is the fact that solutions to the extended
theory will provide a measure of correctness of the paraxial theory.

In section 2, a first-principles derivation of the complete equations for forward and back
scatter propagation are obtained from the stochastic Helmholtz equation, the various forms of
which yield known results used in other such studies. Section 3 presents the derivation of an
“extended’ stochastic parabolic equation from the general equations for forward scatter presented
in Section 2. Here, the extended parabolic equation obtained is an operator equation which
transcends the restrictions of the paraxial approximation but reduces to the latter in the
approximation [, >> A.

Since the electric field as described by the extended parabolic equation is a random quantity,
one can only deal with the related statistical quantities such as the first and second order
moments. This is done in Section 4 where a general operator method is developed to treat
generalized statistical moments within the extended parabolic equation. Solutions of the specific
equations for the first order moment and second order moment (i.e., the mutual coherence
function) is dealt with is Section 5 for the case of the random atmospheric permittivity field as
described by the Kolmogorov spectrum of fluctuations. An appendix is provided which makes
contact with the developments of Section 2 and other operator representations employed in the
treatment of wave propagation problems.
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2. Derivation of the Equations for Forward and Back Scatter
Propagation form the Stochastic Scalar Helmholtz Equation

Consider the propagation of a scalar electric field component of an electromagnetic wave in a
random medium characterized by a stochastic permittivity &(7)=1+&(7) where &) is the

random part. The Helmholtz equation governing the resulting stochastic electric field in the
scalar approximation (i.e., neglecting wave depolarization) is then given by

82E(x,/3)
2

+V2E(x,p)+ k*E(x,p) = k’&(x,p) E(x.P) (1)

where the direction of wave propagation along the otherwise arbitrary x —axis is separated out
from the three dimensional coordinate r =(x, f)) The total stochastic field E (x, f)) can be

decomposed into a forward propagating wave field E*(x,p) and a backward propagating wave
field E(x,p), i.e.,

E(x.p)=E(x.5)+ E"(x.p) @)

Similarly, one has for the derivative of the fields

OE(x.p) _ IE*(x) , I (x.p)

o o O ®

As shown in Appendix 1, one can write these wave field components as an expansion into
inhomogeneous plane waves,

E*(xp)= | [ @explig-p+i(k* ~*) x]aq 4)
Thus,

B)_ [ [ (ol -a7) Jessliz- 521067 a7) s .

. . : : V2. : .
This expression can be rewritten by expanding the factor (k2 —qz)/ in the integrand into a

series,
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- Jei(a)[iz(kz Ly +---)Jexp[iq pi(k-¢?) zx]dzq

=i' K2 — 1/2J J‘ exp[lq p+i(k2—q2)l/2x]d2q
==+i(k*~V2)" E*(x,p)
Therefore, applying this differential operator expression to eq. (3) gives

L) 9 [ )= ()

Differentiating this expression one more time,

PE(x,p) . 2| dE*(x,p) IE™(x,P)
e

Making the identification = (k2 + Vi)l/z and equating eqs. (3) and (7) yields

JE"(x,p) N JE(x

N )

Solving eq. (9) for JE*(x,p)/dx and substituting the result into eq. (8) gives

TECR) g ((x.p)- () -2ip D)

Similarly, solving eq. (9) for JE™(x,p)/dx and substituting the result into eq. (8),

82E(x,f)

o2 ) = ﬂz[E+(X,/3) — E_(x,/_j)] + Ziﬁw

Finally, substituting eq. (10) into eq. (2) and using eq. (1) gives

2P EP) g (. 5) = k2B e(x, ) E*(x.5) + E-(x.5)]
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Similarly, substituting eq. (11) into eq. (2) and using eq. (1),

5 JE"(x,P)

EV 2BE"(x,p) = k*Be(x.p) E*(x.p)+ E~(x.p)] (13)

Thus, egs. (12) and (13) are, upon reinstating the expression for f3,

-1/2

2P o2 B ()= (0 2 e[ E () B (B)] (19

and

2i_aE—§,;3) 2k +V2) " E (x,p) ==k (K +V2) e(nB)[E*(xP)+ E"(xP)] (19

in which (/’c2 +Vi)1/2 is a differential operator and (k2 +Vi)_l/2 is an integral operator. (See

Appendix 1 for these identifications.) If egs. (14) and (15) are added together, one obtains the
additional relation

2i%+ 2k +92) [ (x5) - E~(x.5)] =0 (16)

p

Equations (14) and (15) can also be written in terms of the Fourier transform of the field.
Defining

E(xR)=—— | E(x.p)exp(~ik- p)d’p (17)
(2m)" -
Egs.(14) and (15) become
T Y 2k =) E* (6,R) = (K k%) "E(x,R)* [E' (6 R) + E-(xB)]  (18)
and
2 % (2K) _a(;’ k) _ 2(k* - 12) E (xR =k (K =) E(nR) [T (xR + EC(0R)]  (19)
where
Ex,K)*E (x.,8)= | | E(x.R)E (x,&—K)d*K’ (20)
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denotes the convolution. Equations (14)-(16), or (18) and (19) provide the foundations of many
wave propagation studies [Frankenthal and Beran, 1997], [Saichev, 1980a,b], [Malakhov and
Saichev, 1980] and [Ostashev and Tatarskii, 1978,1979].

3. An Extended Stochastic Parabolic Equation
for Wide-Angle Forward Propagation

Forward scatter propagation in which the backscattered component is negligible, i.e.,
E™(x,p) << E*(x,p) is described by eq.(14) in which E™(x,p)=0, viz.,

i) ok 1 92) 7B (1) =K (4 V) el B (1) @D

This relationship, although capable of describing propagation situations in which the wave is
scattered at angles up to 7/2 with respect to the propagation direction, is still, strictly speaking,
limited in its application to cases in which A</, as noted in an analysis by [Ostashev and
Tatarskii, 1995]. Thus, in this extension of the theory, the restriction A <</, is lifted only to be
replaced by the less stringent condition A </,. However, in what is to follow, situation in which
A>[,will also be considered as approximations. Equation (21) can be put into the form
isomorphic to the standard paraxial parabolic equation by multiplying by 2ik, rearranging some
factors, and identifying a new set of differential and integral operators given by

v 1/2 i v —1/2
S S 7y -1
U,= 2k2{1 - k—gJ , V= W(l + k—g} =0, (22)

which allow eq. (21) to be written as

JOET(x,p) A L L A a =
ZZkT + UPE (X,p) — 2k4Vp{8(x,p)E (X,p)} =0 (23)
Equation (23) can be called a generalized or extended stochastic parabolic equation in the
differential operator U and the integral operator V. Reduction of this general relation to the
paraxial parabolic equation is accomplished by expanding the operators U ) =2k’ +V123 and

Vp ~1/2k”. Equation (23) then becomes

IE"(x.p)

2ik
ox

+2k*E*(x,p)+ V2 E* (x,p) - kK’&(x,p)E*(x,p) =0 (24)

Letting E*(x,p) =W (x,p)exp(ikx) and substituting into eq. (24) gives
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2k W P) | V2W (x,) - K&(x, )W (x,5) =0 (25)

which is the classical stochastic parabolic equation in the paraxial approximation.

The extended stochastic parabolic equation eq. (23), just as its specialized counterpart,
eq. (25), can be written as an equation governing the statistical moments of the electric field; this
will form the subject of the next section.

4. The Generalized Statistical Moments of the Electric Field
Within the Extended Stochastic Parabolic Equation

A. Derivation of the Fundamental Equations
Consider the n+ m™ statistical moment of the electric field defined by
n n+m ‘
T, (%8P PriBs > Poen) = T 1E(B) T 1E(%.5,) (26)
=1 j=n+l
in which each of the transverse coordinates p, exists in a plane located at a distance x from the

origin, at which a source is placed, in an otherwise arbitrary coordinate system. Defining the
random operator

D, ; =2ik—+U, +2k*V, &(x,.p,) (27)
D, E(x,p,)=0 (28)

D, E'(x.p;)=0 (29)

Multiplying each of these equations by the remaining n+m—1" E fields gives

n+m

l:—I E(X’ﬁi){Dx,ﬁkE(x’ﬁk)}H E*<x’/31)

j=n+l

0 (30)

izk

and
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nt+m

[T £Gep) 1 B (v5,){D0, B (x.5)} =0

i=1 Jj=n+l
Jj#l

€1y

Summing eq. (30) over the n possible values of k, and summing eq. (31) over the m possible

values of / and subtracting the second result from the first gives

n n n+m
E(x.p YD, E(x.p)} [T E'(x.5,)|-
k=1 | i=1 j=n+l
i#k
n+m ntm

~STT E(ep) TT E (50,00, E (x5}

I=14+n | i=1 j=n+l
J#l

=0

(32)

Using eq. (27) and rearranging operators as they operate only on E -fields with specific (x,p)

coordinates gives, after some algebraic manipulations,

21k— H E(x H E'(x.p,) |+

Finally, defining the operator

nt+m

A

Pi

. d N/ SR
L, = 21k§+z(U"f +2k4Vple(x,pJ.))—

J=1 I=1+n

Eq.(33) becomes

i‘llmgnnl(X;/_jl’/_jZ;'“’f)n;/_jn-%—l’ ’pn+m)

where

gnm(‘x pl’pZ’ ’ ’pn’pn-H’ ' ’pn+m EHE 'x p
i=1

NASA/TM—2004-212944 7
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j=n+l

(33)

(34)

(35)

(36)



Equation (35) is an operator equation governing the product g, of the n+m field values within
the random medium. It is desired to obtain the ensemble average of the product
<gnm (- )> =T, (--) given by eq. (26). Equation (35) cannot simply be ensemble averaged since,

nm

as the operator linm is itself a random function of &(x,p) of which the values of the E —field are

coupled, one has that <l:nmgnm> ¢<an>l“nm. In order to obtain a closed equation for the field

moment I

nm?

equation for I’

nm*

a stochastic operator method can be applied to eq. (35) which will yield an

B. Development of an Operator Method for the Equation Governing the Field Moments

It is expedient to adopt the methods of [Tatarskii and Gertsenshtein, 1963], and [Manning,
1989] and decompose the operator L, into its average and random parts, i.e.,

L, =(L,)+L, (37)
where
(L) = 2ik§ Wi Yin (38)
- s
and
L =2k* > v, §x.p;)- me?,;j gxp)|  (L,)=0. (39)
j=1 I=1+n
Hence, eq. (35) becomes
(<Lm> +I, ) g, =0. (40)
Ensemble averaging this relation yields
(L T + (L8 ) =0 (41)
Similarly writing
8 =T+ & (&) =0 (42)
and substituting into eq. (41) gives
(L T + (L) =0 (43)
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Remembering that it is the goal of this development to obtain an expression for the general field
moment I, one follows the development given in [Manning, 1989] and subtracts eq. (43) from

nm?

eq. (35) and using eq. (42) once again obtains
inmrnm + l,:nmgnm - <l/:nm >rnlﬂ - <Enm§ni71> = O ° (44)

Combining the first and third members of this equation using the fact that
[inm - <£nm >]rnm = iilmrnm giVeS

A

angl’lnl + inmrnm - <£nm§nm> = 0' (45)
One must now isolate the random quantity g,,, by defining an operator li;}n inverse to linm, ie.,
L'L =1. Thus, operating on eq. (45) with L yields

nm-—nm nm

nm - —nm— nm nm

um+LoL,T,, ~L (L&, )=0. (46)

Finally, operating on this relation with L, ensemble averaging, and solving the resulting

nm?>

expression for <inm §,1m> gives

(Lunon) =1~ (Lol )| (L Lo )T (47)

Substituting this result back into eq. (43), one obtains for the equation governing I°

nm

{<zm,,> _ [1—<£mi;;1>]_]<£mi;;inm>}rnm ~0. (48)

The solution of this operator equation, using eqgs. (22), (38), and (39), gives an exact solution for
the arbitrary field moments for wide-angle propagation through a random medium characterized
by the stochastic permittivity &(x,p).

The general relation given by eq. (48) can be reduced to the parabolic equation for the field
moments in the paraxial approximation in the case where A<</. In this case, one has the
approximations for the operators U o = 2k* + VIZJ and Vp ~1/2k”used earlier. Equations (38) and

(39) then become

(L) = 2ik§ + iv;j = Hzmvf,, (49)

j=1 I=1+n

and

NASA/TM—2004-212944 9



n n+m

=K1+ 28(xp,) - L& (xf))|- (50)

Ly=[(E,)+L,] =(L,)" 51)

where
a n n+m 1
~ -1
(L) :|:2ik§+ 2V - ZVﬁI

j=1 I=1+n
1
z[z,-kz]
ox

_ 1

= dx’ 52
2ik % (52)

and the second is given by

[1- <13nm13;1n>]_1 ~[1- <13nm><13;‘m>]_1 ~1. (53)

under the assumption that the permittivity fluctuations which enter eq. (50) are characterized by
a zero mean value, i.e., <£‘(x, P J)> =0. Equation (48) then becomes

[Zik% + iv i~ ninv s (L, >]r =0, (54)
j=1 I=l+n

where

n n n_ ntm

(Bt = J {ZZ (B(x.P)E(¥0)) = 2 2 (#xP)E (¥.P0) -
_nﬁti <é*(x,ﬁj)é(x',/3;)>+ n_i:l iﬂ <é*(x,/3j)é*(x',/3,')>‘dx', (55)

which is the well known classical paraxial form for the problem [7atarskii, 1971], [Manning,
1993]. It is interesting to note that the ‘geometrical optics’ approximation made in eq. (52) leads
to the classical parabolic equation. Thus, one can envision a substantial extension of this
development beyond that of the classical treatment if one is to use the entire form of the operator

A -1 A
<an> , 1.e., use the inverse of the operator <an> as solved in the paraxial approximation rather

NASA/TM—2004-212944 10



than the geometrical optics approximation which was used above. This will form the subject of
the next section.

5. Solutions for the First- and Second-Order Statistical Moments:
The Average Field and the Mutual Coherence Function
for Wide-Angle Scattering

A. First-Order Moment: The Average Field

The first order moment of the random electric field in a plane transverse to the direction of
propagation is defined through eq. (26) to be given by

Lo(x:P) = (E(x:p)) (56)
which is a solution of the operator relation of eq. (48), viz.,
A e AT e A
{<LIO> - [1 - <L10LT(1)>] <L10LT(1)L10>}F10 =0 (57)
where, from eqgs. (38) and (39),

. P I g O,
(Lo)=2ikS+0,.  L,=20V,E(xp). p=p (58)

P1

The ability to proceed in an analytical fashion is dependent upon some simplifying
approximations. Since £1o = <£10> +L,,, one has that

lA*I(l) = [<I:10> + fﬂo]_l = <£10>_1 (59)

which allows one to approximately write

1

1-(E] (e ] -1 g

where, analogous to the case met with in eq. (53), one has <‘}p1 &(x, f))> =(. Using the results of
egs. (59) and (60), eq. (57) becomes

{<i,o>—<im<im>1£,o>}rm =0 ©61)

Employing the appropriate definitions of the operators, eq. (61) gives
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. a i Ay ~ — . 8 i - Ay ~ — —
{ma +U, - <(2k V) &(x, p)){2zk§ + Up} (2k*V,&(x, p))>Jr10(x, p)=0 (62)

This differential equation in the operators U , and X}p must now be solved for the first-order
moment I} (x,p).
To this end, one must first deal with the factor

L d | »
{211{5 + Up} =G(x,P) (63)
which is the Green function of the operators 2ik d/odx + U »» operationally defined by
. 8 2 V2 : - ’ — — 7
21k§+2k 1+k—§ G(x,p)=06(x—x"(p—p’) (64)

where the definition of U , 1s used. Applying the approximation U o = 2k* + VIZJ as well as the
Fourier Transform relationship

(1Y B o
g(x,K) :(ﬂ) TG(x,p)exp(—zK- p)d’p, (65)
eq. (64) can be written as
dg 1 s o 1Y O(x — x")exp(—ik- p’)
By (k- =|— 66
o (2K )e (27:) 2ik (66)

The solution to this equation is

L exp|—i(2k” —k7)(x - x') / 2k exp(ikp’)

g(x.K) (2x) (2ik) (67)

Finally, applying the inverse transform

G(x.5) = | g(x.R)exp(if- p)d’x

—oo

yields, upon evaluating the resulting integral in plane polar coordinates,

NASA/TM—2004-212944 12



G(x,p)= Jz(mk)z"z Texp —l 2k -K ) x—x') /Zk]exp (ikpcosO)kdk dO

0 0
1

=5 ;) exp|—i(2k> — &%)(x - x') /2k] T, (kp)Kd <

. exp[—ik p— [)')2/2()6 - x')]

= ﬁ]exp[—ik(x - .

=G(x,p3x",p) (68)

Thus, the third term within the brackets of eq. (62) can be written

-1

()= <(2 K, 8, ﬁ)){2ik§+ l7p} (2k4\7pé(x,l3))> =

= (2k) I T G(x,p;x ,p’) V E(x.p)V,E(x, p’)>d2p’dx (69)

0 -

Proceeding further, one now must deal with the operator products

—1/2
VZ
v &(x.5) =(2—11(211+ k—f’) &(x.p) (70)

Since &(x,p) is a random function, it can be represented in the form of a Fourier-Stieltjes integral
[Manning, 1993], i.e.,

&(x.p) = | exp(ik- p)dz(x.%) (71)

in which the spectral amplitude dZ(x,p) is endowed with the same statistical properties as is the
random function &(x,p) as will be shown in what is to follow. Applying eq. (71) to eq. (70)
results in the following development:

5 V12
[ L J( —%) exp(iK- p)dZ(x,K) (72)

NASA/TM—2004-212944 13



Thus, the ensemble averaged product appearing in right side of eq. (69) becomes,

> 5 V2 Y2
<Vp§(x,/3)Vp,§(x',f)')>=($)_[ | (1-%} (1_’;2} .

.exp(ik- p+ik’- p')(dZ(x,K)dZ(x",K')) (73)

One now makes use of the fact that the atmospheric permittivity fluctuation field &(x,p) is taken
to be statistically homogeneous, characterized by a power spectral density ®,(x,K) in the

transverse plane, and d-correlated in the longitudinal direction; these circumstances allow one to
write [Manning, 1993]

(dZ(x,R)dZ(x" X)) = 218(x — x")8(K + K )@, (x,K)d K"K’ (74)

Using this in eq. (73) and performing the integrations where possible yields

[I—Z—j} exp[ik- p, |®@, (x.K)d’K (75)

(60, 05.9) =2 51 | a1 ]

—oo

where p, = p—p’ is the difference coordinate.
Equation (69) can now finally be evaluated by substituting into it eqs. (68) and (75);
converting the integration in the p,-plane into one in plane polar coordinates and performing the

associated angular integration gives

(y=aet | ] 8- x')[ —z—zT exp|-ik(x— x)]

oo 0

: T To(xp, )(x=x")" exp|-ikp; /2(x — x)| p,dp, @, (x.K) dx'd’K (76)

0

Continuing on and performing the p, and x” integrations gives

()= {élg}w;[ (1 - Z—z}_lcbg (x,K)d*x (77)

where the J-function relation

] O(x—x")dx"=— (78)

NASA/TM—2004-212944 14



is employed. Finally, noting that the statistics governing the random field &(x,p) are not only
homogeneous but also isotropic [Manning, 1993], one has that @, (x,K)=®,(x,x) thus allowing

the integral above to also be evaluated in plane polar coordinates and, performing the angular
integration, yields

() =ik’ T (1—2—2] @, (x,K)kdK (79)

Returning to eq. (62) and, substituting eq. (79) into eq. (62) gives

J v2 ) )
2ik£+2k2 1+k—§ +i7r2k3if {I_F] @, (x,k)kdx [[},(x,p) =0 (80)

0

The general solution to this equation is unknown. However, for the plane-wave case, one has
that

5 Y2 2 V2
(l+%} Eo(x’ﬁ)_{l"i'%J Eo(x)zno(x) (81)

since the plane wave will not possess any transverse variations. In this special case, eq. (80)
becomes

J 2!
{2ik§+2k2+m2k3]‘ (1—%] d)g(x,K)KdK}l'lo(x):O (82)
0

the solution of which is

I, (x)= EO(O)eXp{ikx —%zkzx | (1-:_2] @, (x. K‘)Kdl(“ (83)

0
In the limit where (1—1(2/ kz)_l =1, eq. (83) becomes the well-known small-angle scattering

result from the parabolic equation method [Tatarskii, 1971], [Manning, 1993].
The spatial spectrum of the atmospheric permittivity fluctuations is given by the Kolmogorov
spectrum

@, (k) =0.033C’x"", LLPPPE- (84)

0 lO

where C_ is the structure constant governing the strength or level of the turbulent fluctuations of
the permittivity €, L, is the outer (i.e., largest) spatial scale of fluctuations and /; is the inner
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(i.e., smallest) spatial scale. [Tatarskii, 1971], [Manning, 1993] Typically in the open
atmosphere, L,~ 100 meters and /,~1 millimeter. In order to avoid convergence problems with

integrals such as that of eq. (83), and at the same time, incorporate the effects of the limits to the
spectral interval, the Kolmogorov spectrum is augmented with a lower and upper ‘cutoff’
reflecting the finite outer and inner scales of turbulence. In this instance, one uses the associated
modified von Karman spectrum

®, (1) = 0.033C2(K: + k%) exp(—x*/x?) (85)

where the spatial frequency corresponding to the outer scale of turbulence is K, =2x/L, and that
corresponding to the inner scale of turbulence is given by «,, =5.92/1, [Manning, 1993]. The
use of this spectrum in eq. (83) results in an integration that is not analytically amenable. To this
end, the following approximation procedure can be used [Ishimaru, 1977]

®, (1) = 0.033C2(K2 + k%) exp(—x*/x?)
=0.033C2| (K3 + ) = (K + ) " (K4 ) exp(—ic)]
- (K7 + Kz)_“/ﬁ{l —eXp(—K'Z/K'i)}]

=0.033¢2| (K3 + )" = {1 —exp(x?/x2)}] (86)

=0.033¢2[(KZ + 1) "

where the last line results from the fact that {1—exp(—K2/ K'i)} has a non zero contribution only

when x>>K,. Using this representation in the integral indicated in eq. (83) and evaluating,
using Mathematica [Wolfram, 1999], the resulting expression about the singularity at K=k and
retaining the Cauchy principal value yields

2
Lo(x) :Eo(o)ex%ih—C€2x{0.5439k1/3(—1)1/6 exp(_ )—[11 k ]

2 2
—0.0814kimex _k +0.0977k’K:7? F 1,1;1;—ﬁ (87)
B o 2%1 6 kz

m

where T'(---,---) is the incomplete gamma function. At the outset, this expression can be
simplified by noting that one always has that k >> K. The hypergeometric function ,F(---) thus

can be approximated by unity, the first term in its series expansion. Also, for the same reason,
the second term within the braces is negligible with respect to the third term. One then has

2
Lo(x) =Flo(0)ex+kx—cjx{o.5439k1/3(_1)1/6 exp(_ )—[11 k J

+0.0977k°K,}]  (88)
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Finally, replacing the incomplete gamma function in terms of the slightly more manageable
Kummer confluent hypergeometric function [ Gradshteyn and Ryzhik, 1980, eq. (8.351.4)],

11K 2V ()17 &
r(??]:(‘,?} i e ()

2
[(x) =T (0) exP[ikx - C2x{0.5439k" 1/3U(1,%,_k_]+

yields

K.2

m

+0.0977kK, ] (90)

This expression will now be examined in the limits £ >x, and k<k,. In the first case, the
confluent hypergeometric function becomes [Abramowitz and Stegun, 1965, eq. (13.5.2)]

2 2 Y!
5o
Km Km

T, (x)=T,,(0)exp|ikx —0.0977k’K;"*C?x + 0.5439k*, *C?x|, k>« 91)
10 10 0 £ m £ m

In this case, eq. (90) becomes

This result agrees with that obtained from the small-angle scattering form of the theory; see, e.g.,
[Ishimaru, 1977] in which the second term of eq. (91) is neglected since L, >> [, for atmospheric
turbulence.

In the other limit in which k <k,, one now employs the approximation [4bramowitz &
Stegun,1965, eq. (13.5.6)]

17 K 1Y )"
ULt == -5 |k <x,
6 K, 6\ K,

Substituting this result into eq. (90) yields, after simplification,

T (x) =T,4(0)exp|ikx —0.0977k°C K, x —0.4431k"C.x —
—0.2558ik"°C}x], k<x,  (92)
The third and fourth terms within the exponential represent the wide-angle scattering corrections
to the mean field. The imaginary fourth term describes the diffraction phenomena inherent in the

scattering mechanism. These correction terms are only appreciable in the event that the
wavelength A= L,. In the case of atmospheric turbulence, in which A << L, these correction
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terms become negligible. This result is, unfortunately, not so much a testament to the extended
theory as presented here as it is for the applicability of the small-angle scattering approach within
the context of Kolmogorov turbulence spectra. In situations in which the outer scale of
turbulence is on the order of the wavelength, these additional perturbations could easily be
identified.

In many instances within the literature, one finds use of the refractive index structure

constant C. which is related to that of the permittivity C by the relation C; =4C?. In addition
to this, these results also appear in the form of the coherent intensity /.(x) defined by

Ie(x) = E0)) =[ru(o)f 93)
Thus, in terms of C;, the coherent intensity associated with eqs. (91) and (92) is given by
1.(x) :|rm(o)|2exp[ 0.7816k°C;K,” x +4.3512k°C}K, x|, k>x, (94)
and
I.(x) =[1(0)[ exp[-0.7816k>C2K, 7 x — 3.5448Kk"*C2x —

~2.0464ik°Clx], k<k, (95)

B. Second-Order Moment: The Mutual Coherence Function

The second order moment of the random electric field in a plane transverse to the direction of
propagation is, from eq. (26), given by

L (x5, 8,) = (E(x:5,) E"(x:5,)) (96)
which is a solution eq. (48), in this case given by
i)~ [ (EED] (B =0 o7

where from the definitions of egs. (38) and (39),

(Ly)= 2ik% +0, -U;, (98)
and
L, =2k'[V, &(x.5)-V, & (x.p,)]. (L,)=0 (99)
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As with the case for the first order moment, an assumption is made at the outset to render the
problem analytically tractable. In particular, one has that

-z = (E )| - (100)
which allows eq. (97) to become
{(L)~(L,LiL )i, =0 (101)
which, upon using the operator definitions, is
[2ik§ +0, -U, - <(2k4{17pl§(x, p)-V, & (x5)}) -

. & ~ 2 - N~ — Nk % —
-{21k£+Upl —Upz} (24{V, &(x.p) -V, 2 (x,pz)})>J1'“ =0 (102)

Solving this equation commences with obtaining an expression for the Green function

-1

{2ik§+ U, —(7;2} = G(x.p,.5,) (103)

given by the solution of

. & > Ty - = ’ — =7 — =7
{21k§+ u,-U, }G(x,p,,pz) =6(x —x")6(p, — p))A(p, — p5) (104)
where
V2 /2 VZ /2

U, = Zk{I + k—g] . U, = 2/8(1 + k—g] (105)

Proceeding as in Section C.1 and using the approximations U p = 2k* + VIZJ for these operators,
eq. (104) becomes

. a - = ’ — =7 — -7
{21k§+ v -V }G(x,p],pz) =6(x —x")6(p, — p))A(p, — p5) (106)

Defining the two-dimensional Fourier Transform g(x,x,,K,) of G(x,p,,p,) by
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8(x.K,K,) = (2 )j Tprl,pz)eXp(—lK p— ik, - pz)d pd’p, (107)

—oc0  —oo

the transform of eq. (106) is

0 1 1) 8(x—x e ar s

and the solution of which is

exp[—i(Kf - Kg)(x — x')/Zk]
(2r)" (2ik)

g(x,K.K,) = xp(iK, - p/+iK, - p5) (109)

Applying the transform inverse to that of eq. (107) to eq. (109), converting to plane polar
coordinates, and evaluating the associated angular integrals gives

G(xpl’pZ ( )Z(zlk)j T exp )Klz/Zk]Jo(Klpdl)'
-exp[—i(x =X\ 2k |3 (10,04, ) K, di, di,  (110)

where p,. = |l3, - pl'| Finally, performing the remaining integrals over the spatial frequencies
yields for the Green function

G(x.p1,p,) = {%Iﬁ)(x —1

Therefore, the fourth term in eq. (102) is given by

Jexli(p )5~ p0) 2

=G(x,p,,pX,pp5)  (111)

,Zé* (X,ﬁz)}){ . .}*1(2]<4{Vpl &(x.p,)— V:Zg* (x,f)z)})>
2] - = ’ =7 =7 ST
~ee)] T ] Gepopur B2 (Vi Vi (. B )E(x, ) -
0
Vo Vo E(x.P)E (52) =V, V& (x5, )8 B) +
+V, VoE (x,p,)E (x,3) )d’pl dpldx’ (112)
As was done in Section (5A) above, one now uses the Fourier-Stieltjes representation for the

random functions &(x, p); thus, the result of eq. (72) is now employed in eq. (112). Additionally,
in order to carry out the evaluation of the ensemble averages over the spectral amplitudes, one
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assumes statistical homogeneity in the transverse plane and d-correlatedness in the longitudinal
direction. The result of implementing this procedure on eq. (112) gives

1
- = r=r = ’ Kz -
=] T T T Gupporiaiansie—f 1= | aun)
[exp(i- (3, ~ 7)) ~expli%- (5, — 7)) -
—exp(ik- (P, — p})) +exp(ik- (P, — ﬁ;))]d2lcd2p,'d2p;dx' (113)
Substitution of eq. (111) into eq. (113) results in an integral which is unwieldy but nonetheless

straightforward to evaluate and follows along the same lines as the treatment of eq. (76). Thus,
integrating over the spatial variables and using eq. (78) gives

()= —mk3_]; [1 —:—j ®, (%)[1-exp(~i&- (B, - B,))| d*x

=-i2n’k’ ] (1—2_3 @, (k)[1-1,(x1p, - B))| kdx (114)

0
where statistical isotropy is assumed in arriving at the last result.

Finally, substituting eq. (114) into eq. (102) gives for the differential equation governing the
wide-angle mutual coherence function

5 V2 1/2 V2 /2
2ik§+2k21+k—g‘ —2k21+k—‘; +
1
. K’ I I
+127r2k3] (I—P] d)g(K)[l—JO(KIpZ—p,|)]1cd1c}]‘(x;pl,p2):0 (115)
0

The solution to this operator equation is not known. However, in the plane wave case in which
there are no transverse variations, expressions analogous to eq. (81) prevalil, i.e.,

v /2 v /2
1+ kzl = 1+k—22 —1 (116)

thus allowing eq. (115) to become

{2ik%+ 2m’k’ if (1—2—2] @, (k)[1-1,(xdp, - B))] de}r(x;ﬁ,,f)z) =0 (117)

the solution of which is
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[(x;p,)= F(O;f)d)eXp{—nzk%_T (1—2-2} @, (k)[1-J,(kp, )] Kdrc‘ (118)

0

The application of the Kolmogorov spectrum given by eq. (84) can be used in eq. (118) since
the structure of the integrand is such that no convergence problems will arise due to the neglect
of the spectral cutoffs inherent in the use of the modified von Karman spectrum, eq. (85).
(Besides, the use of the complete modified von Karman spectrum in eq. (118) results in an
integral that cannot be analytically evaluated.) Thus, substituting eq. (85) into eq. (118) and
performing the required integration in Mathematica [ Wolfram, 1999] gives

L, (x,p,)=T,(0, pd)exP[ —(0.8861-0.5116i)k"* C:x(1-1,(kp,)) -

2
~0.0271k*C2px F[l%% kfd}J (119)

in which |F,(---) is a generalized hypergeometric function. Relating this generalized

hypergeometric function to a more familiar function, one makes use of the relation [Gradshteyn
and Ryzhik (1980), eq. (8.574.3)],

F[l 17 17, kzpj JJ (11)2(/4){1)11/33%,0(1{/)(1) (120)

66 4 3

where Sy, ,(-++) is a Lommel function. Hence, eq. (119) becomes
4

I, (x.p,)=T,,(0.p,)exp[—(0.8861-0.5116i)k"* CZx(1- T, (kp,)) -
—O.3643k1/3C82xs%’0(kpd)J (121)

This expression will now be examined in the limits kp, >1 and kp, <1. In the first limit, one
employs an asymptotic result obtained from [Gradshteyn and Ryzhik, 1980, eq. (8.570.2)], viz.

5/3 5 5 4
S%,O(kpd) (ko,)"" s 0[1’ 6’ _g B ng kp, >1

= (kpd )5/3

and, of course, the result 1-J,(kp,) =1 to obtain (neglecting terms on the order of k'* since
A<p,)

L (x.0,) =T,,(0.p, ) exp[-0.3643kC} p} x|, kp, >1 (122)
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In terms of the refractive index structure constant C., this yields
L (xp,)= 1"1,(O,pd)exp[—1.4572k2anpj/3x], kp, >1 (123)

which is the familiar plane wave result from small-angle scattering theory [Tatarskii, 1971],
[Manning, 1993].
In the other extreme where kp, <1, one has

k2 2
1_J0(kpd) Sl

as well as [Gradshteyn and Ryzhik, 1980, eq. (8.570.1)]

N i ’ 113
S%,o(kpd) ~(11] (ko,)

from which eq. (121) gives

I, (x.p,)=T,,(0,p,)exp[-0.2215k > C} pjx +0.1279ik"*C} pjx —
—0.0271k*C} p}*x ] (124)

or, in terms of C7,

I, (x.p,)=T,,(0,p,)exp[-0.886k*C:pjx +0.5116ik"*C.p;x —
—0.1084k*C;pi°x]  (125)

Hence, as with the case of the first order moment of the wave field, the corrections to the second
order moment due to the use of this extended theory are negligible in the case of atmospheric
turbulence at optical frequencies. Only in the case of millimeter waves could these small
corrections be noted.

6. Summary and Conclusions

Beginning with the stochastic Helmholtz equation, relations are obtained which transcend
the paraxial approximation as far as diffraction phenomena are concerned but are limited to
situations prescribed by /, > A as far as propagation phenomena is concerned. With this situation
notwithstanding, a resulting extended stochastic parabolic equation for wide angle propagation
has been derived which goes beyond the paraxial approximation of the classical small angle
equation and reduces to it in the appropriate limits; this equation is an operator equation which is
isomorphic to the classical small angle scattering equation. After the development of an operator
method to treat such an equation for the statistical moments of the wave field, solutions of first
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and second moments were obtained in the case of atmospheric turbulence. It is found that the
corrections made to the classical results are insignificant in the atmospheric case.

The Kolmogorov spectrum which is used to represent atmospheric turbulence is such that
the contribution of the spectral frequencies which approximately correspond to the wavelength is
relatively small as compared to those at the smaller spatial frequencies (which correspond the
outer scale of turbulence). This gives rise to the insignificant levels of the correction terms at
nominal operating wavelengths. These results support the use of the paraxial approximation of
the stochastic parabolic wave equation at optical and millimeter wavelengths propagating
through atmospheric turbulence. This may not be the case for propagation through atmospheric
aerosols which possess an entirely different spectral behavior [Manning, 1993]. This case should
be considered in further works on this subject.
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APPENDIX 1
Plane Wave Expansions and Various Operator Representations

The expansion of an outgoing spherical wave

w(ep) =) e (A1)

which is a solution of the Helmholtz equation
(V2 +&%)gy(x.0) =0 (A2)

is given by
&)= ] A@exelid P’ (A3
the spectrum A(q) of which can be found by inverting eq. (A3), i.e.,

]go (x,p)exp(—ig’- F)d" r—] TA (q)exp(ig- 7 —ig’- F)d’qd’r

- )’ | A@8a-7)'
=(27)° A7) (A4)

The left side of eq. (A4) is easily found by converting it to an integral in spherical coordinates,
viz.,

a,a

?)d3r=T _ exp(ikr) exp(—ig’- ) d’r

1go(x,p)exp(—lq - yp=

—oo

== 41 f j[ ]‘exp (ikr) exp(—ig'rcos6)r’sin@drdOd¢
T 0o 0

= % I ] exp(ikr—ig'ro))rdrdo

-1 0

= —L‘ T 2iexp(ikr)sin(q’r)rdr
2iq ',

1
=- 2 k2 (AS)
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Thus, from eq. (A4),

=05 ][ o

R { 1 ) JoRET) s, (A7)

2 ) = ¢ =k

Thus, eq. (A3) can be written

From this relationship, many operator representations can be obtained which are used in this
work as well in other works.
To this end, writing eq. (A7) in Cartesian coordinates gives

e PR A

—o0 —oo —oo

performing the ¢ -integration by closing the resulting contour integral in the complex plane in
the x >0 region yields

12
exp p+ix(k” —
eyt [ kzifz il

p

d’q, (A8)

877: q<k

Thus, one has in terms of the two-dimensional plane-wave spectrum

a(xp)= 1l & (ép)eXp[iép P+ ix(k* - qﬁ)m] d’q, (A9)
where
20(q )E( L - o (A10)
Pl \8n i}(k2 _q;)

In the ‘transverse’ case where the spectrum is considered across the interval p—p, in the
transverse plane at x =0, eq. (A9) becomes
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2(0.5-p0) = J) 2,(d,)exp[id, - (P~ By)] 44,

1 .

=507 f (kz—qp " explig, - (p—p,)|d’
1

(L 0{e+ Lt ol -

Il
—_
[}
—
—_—

[kz 41 ...Jexp[igp . (,3_,30)] dqu
S >‘1 exolid, (- o)) &

[ (ke +v2) " [ explid, - (P Bo)] 4,

| 2. L
(& e ey ap-5)

l

Thus, one has the operator representation
. o V2. L
2ig,(0.p—p,) = (K> +V}) " 8(p—p,) (A11)

Additionally, operating on eq. (A11) with the transverse Helmholtz operator k* + VIZJ gives

12

2i(k*+V3)g,(0.p—p,) = (k> + V) "8(p—p,) (A12)

Finally, returning to eq. (A10), one can consider the derivative

&go Lo 11 il -a2) " Yexlid, - p+is(k ~2) "] 4%,

Al -~ q 12 —_ . 12
=1_U g qp kz—Vf)) exp[lqp-p+lx(k2—q;) ]a’qu
. /2 .
=i(k*=V?) " gy(x.p—Py) (A13)
Equations (A11)-(A13) form the basis of the theory developed by [Babkin and Klyatskin, 1980]

and [Babkin, Klyatskin, and Lyubavin, 1980] to which the methods of invariant imbedding were
applied.

The operators (/’c2 + Vi)l/z and (k2 + Vi)_l/z can be given analytical representations using the
foregoing. In particular, consider an arbitrary function F(p) and the definition of the §-function
to form
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where
- -, V2 i -,
K(p-p)=(k*+V,) 8(p-p)
But using the result of eq. (A12) in eq. (A15) yields
K(p—p)=2i(k*+V2)8,(0.5—p)
Thus, returning to eq. (A14) and using the definition of eq. (A1),

i(k2+ 1/2 q 1 ]‘ exp lk|p p|) (f)’)dzp'

"IP1

which is a differential operator. Similarly, for the operator (k +V? ) v

-2, V2 ., ) ,
(VY Fp)=] (k4 V) ap-p)F(p)dp
— K’(/_j_[_jl)F(/_j,)dzp,
where

K(p-p)=(k*+V ) 8(p—p’) =2ig,(0,p—p)

(A14)

(A15)

(A16)

(A17)

(A18)

where the last result is by eq. (A11). Again, remembering the definition of eq. (A1), eq. (A17)

becomes

k
ik +v2) o 5)- 1 ]‘ expz|p o) F(F)d

s

which is an integral operator.

(A19)

Both egs. (A16) and (A19) are used extensively by [Saichev, 1980a,b] and [Malakhov and

Saichev, 1980].
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