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ABSTRACT 

 
A low-NOx emissions combustor concept has been 
demonstrated in flame-tube tests.  A lean-direct 
injection (LDI) concept was used where the fuel is 
injected directly into the flame zone and the overall 
equivalence ratio of the mixture is lean.  The LDI 
concept described in this report is a multiplex fuel 
injector module containing multipoint fuel injection tips 
and multi-burning zones.  The injector module 
comprises 25 equally spaced injection tips within a 76 x 
76 mm area that fits into the flame-tube duct.  The air 
swirlers were made from a concave plate on the axis of 
the fuel injector using drilled holes at an angle to the 
axis of the fuel injector.  The NOx levels were quite 
low and are greater than 70% lower than the 1996 
ICAO standard.  At an inlet temperature of 810 K, inlet 
pressure of 2760 kPa, pressure drop of 4% and a flame 
temperature of 1900 K with JP8 fuel, the NOx emission 
index was 9.  The 25-point injector module exhibited 
the most uniform radial distribution of fuel-air mixture 
and NOx emissions in the flame tube when compared to 
other multipoint injection devices. A correlation is 
developed relating the NOx emissions to inlet 
temperature, inlet pressure, equivalence ratio and 
pressure drop.   
 

INTRODUCTION 
 
The low emissions combustor development described in 
this paper was done as part of the NASA Smart 
Efficient Components Program.  The objective of this 
combustor project under Smart Efficient Components is 
to achieve an 80% NOx reduction relative to the 1996 
ICAO standards and to maintain carbon monoxide and 
unburned hydrocarbons at their current low levels at 
low power conditions. A reduction in NOx emissions is 
important because of their effect as a greenhouse gas.  

NOx emitted from aircraft has a complicated effect on 
the environment and can react with other greenhouses 
gases such as ozone and methane and change the 
radiative heat balance, see Wey and Maurice.1  The 
technologies developed and demonstrated will be 
applicable to NASA and DOD advanced aircraft engine 
development programs, and to turbine engine industry 
development programs.  
 
Low NOx combustors can be classified into rich burn 
and lean burn concepts.  Lean burn combustors can be 
further classified into Lean-Premixed-Prevaporized 
(LPP) and Lean Direct Injection (LDI).  In both LPP 
and LDI concepts all of the combustor air, except for 
liner cooling flow, enters through the combustor dome 
so that the combustion occurs at the lowest possible 
flame temperature.  The LPP concept has been shown 
to have the lowest NOx emissions, see Tacina,2 but for 
advanced high-pressure ratio engines the possibility of 
auto-ignition or flashback precludes its use.  LDI differs 
from LPP in that the fuel is injected directly into the 
flame zone and thus it does not have the potential for 
auto-ignition or flashback and should have greater 
stability.  NOx emissions from an LDI can approach 
those from a LPP but since LDI is not premixed and 
pre-vaporized, it must provide good atomization and 
mixing of the fuel quickly and uniformly to maintain 
low flame temperatures and NOx levels comparable to 
those of LPP. 
 
To provide good atomization and mixing of the fuel, the 
LDI concept described in this report is a multiplex fuel 
injector module containing multiple fuel injection tips 
and multi-burning zones.  Previously a multiplex fuel 
injector concept was evaluated in flame-tube tests3 that 
had 49 fuel injectors in a 76 x 76 mm area.  This 
previous fuel injector module had two fuel circuits for 
fuel staging with every other fuel injector in a 
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checkerboard pattern on a fuel circuit. The NOx levels 
were low (greater than 70% lower than the 1996 ICAO 
standard) and it was found that when only one fuel 
circuit of 25 out of the 49 fuel injectors was used the 
NOx levels were the same as when all the fuel injectors 
were used.  The injector module for the present study 
comprises 25 injection tips mounted within the 76 x 
76 mm area.  Each of the fuel injection tips is a unique 
simplex airblast atomizer design that simplifies the fuel 
injector construction.  The air swirlers are also a unique 
design of discrete air jets that are made from a concave 
plate on the axis of the fuel injector using drilled holes 
at an angle to the axis.  The multiplex injector module 
not only provides quick and uniform mixing; it also 
produces small multi-burning zones for reduced 
residence time resulting in low NOx formation. 
 
The new 25-point Multiplex Fuel Injector Module, 
MPLX25, was evaluated in flame-tube testing and 
compared to he previously developed multipoint 
injector concepts.  Test conditions included inlet air 
temperatures up to 810 K, inlet pressures up to 2760 
kPa and the test fuel was JP8.   
 

MULTIPLEX FUEL INJECTOR MODULE 
 
The fuel injector module is illustrated in Fig. 1.  It 
comprises 25 closely spaced injection tips that are 
designed to fit within a 76 mm x 76 mm test area.  The 
center-to-center distance between the injection tips is 
14.4 mm.  Each of the injection tips is a fully functional 
simplex airblast atomizer, containing a pressure swirl 
atomizer in the center and a discrete-jet air swirler on 
the outside.   
 
To minimize manufacturing cost, a unique 
configuration is employed for the design of the 
atomizer and air swirler.  The pressure swirl atomizer 
contains only two components: a spherical sealing ball 
and a distributor cone.  To construct the atomizer, a 
sealing ball is pressed into a distributor cone and the 
assembled distributor cone is laser-welded onto a fuel 
supply tube to form a pressure swirl atomizer tip.  All 
25 pressure atomizer tips are brazed onto a fuel 
manifold ready to be inserted into a face plate that 
contains 25 discrete-jet air swirlers.  The flow number, 
FNSI, per nozzle is 0.053 mm2 (FNUS=1.0), flow 
numbers definitions from Lefebvre.4 The air swirlers 
are made by drilling two rows of holes through the 
swirler body at an angle to the tip axis.  The effective 
area of the air swirler array is 630 mm2.  Figure 2 
provides a close view of the fuel manifold, air swirler 
and pressure atomizer tip assembly and Fig. 3 shows 
the assembly installed in the test rig housing.   
 

Spray Characteristics and Measurements 
 
During injector tip development, detailed measurements 
were made to help evaluate the performance of various 
tip configurations, including spray patternation, droplet 
size and velocity, ignition, combustion stability and 
acoustic level.  Measurements were made for each 
injector tip configuration at various operating 
conditions under atmospheric conditions.  The spray 
pattern is uniform and without streaks. 
 
For spray characterization, droplet size and velocity 
measurements were made to determine whether the 
spray dynamic structure is best suited to meet the 
ignition and combustion stability requirements.  Figs. 
4a and 4b show an example of the radial distribution of 
Sauter mean diameter (SMD) and droplet mean axial 
velocity for the comparison of spray characteristics at 
the minimum operating condition for rig tests. The 
measurements were conducted at 38 mm from the 
nozzle face at a fuel flow rate of 1.54 kg/hour, fuel 
pressure drop differential of 57 kPa, and an air pressure 
drop of 67 kPa.  The droplet sizes appear to be quite 
small across the spray with small SMD values of less 
than 20 µm in the center and SMD values of near 
60 µm at the outside edge. The average of the SMD 
values across the spray is approximately 30µm. The 
SMD values generally decrease with increasing fuel 
and air pressures, and since the combustion tests have 
higher fuel flows and higher ambient pressures, the 
drop sizes during the combustion tests will be smaller.  
The velocity profile generally exhibits a double-peak 
distribution. The maximum velocity appears to be 
located at a certain radial distance from the center axis.  
In the center of the spray, the droplet velocity is much 
slower, with smaller drop sizes that vaporize quickly to 
provide stable combustion. 
 

EXPERIMENTAL FACILTY 
 
A schematic of the experimental facility is shown in 
Fig. 5.  The incoming combustion air is heated by a 
non-vitiated heat exchanger to a maximum temperature 
of 840 K and a maximum pressure of 3000 kPa.  The 
flow is measured by a venturi meter, and fuel-flow rate 
is measured by a turbine meter.  The fuel-injector 
module is mounted in a stainless-steel pipe with a  
152-mm inside diameter.  The fuel and air mixture is 
injected into a flame tube that has a square cross section 
of 76.2 mm on a side.  The flame-tube flow passage is 
made of zirconia (ZrO2), 12 mm thick, which is housed 
in a 152-mm diameter pipe. The gap between the 
zirconium tube and the pipe is filled with an alumina 
(Al2O3) casting.  The outside of the pipe is cooled by a 
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water coil.  The test section is 300-mm long, followed 
by a water–quench section and back-pressure valve.  
Gas sampling is done 200 mm from the fuel-injector 
exit.  A three-hole, water-cooled probe was used, with 
the holes equally spaced across the diameter of the 
flame tube.  There is a single-hole traversing probes 
located at 100 mm from the fuel-injector exit for radial-
profile measurements. The concentrations of O2, CO, 
CO2, HC (as CH4), NO, and NOx are measured by 
standard, gas-analysis procedures, SAE5: 
chemiluminescence for NO, nondispersive infrared 
absorption for CO and CO2, flame ionization for HC, 
and paramagnetic analysis for O2. The NO2–NO 
converter is calibrated using standard NO2  to verify 
that conversion efficiencies are greater than 96%.  The 
overall accuracy of the emission measurements are 
estimated to be within 90%. This is based on the 
repeatability of data when the same configuration was 
tested on different days and with at least one change of 
configurations between tests of the same configuration.   
 

RESULTS AND DISCUSSION 
 
The log of the NOx emissions is plotted versus the 
equivalence ratio (which is the fuel-air ratio, 
determined from the emissions measurements, divided 
by 0.068) in Figs. 6a and 6b.  The NOx values are given 
in terms of emission index, g NO2/kg fuel, where the 
emissions of NO are calculated as NO2.  There are four 
values of inlet temperature: 505K, 615K, 730K, and 
810K; three values of pressure: 1030kPa, 1380kPa, and 
2760kPa; and three values of pressure drop: 3, 4, and 
5 percent of the inlet pressure. The range of the 
equivalence ratio shown is limited at the high values by 
the facility requirements and at the low end by good 
combustion efficiency.  The combustion efficiency is 
greater than 99.9% for all points plotted.  The 
equivalence ratio obtained from the emissions 
measurements was, in general, within 2% of the 
metered value, with the highest value being 4.5% high 
and the lowest value being 4.3% low compared to the 
metered value. 
 
The major features shown in Fig. 6a are that the NOx 
levels are low over the range of test conditions and that 
the NOx emissions follow the expected trends of 
increasing with increasing inlet pressure and 
temperature and decreasing with increasing air pressure 
drop. The plots at the various inlet conditions are all 
smooth, with the slopes of the plots being nearly linear 
(on a log plot). Some plots show an increase in slope 
with increasing equivalence ratio.  A plot of NOx 
emissions versus the adiabatic temperature (adiabatic 
equilibrium temperature determined from the emission 
measurements), Fig. 6b, is essentially the same as the 

plot using equivalence ratio and does not collapse the 
data.   
 
The NOx data are correlated in two ways.  The first 
uses a standard correlation, developed at NASA GRC, 
based on many configurations tested in the Advanced 
Subsonic Technology and UEET Programs, both from 
industry and NASA configurations, Wey6: 
 
EINOx = 0.06 * P3 0.59 * e T3 

/194* FAR 1.69 * (∆P/P %) –0.56  , 
R2 = 0.90 (1) 
 
(T3 in K, P3 in kPa and FAR is the fuel-air ratio) 
 
Another fit can be obtained if the exponents are 
calculated from the multiplex data, 
 
EINOx = 0.17 * P3 0.45 * e T3 

/200* FAR 1.40  *(∆P/P %) –0.35 ,  
R2 = 0.94 (2)   
 
Figure 7 shows the comparison of the NOx data 
between the measurement and calculation from the two 
correlation equations.  The inlet pressure exponent for 
correlation equation 2 is lower than the standard NASA 
correlation, equation 1, and approximately equal to the 
generally accepted value of 0.5.  The effects of inlet 
temperature and fuel-air ratio in equations 2 are also 
lower than the standard NASA correlation.  
 
On closer inspection of Fig. 7, it can be seen that 
equation 2 is a better fit for the tested data only because 
there is more low power data than data at high power 
conditions.  Equation 1 estimates NOx emissions more 
accurately at high power conditions and thus equation 1 
is considered the best fit for the EINOx calculations.  
The NOx emissions calculated over a typical landing 
takeoff cycle would be greater than 70% below the 
1996 ICAO standard. 
 
From Fig. 6a, a higher air-pressure drop through the 
module decreases NOx emissions. The higher pressure 
drop (since the flow area is fixed) is obtained by 
increasing the air mass flow and, consequently, the 
combustion residence time is decreased.  If NOx is a 
linear function of residence time, as given in 
Anderson,7 and mass flow varies with the square root of 
pressure drop, then the NOx production varies inversely 
with the square root of pressure drop.  Additionally 
higher pressure drop increases turbulence, which in turn 
increases mixing and could decrease NOx production.  
A third factor is that, as the air pressure drop increases, 
the air mass flow increases, and for the same 
equivalence ratio, the fuel flow increases.  This in turn 
increases the fuel pressure drop, resulting in better 
atomization and a smaller average drop size, although 
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at the fuel pressure drop for high power conditions this 
effect is probably small.  Higher air velocity also 
decreases the drop sizes as a result of enhanced primary 
and secondary breakup of the fuel stream.  
 
The carbon monoxide emissions for the various test 
conditions are shown as a function of equivalence ratio 
in Fig. 8a and as a function of flame temperature in 
Fig. 8b.  For the carbon monoxide emissions the flame 
temperature collapses the data.  As the inlet temperature 
decreases the combustor temperature for low carbon 
monoxide emissions increases.  At an inlet temperature 
of 820 K, a combustor temperature greater than 1500 K 
is needed for low carbon monoxide emissions, and a 
combustor temperature of almost 1700 K is needed for 
an inlet temperature of 505 K.  Note that a carbon 
monoxide emission index value of approximately 40 is 
a 1% combustion inefficiency.  The hydrocarbon values 
were low (single digit parts per million) when the 
carbon monoxide values are low.  As equivalence or 
combustor temperature are lowered, first the carbon 
monoxide values would increase and then as the 
equivalence ratio was further decreased the 
hydrocarbon values would increase. 
   
Using the traversing probe at 100 mm downstream, a 
radial profile of fuel-air ratio (normalized by the 
metered fuel-air ratio), and NOx emission index 
(normalized by the NOx emission index at 200 mm) are 
shown in Figs. 9a and 9b. The inlet temperature, 
pressure and pressure drop for the data is 810K, 
2760 kPa, and 4%, respectively. The fuel distribution 
(as shown by equivalence ratio) is extremely uniform, 
with a variation of about 2%.  This is the most uniform 
distribution we have obtained with multipoint 
configurations.  Note that the NOx levels at an axial 
distance of 100mm from the fuel system were 
approximately the same as at 200mm. It was observed 
in ref. 3 that the fuel mixes and reacts very quickly with 
the airflow, and the fuel concentration is near zero 
within 20 mm distance from the injector face. 
 
In Fig. 10, the NOx emissions obtained with the present 
MPX25 are compared to the previously reported 
Multiplex 49 point Injector,3 MPX49, and the Multi 
Point Integrated Module (MPIM) data.8 The 
comparison is at the test condition of an inlet 
temperature of 810K, an inlet pressure of 2760 kPa, and 
a 4% pressure drop.  The two sets of Multiplex NOx 
data are very similar and fall in the range of the  
25-point (25 fuel injectors) MPIM and are greater than 
the 36-point MPIM.  This is consistent with the data 
from Ref. 3, when only 25 of the 49 injectors were used 
and the NOx emissions were approximately the same.  
Evidently the number of fuel injectors is only one factor 

that influences the amount of NOx produced.  Other 
factors, such as the intensity of mixing, the position of 
the flame and the size of the recirculation zone, must 
also be considered for NOx reduction.   
 

SUMMARY AND CONCLUSIONS 
 
A low-NOx, multiplex LDI concept has been 
demonstrated in flame-tube tests. The configuration 
tested had 25 fuel injectors in the size of a 
conventional, single fuel injector. Each fuel injector had 
an axial air swirler for quick mixing of the fuel and air 
before burning.  Each of the fuel injection tips is a 
unique simplex-air blast-atomizer design that simplifies 
the fuel injector construction.  The air swirlers are also 
a unique design of discrete air jets with simplified 
construction.  The air swirlers are made from a concave 
plate on the axis of the fuel injector, using drilled holes 
at an angle to the axis. Test conditions ranged from 
inlet temperatures up to 810K, inlet pressures up to 
2760 kPa, flame temperatures up to 2100K, and JP8 
fuel.  The NOx levels were quite low.  At an inlet 
temperature of 810 K, inlet pressure of 2760 kPa, 
pressure drop of 4%, and a flame temperature of 
1900 K, the NOx emission index was 9.   
 
A correlation was developed relating the NOx emission 
index to inlet temperature, inlet pressure, equivalence 
ratio, and pressure drop.  The dependence on inlet 
pressure, inlet temperature, fuel-air ratio, and pressure 
drop are less than the standard correlation.  The NOx 
levels from the 25-point multiplex injector were the 
same as the previously reported 49-point multiplex 
injector and approximately the same as a previously 
reported 25-point MPIM combustor concept.  However, 
the NOx levels were higher than the 36-point MPIM, 
although at high equivalence ratios the difference in 
NOx levels was less.  The radial distribution of NOx 
and fuel-air ratio produced by the present 25-point 
multiplex injector was within 2% of the mean, and the 
best among the multipoint configurations tested in our 
facility.   Improvements in the lean limit of good 
combustion efficiency at low power conditions are 
needed to make it comparable to conventional 
combustors. 
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Figure 1 – 25-pt Mltiplex fuel injector with discrete-jet air swirler 
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Figure 2 – 25-pt MPX injector a)upstream looking downstream, b) side view 

 
 

 
Figure 3 – Installation of fuel injector module 
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Figure 4a – Drop diameter distribution 
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Figure 4b – Fuel volume flux distribution 

Figure 4 – Spray distribution characteristics 
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Figure 5 – Sketch of flame-tube test rig 
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Figure 6a – NOx emission index versus equivalence ratio, Phi 
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Figure 6b – NOx emission index versus adiabatic temperature 

Figure 6 – NOx emissions 
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Figure 7 – NOx emission index correlation 
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Figure 8a – CO emission index versus equivalence ratio, Phi 
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Figure 8b – CO emission index versus adiabatic temperature 

Figure 8 – CO emissions 
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Figure 9a – Radial profiles of equivalence ratio at 100 mm downstream 

EINOx/EINOx@200 mm, %

90 92 94 96 98 100 102 104 106 108 110

V
er

tic
al

 P
os

iti
on

, m
m

-40

-30

-20

-10

0

10

20

30
810 K, 2760 kPa, 4%, Φ=0.30

 
Figure 9b – Radial profiles of NOx emission index at 100 mm downstream 

Figure 9 – Radial profiles of emissions 
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Figure 10 – Comparison NOx emission index to other multipoint configurations 
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