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1.0 SUMMARY

AlliedSignal Engines (AE) defined a number of concepts that significantly increase the
horsepower of a turboshaft engine to accommodate the loss of an engine and enable the safe
landing of a twin engined, 40-passenger tiltrotor. Operation at this contingency rated power was
required for only 2.5 minutes. These concepts were ranked on the basis of power augmentation
capability, direct operating costs (DOC), and safety. The following were selected for further
analysis: :

e Water/Methanol Injection
e Better Power Turbine Than Required
e  Secondary Combustor For Interturbine Reheat

The power augmentation ratio, percent change in DOC, and DMC of these concepts
relative to the AE Baseline engine are shown in Table 1. Note that engine DMC does not parallel
vehicle DOC. Vehicle DOC, a NASA empirical calculation which is a function of engine
horsepower, does not necessarily reflect DMC influences due to different engine configurations.
However, VASCOMP DOC results were not adjusted for AE results for NASA comparison
consistency. e

Table 1. Surh‘x‘har‘y of Centingency Concepts.

CONCEPT CRP/TOP* | ADOC** | ADMC**
Water / Methanol Injection 2000 pph 1.26 -2.4% -5.7%
4000 pph 1.31 -3.0% -6.9%
5000 pph 1.32 -3.3% -1.2%
Better Power Turbine Than Required ' 1.41 -4.2% -2.1%
Secondary Combustor For Inter-Turbine Reheat 1.70 -5.7% +6.4%
*Contingency Rated Power (CRP) to TakeOff Power (TOP)
*+*Results Relative To AE Baseline Engine, Negative Sign Indicates Reduction In Cost

A primary consideration was the increased engine operating temperatures needed to
produce an augmented power level. The selection of the AS812 engine facilitated these concepts
since its power turbine could be upgraded to a higher technology level. Consequently, these
concepts would not be applicable to an engine which already used high temperature turbine
material and advanced cooling schemes. :

NASA/CR—2003-212465 1



2.0 INTRODUCTION

NASA is encouraging the U.S. aerospace industry to develop a Short Haul Civil Tiltrotor
(SHCT) commuter aircraft as shown in Figure 1 and Figure 2. Toward this end, NASA is
supporting and coordinating research into the technologies necessary to meet this goal. A prime
consideration in a tiltrotor operation is the loss of an engine. The propulsion system must have
the intrinsic capability to accommodate the loss of an engine and step up to provide the required
power to either continue the mission or land safely. In addition, the propulsion system must offer
low operating costs to make the tilt rotor economically viable. The successful tiltrotor will
initially fill a market niche that combines the vertical takeoff capabilities of helicopters with the
high-speed cruise offered by fixed-wing turboprop airplanes.

Figure 1. NASA Short Haul Civil Tiltrotor (SHCT).

Current design practice sizes each tiltrotor engine such.that it can provide the maximum
total vehicle power required when operated at the maximum turbine inlet temperature. This
results in a heavier and more inefficient propulsion system than required for normal operation.
Consequently, the tiltrotor design is compromised; heavier, costlier (both acquisition and
operating), and too powerful. The ideal tiltrotor engine, in a twin-engine installation, would be
sized to provide half the maximum required horsepower and would never fail. While the ideal
tiltrotor is not possible, its concept can be used as the yardstick to measure candidate propulsion
systems against. The goal of this study is to develop a propulsion system with contingency
power capability that approaches the economics of an ideal system.

AE submits the results of the following study in response to NASA Small Engine
Technology Proposal 4510.251.2, “Contingency Power Study For Short Haul Civil Tiltrotor”.
AE examined methods to attain power levels significantly higher than takeoff power, for short
duration, to accommodate the loss of an engine. These increased power levels were ranked on
the basis of economy and safety. This contingency rated power (CRP) level is defined per FAA
criteria for a 2.5-minute One Engine Inoperative (OEI) contingency rating. CRP is to be used
only in the event that one of the vehicle engines becomes inoperative. The available time at this
power is 2.5 minutes by design without incurring any engine damage. Further, and again by
design, CRP can be used three times over the life of the engine without sustaining damage or
incurring additional costs above that of normal system use.

NASA/CR—2003-212465 2
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Figure 2. NASA Short Haul Civil Tiltrotor 3-Views.
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3.0 BACKGROUND

NASA bhas initiated contingency power studies through the Advanced Subsonic
Technology (AST) Office as part of the Short Haul Civil Tiltrotor (SHCT) program. In addition,
the program is being coordinated with the Lewis Rotorcraft Focal Point located in the Propulsion
Systems Division. The AST office is also directing the Small Engine Technology (SET)
program. NASA established the industry-based Propulsion Working Group, Contingency Power
Element, to develop and demonstrate a civil tiltrotor aircraft propulsion system over a 3 phase
program. Figure 3 presents the general organizational infrastructure between NASA and AE.

Acronautics
Directorate
Advanced Subsonic Propulsion
Technology (AST) Systems
Project Office Division

| !

[ Project Engmeer }to{Commgc ncy Power | Lt Rotorcraft Focal | Mechanical System

Studies .
Short Haul Sub-Element Leader Point Technology Branch

A a4 & T
v Transmission
Engineer

v

____________________________

: ‘ ! : I}
¥ S ¥ ¥ ¥
¥
. ' Rotorcraft Team Drive System
Propulsion : (HOQIARC/LaRC/ Working Geoup
Working Group ' LeRO) Chairman
1

AE Contingency
Power Studies Team

Figure 3. Organization Chart.

The propulsion working group began work on Phase 1 in July 1994.. AE joined the group
under Contract Number NAS3-27481 in March 1995. The RFP for Phase 2 was issued and
Phase 1 ended in March 1996.

The NASA SHCT group defined the baseline tiltrotor vehicle model and mission profile.
The tiltrotor vehicle model definition is based heavily on NASA tiltrotor empirical data; which
include tests of the V-22 Osprey and the XV-15. An initial tiltrotor model was defined on 7/94.
Preliminary analysis results with this model highlighted necessary modifications to the model
and resulted in an updated baseline definition on 4/95 (See Reference 1 for comparison details).

The 4/95 baseline and mission profiles were made available to the Contingency Power
Studies group in terms of VASCOMP II program input. VASCOMP is the acronym for V/STOL
Aircraft Sizing and performance COMputer Program. This program was developed by the
Boeing VERTOL Company in 1968. It underwent three major Boeing revisions, the last in 1980.
NASA has under taken the responsibility to update a general industry version since.

NASA/CR—2003-212465 4



The NASA Contingency Power Studies group distributed the tiltrotor model and mission
profile definitions to the participating industry representatives on the propulsion working group
committee. These representatives included AE, Allison, and General Electric (GE). NASA
supplied electronic files containing the most current FORTRAN source code for VASCOMP and
an input file necessary to model a 4/95 baseline tiltrotor. This input file also implicitly defined
the mission profile and miscellaneous engine and aircraft sizing parameters. Reference 1
documents these details. A hard copy of the glossary, Volume 1, and Volume 2 of the
VASCOMP instruction manual were also provided.

The NASA baseline engine in the tiltrotor model was based on a generic, nonproprietary
turboshaft whose origins lay with a GE engine, Model GLC38. VASCOMP scaled these
operating characteristics to meet the vehicle requirements. This engine has a 2.5-minute CRP
available by a “throttle push” during OEI operation. This provides a power level nominally 3.5
percent higher than normal takeoff rated power.

Based on NASA payload and mission requirements and using the NASA tiltrotor vehicle
“model, AE performed this study to identify and analyze OEI contingency power propulsion
system concepts. Whether engine or airframe based, these propulsion systems would provide
significantly increased power levels for OEI operation, completely safe operation, a cost
advantage over current approaches, and be based on advanced technology levels equivalent to
Entry-Into-Service (EIS) 2005. AE fulfilled the statement of work (SOW) by completing the
following four tasks:

Task 1 - Define a baseline engine model sized for the tiltrotor power requirements. Use
technology levels consistent with Entry Into Service (EIS) in the year 2005. Quantify
baseline tiltrotor operating characteristics by using the engine model in the NASA
vehicle model/mission definitions. Define Direct Operating Costs (DOC) and key
engine related costs (including but not limited to engine acquisition, maintenance, and
operational). '

Task 2 - Identify and detail various contingency power propulsion system concepts that have
the potential for significant power provision. Choose the top candidate contingency
power systems based on safe operation, total power, and minimum DOC.

Task 3 - Define prdpulsion systems details for each of the viable concepts. Describe system
size, weight, and cost savings relative to the baseline engine (including but not limited
to design point, engine life, engine maintenance, and DOC).

Task 4 - Identify preliminary design scope by defining the sections/components of the baseline
engine that will require design and development to enable implementation of the
contingency power concepts. Schedule, cost, and probability of success are
addressed.
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4.0 TASK 1: AE BASELINE ENGINE DEFINITION

A baseline engine model is established in this section to enable various OEI technology
concepts to be defined and analyzed. - The performance characteristics, weight, mission
performance, acquisition cost, DMC, and DOC of this engine were determined and used as the
common reference point to judge the OEI concepts.

4.1 AE Baseline Tiltrotor Engine

The baseline engine is derived from a AE turboshaft engine in the size class required by
the tiltrotor. This engine was analytically infused with advanced technologies equivalent to that
for EIS 2005. These technologies were defined as the result of NASA SET studies and resulted
in significant power improvements. As a result, this advanced engine had to be scaled down to
meet the needs of the tiltrotor at the sizing point.

4.1.1 AS812 Engine

The tiltrotor mission profile provided by NASA indicated an engine rated at sea level,
static, ISA day conditions in the 10,000 HP class was required. AE selected the AS812
turboprop engine (see Figure 4). This engine is a two spool turboprop engine. It is based on the
AS807 engine proposed for the DeHavilland Dash 8-400 Regional Turboprop airplane. The
AS812 has 180 degrees Fahrenheit of deterioration margin to enable regional service.

The AS807 core compression system consists of a seven-stage axial compressor followed
by a single-stage centrifugal compressor. It is designed with a mass flow pumping capacity of 36
Ib/sec. Horsepower to drive the compression system is provided by a two-stage, high-pressure
turbine. The AS812 uses this “common core” and adds a low-pressure spool comprised of a
three-stage booster compressor and a three-stage power turbine. The constant-speed free power
turbine drives the booster compressor and supplies the output power. This power would
normally be input to the supplied gearbox designed to step down the 11,000 rpm shaft speed and
drive a propeller. The AE supplied gearbox was eliminated since tiltrotor installation supplies its
own.

Figure 4. AS812 Engine.

The AS812 has an Automatic Power Reserve (APR) level nominally 15 percent greater
than its 5-minute TakeOff Power (TOP) rating. This power is obtained through a throttle push to
higher operating temperatures and it is limited to 170F above TOP. This rating is intended only
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for emergency use and consequently is only available in the event of an engine failure. Operation
at this temperature was limited to 2.5 minutes per a Contingency Rated Power (CRP) definition.

4.1.2 Advanced Technology Modifications

NASA Small Engine Technology (SET) performance improvements consistent with year
2005 Entry-Into-Service (EIS) were incorporated into the engine design. The general goals of the
SET program are presented in Table 2.

Table 2. NASA SET Performance Improvements (2005 EIS).

CATEGORIES SET GOAL
DOC 10-15%
FEmissions (Noise & Comb.) Compliance
Mission Fuel Burn 10%
Engine Weight , 10%
Reliability & Maintainability 10%
Engine Cost No Change

These goals were met by AE technological developments in:

Advanced Film Cooling

Turbine Disk Cavity Cooling
Affordability-Driven Cooled Turbine
Centrifugal Titanium Compressor
Finger Seals

Studies in these areas were translated into specific engine cycle model impacts. As a
result, the AS812 turbine rotor inlet temperatures increased 200F. Furthermore, the turbine
cooling flows and leakages were reduced as an additional benefit of these technologies. The
cycle was reoptimized and matched to a rated takeoff now at a maximum temperature of 2700F.
Available power increased by 50 percent, and cruise Specific Fuel Consumption (SFC) was
reduced by 10 percent. These performance improvements are shown graphically in Figure 5 and
Figure 6, respectively.

4.1.3 Engine Sizing Point

NASA defined the sizing point for the tiltrotor to be the following conditions: Hover-
Out-of-Ground-Effect (HOGE), 2000 feet, static, ISA+20C day, and contingency rated power.
AE analysis confirmed this sizing point imposed the maximum power requirements, exceeding
those necessary at either sea level, static, ISA day, normal takeoff or 25K feet, 350 KTAS, ISA
day, cruise power. NASA power requirements predicted during convert segments (transitions
from hovering to forward flight or vice versa) were for reference only. Other typical rotorcraft
sizing criteria such as HIGE OEI and 150 feet/minute minimum ROC during 30-minute
operation were not applicable.
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4.1.4 Baseline Engine Sizing

The advanced technology engine derived from the AS812 was resized such that at the
contingency rated power (CRP) temperature it met tiltrotor OEI power requirements at the sizing
point. - This engine is the AE Baseline tiltrotor engine. This engine sets the benchmark
performance levels against which the contingency power concept engines are compared. Table 3
compares the primary performance parameters of the current AS312 engine, the AS812 engine
with SET, and the AE Baseline tiltrotor engine. '

- Table 3. AE Baseline Engine Development Progression.

ASS812 AS812 AE Baseline
with SET Tiltrotor

Parameter Units (Current Levels) | (EIS 2005) Engine
Sea Level, Static, ISA Day

SHP HP 10,488 15,804 9,093
SFC Lb/(HP-Hr) 0.433 . 0.363 0.366
T4.1 Deg F 2,300 2,500 2,500
Way,/8, ~ PPS 81.7 78.1 472
OCR - 39.2 , 36.5 36.6

25000 Feet, 350 KTAS, ISA Day

SHP HP 4220 6458 3522
SFC Lb/(HP-Hp) 0402 0.361 0.361
T4.1 Deg F 2100 2300 2300
WavN8,/5, PPS 78.1 624 37.6
OCR - 365 29.6 29.3
SHP = brake Shaft HorscPower OCR = Overall Compression Ratio
SFC = Specific Fuel Consumption ISA = International Standard Atmosphere
T4.1 = High Pressure Turbine Inlet Temperature KTAS =Kriots True Airspeed
Wav64/8, = Corrected Engine Inlet Airflow EIS = Entry Into Service

The sizing process was iterative. Initially, the sizing point horsepower requirements of
the tiltrotor with the NASA engine was used. This was refined as the engine weight and Specific
Fuel Consumption (SFC) over the mission were matched to the tiltrotor. Specific calculation
details used to size the engine are shown in Appendix 1.

The AE Baseline engine has a 38 Ib/sec flow capacity. On a sea-level, static, ISA day, at
the contingency temperature of 3130 Rankine (R), the engine produces 10,716 HP. The nominal
power rating of this engine, at the normal takeoff temperature 2960R, is 9,093 HP.

AE exercised the option defined by Task Order 48, Task 1 Amendment (e), and
developed the AE Baseline engine model rather than use the one provided by NASA.
Comparisons between the AE and NASA Baseline engines define the differences between these
engines.
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4.2 Engine Weight

Horsepower rating and engine core flow capacities enabled engineering drawings to be
completed and components scaled relative to the AS812. Based on this parts workup, the
horsepower produced, and the weight of the AS812, the scaled engine dry weight was estimated
at 1,080 Ib. The engine weight was a required input for the mission analysis.

4.3 Mission Analysis
VASCOMP scaled the aircraft characteristics as a result of the input engine capabilities

and weight. Then using the mission proﬁle the mission performance of the AE Baseline engine
was established.

4.3.1 Aircraft Characteristics

The tiltrotor was defined per the NASA SHCT in April 1995. The primary features are
identified in Table 4. As shown in Figure 1, the aircraft is a twin-engined, high-wing, T-tailed
vehicle. The engines are fixed and do not tilt with the rotor. Program VASCOMP initially
operates as a design synthesis code to size the vehicle based on key input design parameters,
defining the geometry of individual components making up the tiltrotor. The weights of these
components are empirically estimated. The power requirements are identified, the engine scaled
(AE disabled this option and input a fixed engine), and the transmission sized accordingly. A
drag build-up is completed and a polar defined for mission analysis purposes. The fuel required
to achieve the design mission profile is calculated and becomes part of the design gross weight.
This process is iterated until the resulting vehicle matches the design inputs and constraints.

Table 4. Short Haul Civil Tiltrotor Design Criteria.

ASPECT DESCRIPTION
Aireraft 40-Passenger Commuter Tiltrotor
Crew " Two Pilots and One Attendant
Design Range 600:'NM, Emphasis on 200 NM Legs
Payload 8000 Ib

40 PAX at 200 Ib Each, Four-Abreast

OEI Design Point OEI HOGE at CRP; 2,000 Feet; ISA+20C; Static; TOGW
Cruise Design Point- | 25,000 Feet; ISA; 350 KTAS

Reserves Fuel For 45 Minutes Cruise At LRC; 25K

Engines Two Turboshaft Engines With Contingency Power Ability

4.3.2 Engine Characteristics

Program VASCOMP requires engine operating characteristics (horsepower, fuel flow,
gas generator speed, and power turbine speed) to be input as a functions of turbine operating
temperatures and flight mach numbers. Table II-1 contains the tabular input definition of the AE
Baseline engine. VASCOMP engine operating limits were not used. - Instead, the limits and
schedules inherent in the AE cycle model were relied upon. The VASCOMP calculated weight,
a function of the maximum sea level static power, was adjusted with a delta weight adder to
reflect the 1,080 pounds actual weight.
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Nacelle geometry and corresponding drag characteristics were calculated by VASCOMP.
The smaller geometry of the AE Baseline engine would have resulted in a slightly lower nacelle
drag (reference Table 5). In cruise, it would have decreased about 143 pounds, 3.0% of the total
vehicle drag. Efforts were not made to adjust the drag due this magnitude and the prehmmary
design nature of the program.

Table 5. Nacelle Characteristics.

Length Diameter | Wetted Area | Cruise Drag
Feet Feet Square Feet Pounds
VASCOMP Nacelle 10.5 5.8 382 349
AE Engine Nacelle 9.4 4.5 220 206

NOTES: (1): Cruise Defined As 25K./350 KTAS /ISA Day
{2y Area And Drao Results Based On 2 Nacelles
(3) Drag Areas Calculated Assaming Fully Turbulent Boundary Layer, Cr=.455/(Log Re)>*™
(4). AE Engine Nacelle Assumes: Six Inches Between Inner and Outer Nacelle Skins, Nozzle Length Equal To
Exit Flange Radius, And A No Inlet Diffuser Forward Of The Front Flanse.

4.3.2.1 Input Development

The flight Mach number range was adequate as defined by NASA: Mach 0.0, 0.2, 0.4,
0.5, 0.6, and 0.7. However, VASCOMP tends to have verbose warning messages when engine
tables are extrapolated. Consequently, subground idle and super-CRP temperatures were defined
to prevent these from occurring. Modification of the source code enabled 10 x 10 matrices to be
input as opposed to the original 6 x 8 size. These dummy temperature ratings do not reflect
actual engine operating characteristics. In addition, the expanded matrix allows further definition
of engine characteristics over the normal region of operation. General guidelines used select
temperature ratings and include:

(1) Subground idle point. A fictitious point (i.e., idle ratios divided by 10) input to prevent
VASCOMP extrapolation error messages.

(2) Ground idle engine rating.

(3) Flight idle engine rating

(4) Part Power

(5) T/O power level required by the aircraft (NOT engine takeoff power rating).
(6) T/O Engine Rating

(7) CRP engine rating (Power Fraction = 1.0)

(8) Super-CRP. Similar to (1) in that it is made up to prevent error messages.

The base option in program VASCOMP calculates weight of the primary engines (Wep)
based on the following equation:

DAM7

Wep= SK3 - + SK4 or

Wep= 0.09688 - 21332 +169.9 = 1,2081b
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This weight exceeds the 1,080 pounds of the AE Baseline. Consequently, a propulsion system
delta weight adder of -256 pounds (twice the difference of 1,208 and 1,080 for the twin engine
installation) was input to correct the VASCOMP propulsion system weight.

4.3.3 Mission Profile

The mission profile is illustrated in Figure 7. This profile was defined in the 4/95
baseline tiltrotor input file and is consistent with Reference 1. Program VASCOMP analytically
“flies” major mission segments, not a continuous mission.

VASCOMP scaled the tiltrotor to meet this mission profile based on the input AE
Baseline engine operating characteristics and the engine weight. The AE Baseline engine was
mission optimized, trading off any excess power in exchange for lower engine weight and SFC.

4.3 Mission Fuel Burn

The mission fuel burns with the AE Baseline engine were 1661 and 4280 1b of fuel for
200 and 600 NM ranges respectively. The AE Baseline engine requires 5 to 7 percent more fuel
on board than the NASA Baseline engine.
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4.4 Engine Acquisition Cost

AE has estimated the acquisition cost of the AE Baseline engine at $1,952,000. These
costs are based on 1995 dollars and are for a mature engine using year-2005 technology levels.
The VASCOMP prediction was significantly different at $1,216,322. However, Figure 8
indicates the acquisition cost is in the market range for engines of this size class.

4.5 Engine Direct Maintenance Cost

AE calculated the AE Baseline engine DMC for both the 200 and 600 NM mission
profiles as if the tiltrotor were flown on either exclusively. Consequently, the actual 10-year
cumulative average cost would be within the range of $39.81 to $51.58 per hour of operation. A
detailed break down of AE Baseline engine DMC costs is presented in Appendix III, Tables III-1
and 2. AE calculated DMC is significantly lower than the VASCOMP engine maintenance costs
results of $120.33 to $159.88 per hour. All results are based on 1995 dollars.
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Figure 8. AE Baseline. Engine Acquisition Cost Versus Market Range.

4.5.1 AE DMC Calculation Methodology

The AE Direct Maintenance Cost (DMC) Model is a component level process simulation
model. Each engine type has its own unique data base that can be loaded for execution by the
model. A data base contains a baseline set of global input parameters and a series of
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maintenance parameters on a piece part level for the maintenance cost drivers in the engine. The
contents within the data base make each part uniquely sensitive to age related maintenance action
rates over time, reparability, cost per maintenance action, location of the maintenance action,
component price, its sensitivity to gaspath temperatures, and steady state and cyclical stresses.
Global inputs set the operational and logistical profile for the mission being modeled. Flight
time, annual utilization, two or three level maintenance, maintenance capability at each level,
labor rates and efficiencies, reliability growth, delivery schedule and engine power settings are
some of the constraints being modeled. During execution, the number of maintenance events for
each part is estimated for up to 15 years. The maintenance events are then multiplied by both the
man-hour cost and the average material cost per event. This continues on a part level until the
costs for the entire engine are accumulated. '

4.6 Tiltrotor Direct Operating Costs

The AE Baseline engine resulted in a tiltrotor with a total trip DOC of $2,121.37 for a
200-nm range, or $4,555.99 with a 600-nm mission range as calculated by program VASCOMP.
This translates to $6.60 to $9.22 per mile. With 40 revenue-paying passengers, these costs are
$0.1650 to $0.2304 per seat mile. This DOC is almost 2% higher than the NASA Baseline
engine.

To maintain a consistent comparison reference for NASA, the DOC from VASCOMP
was not adjusted for AE calculations of acquisition or Direct Maintenance costs. AE has
provided these independent calculations for additional information. Since significant differences
exist between AE and VASCOMP calculated engine costs, the actual aircraft direct operating
costs will be different.
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5.0 TASK 2: CONTINGENCY POWER CONCEPT IDENTIFICATION

AE formed a Contingency Power Study Team to define potential technology concepts
that would deliver additional power during OEI operation. This team was created by expanding
on the basic tiltrotor team with representatives from the major technical disciplines as shown in
Figure 9. Candidate concepts were brainstormed. From these potential concepts, the most
promising were chosen for more detailed analysis. :

Vehicle Systems Reliability /
Analysis Maintainability
g N\
Oren
S Cost
/ Analysis
j Product
S Definition
Manufacturing
Cost Analysis
Performance
Design
Integration
- Materials i
Mechanical —
Componenets

Figure 9. AlliedSignal Contingency Power Study Team.
5.1 Proposed Contingency Power Concepts

This team brainstormed over 20 potential contingency concepts. The initial question
posed was “How might a turbine engine provide significantly more power for 3 minutes in an
emergency situation?”. Then the civil tiltrotor application was described and a follow-up
question was “How else might a tiltrotor land safely after losing one engine?”. The ideas, in no
particular order, included:

(1) Pressurized Air Turbine (PAT) System: A turbine linked to the rotor drive train can be
powered by a stored source of compressed air or gas. This turbine can be an auxiliary
mounted aircraft component, or an engine component. If the power turbine of the
inoperative engine is still useable, power could be regained without effecting the normal
operation of the remaining engine. Otherwise the PAT system would increase the power
output of the operating engine above nominal levels. '

(2) APU In Drive Train: An APU (perhaps one significantly oversized), normally providing

accessory power only, is included in the drive train. It is accelerated to full power in the
event of the loss of a main engine to partially make-up for the main engine loss. The
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operating engine would be accelerated to contingency power levels to provide the
remaining power needs. The advantage of operating the main engines more efficiently
would have to overcome the additional weight, drag, and inefficient operation of the APU.

More, Smaller Engines - 3: The tiltrotor has three engines contained in or on the fuselage
all driving the same gearbox. The engines are sized such that any two provide efficient
cruise performance and have contingency capability that would enable a safe landing. The
third would normally be started prior to a hover segment (i.e., takeoffs or landings).
Scheduled engine operation would spread life usage across all three engines equally. This
also has the potential to eliminate the engine pod drag and simplify gearbox cross-shafting.
Obviously the acquisition and maintenance costs of adding a third engine have to be
overcome by the advantages of this system.

More, Smaller Engines - 4: Another variation includes the tiltrotor having four engines,
two driving each rotor. Thus, the engines could all be smaller and in the case of losing any
one, the other(s) would be sized to pick up the load through its contingency power rating.
This system could potentially be designed to eliminate cross-shafting altogether.

“Turbocharger”: Another compressor and/or turbine stage exists “somewhere”. It could
either be another stage on the main engines or located elsewhere on the aircraft. Normally
it is not used. Upon loss of an engine, doors or variable geometry open, connecting it to the
operating engine, turbocharging it to increase the operating pressure ratio, flow, and speed;
thus producing additional power.

Rocket Fuel Powered Auxiliary Turbine Linked To Drive Train: Again, an additional
turbine would be aircraft mounted. It is either clutched or slip linked to the drive train.
Solid propellant rocket fuel would be burned and expanded through the auxiliary turbine
and the power generated input into the gearbox. This enables the main engines to be
normally sized. The ability to control the auxiliary turbine and the amount of solid fuel
propeliant need to be quantified. The use of solid propellant fuel would complicate system
functionality checks prior to takeoff.

APU Linked to Core Via AGB: An APU, normally nonoperating, is linked to the core
engine through its accessory gearbox. The APU would be started prior to a hover segment.
In the event of an engine failure, the APU would be automatically accelerated and its power
contributed to the operating engine’s contingency output.

Reheat Before Power Turbine: A secondary combustor exists in the interturbine duct
between the High Pressure (HPT) and Power (PWT) turbines. Normally this combustor is
unlit and the engine suffers the pressure loss. ‘During OEI this combustor is ignited and
additional power is generated to achieve contingency power levels.

External Secondary Combustor System: A secondary combustor exists “somewhere” on
the tiltrotor. This would be a “sore thumb” type combustor either mounted on each engine
and connected with variable geometry, or a single airframe mounted combustor ducted to
both engines. Normally it is unlit and is not a part of normal engine operation. With an
OEI event, flow is diverted through the combustor, ignited, and additional power generated.

NASA/CR—2003-212465 16



(10)

635)

(12)

(13)

(14)

(15)

(16)
17

18)

Impingement Nozzles In The Power Turbine: Upon losing an engine, an external source
of pressurized air or gas is directed onto the power turbine blades themselves tc provide
additional power. This source could be from a PAT system (see concept 1) or from solid
propellant rocket fuel combustion. Again this would ideally be performed on the
inoperative engine itself to regain power.

Fuel Used for Turbine Cooling: During an OEI incident, fuel is added to the turbine
cooling air of the operating engine, increasing turbine cooling efficiency, enabling higher
operating temperatures through a throttle push, and thus providing more power. Further,
the fuel used for cooling is ultimately burned downstream of the HPT, providing a bit more
power. This method has the advantage of not needing to carry a fluid reservoir.

Water Used for Turbine Cooling: During OEI, water added to the turbine cooling air of
the operating engine increases turbine cooling efficiency, enables higher operating
temperatures through a throttle push, and thus more power is produced.

Turbine Overdesigned By Using Better Material than Required: The power turbine is
made of better materials and single-crystal technology. This enables higher temperatures to
be sustained for short duration (short since the entire turbine section is not upgraded).
Thus, through a throttle push, more power is produced.

Modulated Cooling: The engine cooling levels are controllable. For two-engine
operation, the cooling rates would be nominal. However, with only one engine, the turbine
cooling rates would be significantly increased, higher operating temperatures sustained, and
contingency power levels generated.

Variable Compressor Geometry: The engine is capable of running two different design
points, one would be for OEI hover operation, the other for fuel efficient cruise. Increased
core flow during the higher power requirements of OEI operation would be the result.

Variable Turbine Geometry: Same comments as “Variable compressor geometry”.
Variable Compressor and Turbine Geometry: Additive effects of both.

Water/Methanol Injection: A water/methanol solution is injected into the compressor or
combustor inlet of the remaining operative engine. This enables more power to be
produced, especially on low altitude hot days when it would be needed most. This is
already a proven means for increasing twin turboprop commuter takeoff performance. The
additional system weight would probably be on the order of a passenger. This would have
the advantage of high reliability, simple engine modification, and easy on-the-wing
functionality checks.
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Land in Airplane Mode: Forget the philosophy that one engine should be able to carry
the entire vehicle. Glide the tiltrotor down to a landing, rotating the rotors up out of the
way just before landing. Accept the resulting dead man’s curve and the loss of heliport
landing capability. Obviously this is less than desirable if operation is in an urban roof-top
to roof-top environment.

Autorotate or Other Auxiliary Vertical Landing Modes: After loss of an engine
remaining available power is used to maintain rotor speed and define a steep glide path
using wing and rotor lift. Prior to touchdown, the engine is accelerated to contingency
power, kinetic energy is transferred to the rotors energy, and the tiltrotor autorotates to a
landing - similar to a helicopter.

Rocket powered rotor blade backup: Self contained solid propellant rocket motors on
the rotor blade tips to be ignited in the event of an engine failure. Thus, the remaining
engine, a steep glide, the higher inertia rotor blades, and this final boost of additional power
prior to landing provides a safe touchdown.

Variable-speed Gearbox: Enables the turbine to be oversped to provide additional power
for OEI operation.

Afterburner transition to Forward Flight: Same comments as “Land in airplane mode”
but now an afterburner assists in the transition from hover to forward flight in case an
engine is lost. Obviously though, with the engines mounted on the end of the wings,
asymmetric thrust concerns would have to be addressed.

5.2 Viable Concepts Selection Methodology

The concepts developed under Task 2 were then qualitatively evaluated by each

individual team member. Each concept was scored on a 5-point scale in each of the following
categories:

Reliability/Safety of the Augmentation System
Reliability/Safety of the Vehicle/Engine
Fabrication Cost

Operating/Maintenance Cost (DOC)
Environmental Impact

Power Increase

Fuel Burn

Weight

Complexity

¢ & & e & 6 @ & @

A score of 5 was the best, 1 was the worst. Per individual, the best cumulative score

possible was 45, the worst 9. The categories of DOC and fuel burn were then doubled to weight
these categories. The weighted scores of all the respondents surveyed were totaled and an overall
score for each concept defined.
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The proposed concepts fall into three basic categories:

1. Thermodynamic cycle modifications to provide more power from the basic engine
2. Secondary power sources to obtain additional power external to the engine
3. Energy addition methods to generate power from a normally unused component

The individual concepts were ranked within their categories. Then the highest scorers within
these categories were chosen as the most viable to go forward. - This resulted in four candidate

concepts.

5.3 Selected Contingency Power Concebt_g

Two concepts within the Cycle Modification category received cumulative scores in
excess of 1,400 points. These also represent the highest overall. Consequently, both “Better
Turbine Material Than Required” and “Water/Methanol Injection” concepts were chosen for
further analysis. From the Secondary Power Source category the concept of “More, Smaller
Engines” was the highest ranked concept. Finally, the highest concept from the Energy Addition
category was the secondary combustor providing “Reheat Before the Power Turbine”. Figure 10
graphically shows the paretoed rankings of the concepts within their respective categories.

“More, Smaller Engines” is more of a systematic solution to the tiltrotor power
requirements. It does not contribute to the contingency power concept philosophy of this
contract. Furthermore, airframe manufacturer input was negative. Consequently, this concept
was not analyzed in detail.
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6.0 TASK 3: CONTINGENCY POWER CONCEPT EVALUATION

Concepts based on “Water/Methanol Injection”, “Better Turbine Material Than
Required”, and a secondary combustor providing “Reheat Before the Power Turbine” were
thermodynamically modeled and are detailed in the following sections. Engine size was
decreased corresponding to the contingency power available, thus driving engine operation from
a part power level toward the more efficient design point. These engine operating characteristics
were generated and input into VASCOMP to assess the impact of improved fuel efficiency.
System size, weight, cost, and performance comparisons with the baseline were made. These
concepts are contrasted against the NASA baseline, the AE baseline, and the ideal engine.

6.1 NASA Baseline Engine

NASA baseline engine performance characteristics and features represent the perceived
baseline levels attainable. Results were obtained from a VASCOMP output provided by NASA
(see Reference 1). Comparisons between the NASA and the AE Baseline engines satisfy the
NASA requirement that the contractor define where the model used differed from the NASA
provided model (Task Order 48, Task 1 Amendment (g)).

6.2 AE Baseline Engine

Comparisons are benchmarked against the AE Baseline model sized for the tiltrotor
application. As detailed in Section 4, Task 1, the AE Baseline has a contingency power level 15
percent greater than takeoff. This rating is obtained through a “throttle push” to operating
temperatures higher than the takeoff rating.

6.3 Concept 1: Water/Methanol Injection

The first concept is a water/methanol injection system, illustrated in Figure 11.
Water/methanol injection offers engine power augmentation due to -increased mass flow,
temperature reduction due to solution evaporation as it passes through the compressor, and
methanol combustion in the burner. AE currently offers this enhancement on several regional
twin engine turboprop installations for additional takeoff performance.

Based upon an engine sensor (torque or pressure) automatically detecting engine failure, a
water/methanol solution is injected into the compressor inlet of the remaining operative engine
and accelerated to a contingency temperature rating. A sensitivity study to flow rates was
conducted and results are presented for 2000, 4000, and 5000 pph systems. The additional
system weight penalty is equivalent to 1 to 2 passengers. This system has the advantages of
minimal engine modification, high reliability, low cost, and easy on-the-wing functionality
checks.

6.3.1 Sizing

A 2000 pph augmentation system is predicted to produce a contingency power 26 percent
higher than takeoff (CRP/TOP of 1.26). This includes the power increase due to the baseline
contingency capability to operate in excess of the takeoff temperature rating. This engine is sized
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Figure 11. Water/Methanol Augmentation Concept.

to provide 8,520 hp at the sizing point. This produces a nominal sea-level, static, takeoff rating
of 7,871 hp with a flow capacity of 42.9 Ib/sec.

6.3.2 Engine Weight

Scaling the baseline engine down to this power level results in an engine weighing 905 1b.
However, the water/methanol system incurs an additional 209 1b of aircraft system weight. This
weight is primarily the fluid for 3 minutes of operation, a single tank, and additional aircraft
support structure. Part of this weight also includes the pumps, manifolds, flow pressure
switches, valves (metering, control, pressure maintaining, non-return), lines, sensors, and
injectors required for each engine.

6.3.3 Mission Analysis

The mission fuel requirements are 1,721 Ib for the 200 NM mission, and 4,338 1b for the
600 NM mission. These results actually result in increased fuel requirements over the baseline of
3.6 and 1.4 percent respectively. VASCOMP input defining the engine AEO and OEI operating
characteristics are included in Tables II-2 and 3 of Appendix II.

6.3.4 Engine Acquisition Cost

The estimated acquisition cost of this engine is $1,696,000. Using the dollars per
horsepower and dollars per pound trends of the AE Baseline engine, adding in the additional
costs to support the CRP rating (control and manufacturing modifications) results in the smaller,
less powerful, yet more complex engine costing less than the AE Baseline. There would be an
additional airframe cost of $25,200 for the augmentation system. This extra cost includes the
tank, pumps, manifolds, switches, valves, and the aircraft support structure modifications
necessary to install an-augmentation system. Note: Fluid not included.

6.3.5 Engine Direct Maintenance Costs

The estimated 10-year cumulative engine DMC average cost, based on the 200 and 600
NM missions, would be between $37.65 to $48.52 per hour of operation. A more detailed break
down is again presented in Appendix III, Tables III-3 and 4.
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6.3.6 Tiltrotor Direct Ogerating Costs

The AE engine with a 2000 pph water/methanol injection system resulted in a tiltrotor
with a total trip DOC of $2,068.17 for a 200 NM, or $4,452.53 with a 600 NM mission range.
This translates to $6.45 to $8.99 per mile.  With 40 revenue paying passengers these cost are
16.12 to 22.46 cents per seat mile. This represents an improvement in DOC of 2.3 to 2.5 percent
over the AE Baseline engine.

6.3.7 Injection Rate Case Study

A case study was performed to define the sensitivity of injection rate to power benefit.
Augmentation system results are summarized in Table 6 for 2000, 4000, and 5000 pph injection
rates. VASCOMP input for the 4000 and 5000 pph systems, AEO and OEI, are contained in
Appendix II, Tables II4 through II-7. The power benefit starts to decline rapidly above injection
rates 4000 pph. The augmentation systems are estimated to provide average cent/seat mile DOC
improvements of 2.4, 3.0, and 3.3 percent respectively.

Table 6. Water/Methanol Augmentation Rate Sensitivities.

Concept 1A | Concept 1B | Concept 1C
Units 2000 pph 4000 pph 5000 pph
ENGINE CHARACTERISTICS
CRP/TOP — 1.26 1.31 1.32
CRP HP 2K, S, ISA+20C HP 8,520 8,520 8,520
TOP At SLS, ISA HP 7,871 7,444 7,286
Wav6,/5, PPS 42.9 42.9 42,9
COSTS
Engine Acquisition 1995 $ $1,696,000 $1,605,000 $1,570,000
Augmentation System 1995°$ $25,200 $30,000 $33,000
DMC 200 NM 1995 % $48.52 $47.86 $47.68
(AE Calc’d) 600 NM 1995 % $37.65 $37.23 $37.11
DOC 200 NM 1995 $ $2,068.17 $2,054.14 $2,048.38
(VASCOMP) 200 NM 1995 § $4,452.53 $4,423.35 $4.411.50
WEIGHTS
Engine Weight Ibs 905 855 835
1 System Weight Ibs 209 359 434
Mission Block Fuel: 200 NM Ibs 1,721 1,678 1,662
600 NM 1bs 4,338 4,261 4,220
Total 1bs 5,452 5,475 5,489
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6.4 Concept 2: Better Turbine Material Than Required

Improved turbine materials and reduced HPT life during contingency operation offers
additional engine power augmentation through increased turbine rotor inlet temperatures. This
required upgrading the power turbine first-stage ITF/Nozzle 1 from a conventional equiaxed
mono-casting to a bi-alloy. The first-stage blades would also change from a directionally
solidified alloy to single-crystal 180 material. (Figure 12). This allows the turbine temperature to
be increased to 2,850F (plus 200 degrees in deterioration margin). This corresponds to the
maximum allowable temperature for the low pressure turbine. This pushes the operating
temperatures to the 100 hour life of the high-pressure turbine for the contingency role.

Upon engine failure, identified manually or automatically, the control would enable the
turbine to be significantly over-driven for the 2.5-minute OEI event. Because of this short
duration, further hot-end section enhancements are not necessary.  An on-the-wing hot-section
inspection would be required after such an event. While these changes want to drive up the
acquisition cost, they are balanced by the smaller engine required. This system has the
advantages of basically no engine modification, high reliability, low cost, and easy on-the-wing
functionality checks.

AS812 ENGINE
W/ TURBINE OVERDESIGN CONTINGENCY CONCEPT
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Figure 12. Turbine Overdesign Concept.

6.4.1 Engine Sizing

An overdesigned turbine system was predicted to produce a contingency power 41
percent higher than takeoff (CRP/TOP of 1.41). This engine was sized to provide 8,884 hp at the
design point. This in turn resulted in a nominal sea-level, static, takeoff rating of 7,555 hp. This
engine would have a flow capacity of 41.4 pps. ,

6.4.2 Engine Weight

Scaling the baseline engine down to this power level results in an engine weighing 880 Ib.
With no additional parts relative to the baseline, the engine weight was estimated by scaling the
Baseline engine weight based on horsepower and flow levels. A correction was then applied for
2005 technology levels.
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6.4.3 Mission Analysis

The mission fuel requirements would be 1,578 1b for the 200 NM mission, and 4,141 Ib
for the 600 NM mission. These block fuel levels are 5.0 and 3.3 percent lower than required
with the AE Baseline engine. VASCOMP input defining the engine operating characteristics for
AEO and OEI are included in Table II-8 of Appendix IL

6.4.4 Engine Acquisition Costs

The acquisition cost of an engine at this size class with an overdesigned turbine would be
$1,683,000. There would be no additional airframe cost. Engine cost was estimated by
correlating dollars per horsepower and dollars per pound relative to the AE Baseline engine cost.
Then the additional cost of the new turbine design was added.

6.4.5 Engine Direct Maintenance Costs

The estimated 10-year cumulative engine DMC average cost, based on the 200 and 600
NM missions, would be between $39.12 to $50.33 per hour of operation. A more detailed break
down is again presented in Appendix III, Tables II-9 and 10.

6.4.6 Tiltrotor Direct Operating Costs

The AE engine using an improvéd material power turbine resulted in a tiltrotor with a
total trip DOC of $2,029.86 for a 200 NM, or $4,376.21 with a 600 NM mission range. This
translates to $6.34 to $8.82 per mile. With 40 revenue paying passengers these cost are 15.85t0
22.05 cents per seat mile. This represents an improvement in DOC of 3.9 to 4.3% over the AE
Baseline engine. : :

6.5 Concép_t 3: Reheélt Before the Power Turbine

The third concept is the inclusion of a secondary combustor to provide reheat between the
high- and low-pressure turbines as shown in Figure 13. Interturbine reheat allows the low-
pressure turbine to operate at its temperature limit and not suffer the penalty of running the high--
pressure turbine at a life-reducing condition. The length of the interturbine duct in the AS812
baseline engine allowed this concept to be considered. A simple effusion-cooled axial flow
combustor can was positioned in front of the power turbine. Proper combustor sizing actually
required the power turbine to be pushed back 4 inches. The case between the turbines was
resized to maintain proper geometry. An additional cooling circuit was added to cool the first
stage nozzles and blades.

: In normal operation, the secondary combustor is unlit and results in a 4 percent pressure
loss penalty on the operating cycle. When an engine out condition is detected, variable
compressor geometry is opened up in the compressor, the secondary combustor is ignited, and
cooling is shunted from the HPT to the power turbine. The reheat combustor supplies a mixed
low-pressure turbine inlet temperature of 2,300F. This represents a 650-degree increase during
an OFI even for additional power augmentation. While variable turbine geometry would further
optimize performance during OEI, the added engine complexity/reliability was not cost effective.
This concept has the potential to deliver a tremendous amount of additional power and easy on-
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the-wing functionality check prior to takeoff. However, the more complex system would require
a significant deviation from the original production engine.

AS812 ENGINE
W/ REHEAT CONTINGENCY CONCEPT
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Figure 13. Secondary Combustor Reheat Concept.

6.5.1 Engine Sizing

A secondary combustor system was predicted to produce a contingency power 70 percent
higher than takeoff (CRP/TOP of 1.0). This engine was sized to provide 8,927 HP at the design
point. This in turn resulted in a nominal sea level, static, takeoff rating of 6,737 HP. This
engine would have a core flow capacity of 38.6 Ib/sec in normal.

6.5.2 Engine Weight

Scaling the baseline engine down to this takeoff power level results in an engine weighing 850
Ib. The engine weight was estimated by scaling the baseline engine weight based on horsepower
and flow levels and then adjusting this for the weight of an additional combustor and the longer
power shafts. A correction was then applied for 2005 technology levels.

6.5.3 Mission Analysis

The mission fuel requirements would be 1,571 Ib for the 200 NM mission, and 4,060 Ibs for the
600 NM mission. These block fuel levels are 5.4 and 5.1 percent lower than AE Baseline engine
would require on board. VASCOMP input defining the engine operating characteristics for AEO
and OEI are included in Tables II-11 and 1I-12 of Appendix II.

6.5.4 Engine Acgquisition Costs

The acquisition cost of this engine would be $1,626,000. There would be no additional
airframe cost. Engine cost was estimated by correlating dollars per horsepower and dollars per
pound relative to the baseline engine cost. Then the additional cost of the second combustor and
modified control systems were added.
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6.5.5 Engine Direct Operating Costs

The estimated ten year cumulative engine DMC average cost, based on the 200 and 600
NM missions, would be between $42.65 to $54.49 per hour of operation. A more detailed break
down is again presented in Appendix III, Tables III-11 and 12.

6.5.6 Tiltrotor Direct Operating Costs

The AE engine using a secondary combustor for interturbine reheat resulted in a tiltrotor
with a total trip DOC of $1,996.16 for a 200 NM, or $4,303.74 with a 600 NM mission range.
This translates to $6.23 to $8.67 per mile. With 40 revenue paying passengers these cost are
15.58 to 21.68 cents per seat mile. This represents an improvement in DOC of 5.6 to 5.9 percent
over the AE Baseline engine.

6.6 Ideal Engine

The concept of an ideal engine is introduced for comparison purposes only. The ideal
engine represents the entitlement system, and is used to illustrate the efficiency of the technology
concepts. The ideal engine is simply one which will never fail. This negates the need for a
contingency power level.

The ideal engine was modeled by adjusting the performance characteristics of the AE
Baseline engine, though the actual operating characteristics of any engine would have sufficed.
The sea-level, static, ISA day maximum power output was changed to occur at the takeoff
temperature (contingency was eliminated). Takeoff temperature was defined as the maximum
temperature. The normal rated temperature was set S-degrees lower. VASCOMP empirical
weight calculations were accepted, and no propulsion system weight delta was added.

The ideal engine is sized such that half of the maximum vehicle horsepower required is
provided by each engine. VASCOMP results indicate a SLS, ISA single engine power rating of
3,678 hp would meet nominal takeoff requirements; 4,800 hp would be necessary for cruise; and
5,714 hp at the design point. The 2K/Static / ISA+20C/HOGE design point still represents the
maximum power required, thus the ideal engine was sized at 5,714 hp.

Interestingly, only 26 percent more power would be required from a 5,714 hp engine to
meet a SLS, ISA day, OEI takeoff. This differs significantly from the original perception of the
ideal case being an engine with a contingency capability that would provide a 100 percent
increase in sea-level static power. This kind of increase is only true at the sizing point. -
Consequently, a statistical analysis to maintain the majority of the takeoff/landing capabilities
during OEI may yield a more practical contingency power requirement somewhere between 26
and 100 percent.

6.7 System Comparisons

Comparisons of the power increases due to the contingency concepts, and the impacts on
DOC due to being able to use a smaller engine than the baseline, are made in the following
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sections.

Table 7 shows a comparison of basic engine performance features.
sections present graphical comparisons of major features of the resulting systems including
aircraft weight, engine weight, and operating temperatures.

Table 7. Engine Performance Comparisons.

Subsequent

AE
Baseline

Concept
1A

Concept
iB

Concept
iC

Concept
2

Concept

3

SEA LEVEL, STATIC, ISA DAY, TAKEOQOFF POWER (T4.1=2500F)

SHP* 9095 | 7.871 | 7444 | 728 | 17,555 | 6737
SEC 0.366 381 380 0380 | 0378 | 0382
Wave,/5, 472 46.4 439 429 41.4 386
OCR 36.6 44.7 44.7 447 36.2 40.8

*Note: Interpolated VASCOMP HP Numbers Agree With AE Cycle Models

25,000 FEET; 350 KTAS; ISA DAY; CRUISE POWER (T4.1=2300F)

SHP 3,522 3016 2842 2,777 | 3,147 | 2449
SFC 0.361 372 0373 | 0374 | 0353 | 0387
Wav6,/8, 37.6 35.5 33.5 32.8 323 29.5
OCR 29.3 35.0 35.0 34.8 28.9 31.1

6.7.1 Power Augmentation Ratios, CRP/TOP

The additional contingency power generated by the proposed concepts is defined by the
ratio of contingency to takeoff power (CRP/TOP). Figure 14 presents the ratios for each of the
concepts on a sea level, static, ISA day. The AE Baseline engine was used for reference rather
than the NASA engine for comparison consistency. '

A 1.035 CRP/TOP ratio was quoted for the NASA baseline engine per Reference 1. The
AE baseline was nominally set at 1.15 by design. Based on the delta temperature in the
thermodynamic engine model the actual ratio was 1.18. VASCOMP interpolation results in a
1.20 ratio. Water/methanol injection would increase the baseline ratios to 1.26, 1.31, and 1.32
for injection rates of 2000, 4000, and 5000 pph, respectively. The turbine over design
modification would result in a ratio of 1.41 over the baseline. Adding a secondary combustor to
the baseline engine results in a VASCOMP interpolated contingency power level 1.70 times the
takeoff rating. Thermodynamic cycle modeling predicted a ratio slightly less, at 1.67. The ideal
engine is based on two engines and consequently shows a CRP/TOP ratio of 2.0. Overall, good
agreement exists between VASCOMP aircraft model interpolations and AE engine cycle model
calculations, validating each other’s results.

6.7.2 Vehicle Direct Operating Costs

To facilitate NASA comparisons, DOC results from VASCOMP have not been adjusted
for AE acquisition or DMC numbers. Consequently, DOC numbers are based completely on
program VASCOMP calculations and the input sensitivities as specified by NASA.
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Figure 14. CRP/TOP Ratio Comparison of Concepts.

Figure 15 shows the DOC results, calculated by VASCOMP, for the 200-nm and 600-nm
mission profiles. The NASA Baseline engine is presented to compare reference starting points.
The ideal engine defines the maximum improvement possible.

Table 8 presents the percent change each concept represents relative to the AE Baseline
engine. The ideal engine indicates that at most an 11 percent decrease in DOC could be realized.
AE Concept 3, a secondary combustor reheat between the turbines is the best concept on this
basis, improving DOC by about 6 percent.

The fuel burned during the mission is a primary driver in operating costs. Figure 16
shows the block fuels required for the 200 NM and the 600 NM mission profiles.

Table 8. DOC Change Relative to AE Baseline Engine.

NASA | Concept | Concept | Concept | Concept | Concept Ideal
Baseline 1A iB 1C 2 3 Engine
200 NM | -1.82% | -230% | -291% | -321% | -3.94% | -5.58% | -10.61%
600NM | -1.56% | -2.52% 3.17% | -343% | -430% | -5.90% | -10.89%
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Figure 16. Block Fuel Comparisons With CRP Concepts.
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6.7.3 Engine Direct Maintenance Costs

AE calculated DMC for the baseline and the individual concept engines independent of
program VASCOMP. Detailed DMC tables for each configuration are listed in Appendix III.
The cumulative average 10-year cost is shown in Figure 17. Based only on engine DMC, the
5000 pph water/methanol augmentation engine becomes the most cost effective, while the
secondary combustor costs exceed that of the AE baseline. This trend is not reflected in the
VASCOMP engine maintenance costs, an empirical relationship based on the engine horsepower
rating. Vehicle DOC costs should be updated with these engine DMC results to more accurately
define the cost tradeoffs.

Direct Maintenarice Cost, DMC, 1995 $

a
o

AE Baseline AE Concept 1A AE Concept 18 AE Concept 1C AE Concept 2 AE Concept 3

Figure 17. Engine DMC Comparison.
6.7.4 Engine Sizings

Figure 18 and Figure 19 show the engine horsepower sizing results at sea level / static /
ISA day and 2000 feet / static / ISA+20C day conditions. For comparison purposes different
engines were non-dimensionalized by dividing the single-engine power available by the vehicle
power required to hover at the specified condition. Further, the stacked bar chart format was
used to illustrate what percentage was available based on normal takeoff rating, the nominal
throttle push capability of the engine, and then the full contingency capability with the respective
technology concepts. . ,

Figure 19 shows that a single engine, with the contingency concept, meets the vehicle
power requirements for HOGE at 2000 feet, static, ISA+20C day conditions. Concepts 2 and 3
slightly exceed the vehicle power requirements, indicating perhaps another iteration could further
optimize engine sizes to the airframe.
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Figure 18. Resulting Engine HP at SLS, ISA Due to Meeting the Sizihg Point.

HOGE power requirements at 2000 feet, static, ISA+20C were the primary sizing driver.
Cruise powers at 25K feet, 350 KTAS, ISA day conditions are the minimum power requirements
on an absolute level basis. However, attaining these levels at a cruise temperature rating places
the cruise powers as the secondary concern in the sizing process. Sea level, static, ISA day
takeoff power levels are easily met if the engine is sized to the previous considerations, as
presented in Figure 18. ' ' '

Table 9 compares the absolute engine horsepower levels. These levels were driven by the
resulting tiltrotor weight after VASCOMP sizing with the input engine operating characteristics,
weight, and the level of contingency power available. Examining the sizing point horsepower
values, it is clear that as the contingency power capability goes up, the nominal engine is resized
smaller and smaller as shown by the takeoff ratings.

6.7.5 Resulting Vehicle/Engine Features

While the engine operating characteristics input to program VASCOMP were fixed and
could not be scaled, the vehicle definition was rubberized. Based on NASA-defined aircraft
inputs in conjunction with the fixed engine, the tiltrotor weight and drag were empirically
derived. The mission profile was used to define the required amount of fuel to be carried on
board.
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Figure 19. Engines Sized to Provide Required HP at Sizing Point.

Table 9. HOGE Horsepower Levels With CRP Concepts.

AE Concept Concept | Concept | Concept:| Concept
Baseline 1A 1B 1C 2 3

HOGE, SEA LEVEL, STATIC,ISA DAY

Vehicle Takeoff Power 8063 7941 7904 7881 7814 7718

Required '
Single Engine Takeoff 9095 7871 7444 7286 7555 | 6737
Power Available

One Engine Contingency 10716 9907 9733 9623 8678 11212

Power Available
HOGE, 2000 FEET, STATIC, ISA+20°C DAY

Vehicle Takeoff Power 8631 8502 8451 8424 8363 8250
Required
Single Engine Takeoff 6729 5914 5590 5470 5443 5009
Power Available
One Engine Contingency 8741 8520 8520 8520 8884 8927

Power Available

6.7.5.1 Propulsion System Weights

Propulsion system weight and nacelle sizing were direct functions of the maximum sea-
level, static, ISA day horsepower capability of the two engines. AE used the VASCOMP
propulsion system weight adder to adjust the internal calculation to reflect actual engine weights.
Figure 20 compares engine weights. The water/methanol concepts also include half of the
augmentation system weight for reference.
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Figure 20. 'Engine Weight Comparison With CRP Concepts.

6.7.5.2 Tiltrotor Maximum Takeoff Gross Weights

The tiltrotor maximum takeoff gross weight (MTOGW) is in turn shown by Figure 21.
The effect of the increasing contingency power levels is responsible for driving the vehicle
weight down relative to the AE Baseline. As more contingency power is available, the normal
engine rating decreases.’ This results in a smaller, lighter engine. Further, as the engine size
decreases, it operates at a higher temperature to produce the same power. This operation is closer
to the engine design point and thus more fuel efficient than the bigger baseline engine running at
50 percent power. Consequently, less fuel on board is required. These two effects combine to
produce a lighter vehicle. :

Although the AE engine is lighter, the vehicle weight with the AE Baseline engine is
heavier than that of the NASA Baseline due to fuel consumption levels. The AE Baseline engine
requires more fuel to be carried, which in turn requires more structure, and ultimately results in a
vehicle 1.3 percent heavier. '

6.7.5.3 Takeoff, Climb, And Cruise Powers

Figure 22 presents the tiltrotor horsepower necessary for takeoff, climb, and cruise on an
ISA day starting from the vehicle MTOGW. In general, the horsepower requirements drop as the
vehicle weight decreases and engine fuel efficiency increases (thus requiring less fuel to be
carried). These results are based on the first point from the respective segments calculated by
VASCOMP during the 600-nm mission profile. Takeoff and cruise have been previously
defined. Climb occurs after the convert segment and is typically at 1000 feet, 176 KTAS, ISA
day conditions.
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Figure 21. Vehicle Weight Comparison With CRP Concepts.
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Figure 22. Takeoff, Climb, and Cruise HP Comparisons.
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6.7.5.4 Takeoff, Climb, And Cruise Temperatures

The AE engines have a takeoff temperature rating defined at 2960R. Contingency power
is limited to a temperature no higher than 3130R. The maximum continuous or cruise
temperature rating is 200R lower than takeoff at 2760R. Figure 23 shows the vehicle
temperature requirements to achieve takeoff, climb, and cruise power settings during the 600-nm
mission profile. As noted before, as the engine gets smaller, the takeoff, climb, and cruise
temperatures increase. None of the levels approach the 2960R takeoff or the 2760R cruise
ratings due to the engine being oversized.

6.8 New Technology

No improvements, innovations, computer codes or other nonpatentable discoveries were
made as a result of the efforts on this contract. No patentable inventions were further developed
or discovered during the performance of this contract.

2,800

BT/0
BClimb
DI Cruise

2,700

Turbine Temperature, T4, DegR

AE Bassiine

Figure 23. Takeoff, Climb, and Cruise Turbine Temperature Comparisons
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7.0 TASK 4: CONTINGENCY POWER CONCEPT DEVELOPMENT

' The following sections define the program certification scope and the 1mplementatmn
schedule. Development costs were also predicted.
7.1 AS812 Baseline Engine

Modification of the baseline engine will be limited to the elimination of the reduction
gearbox that is used in the turboprop application and changes to the control system to remove
propeller controls and facilitate tiltrotor operation.

The reduction gearbox is attached to the inner flange of the inlet housing and provides
support for the reduction gearing and bearings. The input shaft for the reduction gearbox is
splined and bolted to the LP shaft. When eliminating the gearbox, a new bearing and seal
package must be provided for the output shaft and a new shaft will be required.

A program schedule for these modifications is shown in Figure IV-1, Appendix IV. The
majority of the changes required are independent of the contingency power concept that is to be
developed. However, there may be some efficiencies realized depending on which concept is
selected. For example, control system modification will be required for all concepts and the
modifications required for the chosen concept should be incorporated at the same time as the
change from turboprop to turboshaft controls. :

7.2 Engine Costs

In addition to the program development budgets detailed in the following sections, there
will also be the expense of the engines required for testing. We estimate that three engines will
be required no matter which concept is selected for Phase II. During development and
certification phases, engine costs shall be assessed at three times the mature production engine
cost which are quoted herein. This higher rate is due to the low number of units initially
produced, the need for instrumentation, and for the schedules that have to be expedited to
accomplish the required testing. This cost must be added to the budgeted program development
costs to define the overall cost to develop the chosen contingency concept.

7.3 AS812 With Water Methanol

The addition of water methanol injection will require minimal hardware modifications so
the majority of the cost of developing and qualifying this engine will result from the testing
required to ensure the function and reliability of the system, and the power increase and
operability of the engine when using water/methanol injection.

7.3.1 Schedule and Budget

A program schedule for these modifications is shown in Figure IV-2 of Appendix IV.
Table IV-1 shows the budget layout for program development of the water/methanol contingency
concept.
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7.3.2 Hardware changes

The addition of a water/methanol injection system will require the modification or
addition of the following hardware listed below:

¢ Inlet housing

e Water/methanol injectors, lines, sensors, valves, switches, etc.

e Water/methanol tank (assumed to be airframe mounted, with associated airframe
support structure added)

e Water/methanol pump

7.3.3 Testing :
The water/methanol injection system will require the following tests listed below:
e Performance/Operability
¢ 150 hour test
e Pump/control durability - rig

7.4 Turbine Overdesign Contingency Concept

Hardware changes are limited to replacing the LPT materials with upgraded (higher stress
rupture strength) material and introduction of a bi-alloy first LP nozzle. Cycle testing, designed
to inflict the maximum thermal stresses on the turbine components, will be performed to qualify
this contingency power concept.

7.4.1 Schedule and Budget

A program schedule for these modifications is shown in Figure IV-3 of Appendix IV.
Table IV-2 shows the budget layout for program development of the over designed turbine
contingency concept.

7.4.2 Hardware Changes

The overdesigned turbine concept will require:

¢ New, bi-alloy cast first-stage LPT nozzles
e First-stage LPT blade material changed to single-crystal 180 material

7.4.3 Testing

As a consequence of the limited changes relative to the baseline production engine, the
qualification testing can be limited to a single 1000 cycle endurance test.
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7.5 Secondary Combustor

The secondary combustor system is the most complex modification of the proposed
concepts. It requires the design and testing of the additional combustor, fuel injectors, and
additional control systems, modification of the inter-turbine duct, and the addition of a turbine
cooling circuit. '

7.5.1 Schedule and Budget

A program schedule for these modifications is shown in Figure IV-4 of Appendix IV.
Table IV-3 shows the budget layout for program development of the secondary combustor
contingency concept.

7.5.2 Hardware Modifications

The addition of the secondary combustor will require major changes to the engine
configuration and will result in a large amount of work to redesign and re-analyze existing
components for the impact of the changes. Areas affected are:

o Interturbine Duct - lengthened to accommodate the combustor and features added to
accommodate fuel nozzles and manifolds.

e LPT Shaft - lengthened due to the increased length inter-turbine duct. This will require re-
analysis to shaft dynamics. Bearing stiffnesses need to be re-evaluated as part of this study.
Bearing housing stiffnesses may have to be adjusted.

e Secondary cooling - an automatic control system reduces cooling air to the HP turbine and
introduces it to the LP turbine when this combustor is operated.

7.5.3 Testing

Due to the many changes relative to the baseline production engine, qualification testing
would require a larger scope than the other concepts, consisting of the following tests:

e (Combustor rig

e Emissions

e Over-temperature/Over-torque
e 150 hour

e 1000-Cycle Test

¢ Performance/Operability
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Propulsion System Sizing Example

In general, Task 1 required choosing/sizing an engine that would power the
tiltrotor defined by NASA during OEI operation at the design point. Emergency power
levels implied by an OEI event were limited to a throttle push producing no more than 15
percent additional power above the normal takeoff rating. Consequently, a single engine
was required that would provide the power for a vehicle around 46,000 pounds the ability
to hover out of ground effect (HOGE), at 2000 feet, on an ISA+20° Celsius (C) day.
Power in excess of the sizing point for climb capability was not required.

The AS812 engine was sized to provide 8,741 HP at the 2000 foot, static,
ISA+20C, CRP, OEI sizing point. Inputs necessary to calculate the tiltrotor power
required include:

(1) Tiltrotor weight (W): = Program VASCOMP sizes the vehicle and defines its
Maximum TakeOff Gross Weight (MTOGW). This was an iterative process as
engine weight is a function of the sea level contingency horsepower rating. An
input engine weight delta was added to the VASCOMP calculated engine weight in
order to obtain the actual weight of the AS812 engine. However, the tiltrotor
weight was MTOGW less any fuel used prior to the hover (i.e.,. for taxi). MTOGW
was 47,436 b, about 47 Ib of fuel were burned during the taxi segment, for a
takeoff hover weight of 47,389 1b.

(2) Transmission efficiency (M), OF the ratio power delivered to the rotors to engine
brake horsepower: NASA input specified this as a constant 0.9809.

(3) Power extracted from the engines (P,., hp): Again, NASA input specified this as a
constant 437.3 hp. This value includes power for the environmental control system,
air particle separator, transmission blower and windage, hydraulic, and electrical
components.

(4) Figure-of-Merit (FM), or the rotor hover performance characteristics: These are
shown graphically in Figure I- 1 and are based on the results of concurrent industry
proprotor studies by Sikorsky, MDHS, Boeing, and Bell. The FM achieves its
design optimum of 0.800 on a typical SLS, ISA day with MTOGW and takeoff
power. It drops to approximately 0.7901 at the OEI design point conditions, CRP.
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Figure I- 1. Rotor Performance Characteristics.

(5) Thrust-to-weight ratio (T/W): Program VASCOMP calculates a hover download
(DL/W) force due to the rotor wash meeting in the center of the wing and producing
a downward force due to the “fountain effect”, see Figure I- 2. This force is
typically about 10% of the vehicle weight (9.75% during a normal SL, static, ISA
day, AEOQ, hover; 9.59 percent during the 2K, static, ISA+20C, CRP, OEI hover).
The T/W in hover is the sum of the vehicle weight and the download.

Figure I- 2. Hllustration of Rotor Download Force.

(6) Rotor radius (r, feet): Program VASCOMP sizes the rotor during vehicle sizing
calculations. The tiltrotor has a rotor with a diameter of 41.8 feet with the AE
AS812 baseline engine.
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(7) Number of rotors (No): The tiltrotor configuration specifies 2 rotors.

(8) Density (p, slugs/cubic foot): The 2K design point results in a density of 2.09371E-
03 slugs/cubic foot per an International Standard Atmosphere.

With these inputs a horsepower required of 8,678 can be back calculated from the
definition of Figure-of-Merit:

VASCOMP results at this condition were within 0.5 percent, validating the sizing level.
The AE cycle model at its contingency temperature rating resulted in a horsepower output
of 8,741 meeting the vehicle power requirements.
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TSHP=1460., 2060., 2110., 2260., 2460.,
2610.,.2760., 2960., 3110., 3860.,

AMSHP= 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , , .

SHPAV="0.0015, 0.0021, 0.0214, 0.0366, 0.048¢, 0.0605, , , , ,
0.0298, 0.034%; 0.0556,-0.0810, 0.1119, 0.1514, , , ., ,
0.0574, 0.0634, 0.0863, 0.1123, 0.1464, 0.1893, ., ., , .
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0.6270, 0.6593, 0.7413, 0.8074, 0.8%21, 0.99%7, ., ., , .,
0.8790, 0.9202, 1.0357, 1.1231, 1.2352, 1.3797, ., , , .
1.0000, 1.0446, 1.1741, 1.2706, 1.3956, -1.5529, , , ., ,
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WDOT= 0.0405, 0.0435, 0.0474, 0.0531, 0.0603, 0.0792, , , ., .,
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0.1127, 0.1159, 0.1262, 0.1341,0.1444, 0.1570, , . , ,
0.1582, 0.1628, 0.1772, 0.1886, 0.2031, 0.2210, :, , , -,
0.2028, 0.2085, 0.2267, 0.2409, 0.2592, 0.2822, , , , .,
0.2542, 0.2614,-0.2839, 0.3016, 0.3244, 0.3528, ., . ., .
0.3345, 0.3438, °0.3732,-0.3963, 0.4260, 0.4630, , -, , ,
0.3713, 0.3817, 0.4142, 0.4399, 0.4726, 0.5136, , ; , ,
0.5535, 0.5693, 0.617%, 0.6565, 0.7059,.0.7675, , , , ,
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AM1 =.0.0, 0.2, 0.4, 0.5, 0.6, 0.7, ., , .

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , ., ., ,
0.7007, 0.7007, 0.7007,.0.7007, 0.7007, 0.7007, , , ., ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , , ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , , ,
0.8991, 0.8991, 0.8991, 0.8991, 0.8991, 0.8991, , ., . .,
0.9294, 0.9294, 0.9294, 0.9294, 0.9294, 0.9294, , , , ,
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1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, -, , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, -1.0000, 1.0000, 1.0000, 1.0000, ,:, , .,
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1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , .
1.0000, 1.0000, 2.000Q0, 1.0000, 1.0000, 1.0000, , -, , ,

Table II- 2. CONCEPT 1A: 2000 PPH WATER/METHANOL SYSTEM "AEQ".
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Table II- 3. CONCEPT 1A: 2000 PPH WATER/METHANOL SYSTEM "OEI".
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2610., 2760., 2960., 3110.,-3860.,

AMSHP= 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , ., , ,

SHPAV=.0.0015,. 0,0021, 0.0214, 0.0366, 0.0486, 0:0605, , , ,
0.0288, 0.0328, 0.0563, 0.082%, 0:1133,.0.1536, , o . ,
0.0563, 0.0621, 0.087%, 0.1137, 0.1482, 0.1917, , ., .,
0.1645, 0.1749, 0.2041, 0.2386, 0.2825, 0.3385, , . ,°,
0.3120, 0.3294, 0.3756, 0.4150, 0.4655, 0.5410, , , , ,
0.455%, 0.4799, -0.5419, 05930, 06590, 0.7434, , ,~,",
0.6264, 0.6587, 0.7392, 0.8053,:0.83900, 0.9975, , ', ,
0.8789, 0.9203, 1.0335, 1.1209, 1.2328, 1.3750, , ., , ,
1.0000, 1.0446, 1.1718, 1.2681, 1.3930, 1.5503, , , , ,
1.4791, 1.5399, 1.7290, 1.8786, 2.0452, 2.2704, , , ..,

TWD=..1460., 2060., 2110., .2260., 2460,

2610., 2760., 2960., 3110., 3860.,

AMWD = 0.0, 0.2, 0.4; 0.5, 0.61 0.7, ’ r o

WDOT= 0.0405, 0.0435, 0.0474, 0.0531, 0.0603, 0.0782," ,° ', . ;
0.0785, 0.0809, 0.0884, 0.0946, 0.1022, 0.1116, ", , .,
0.0863, 0.0889, 0.0970, 0.1035, 0.1118, 0.1219, , , .7,
0.1126, 0.1158, 0.1261, 0.1340, 0.1443, 0.1569, , , ., .
0.1581, 0.1627, .0.1771, 0.1884, 0.2030, 0.2209,., , , ,
06.2025,-0.2084, 0.2266, 0.2407, 0.2590, 0.2818, ., ', , .
0.2541, 0.2613, 0.2837, 0.3011, 0.3241, 0.3525, , ., , .
0.3342, 0.3437, 0.3730, 0.3961, 0.4257, 0.4627, ,. . . ,
0.3710, 0.3815, 0.4139, 0.4394, 0.4723, 0.5131, ., , ., .,
0.5534, 0.5690, 0.6178, 0.6563, 0.7055, 0.7672, , , ..,

TN1= 1460., 2060., 2110., 2260., 2460.,

2610., 2760., 2960., 3110., 3860.,

aM1 =0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , ., .,

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , ., , ,
0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, ., ., ., ,
0.8600, 0.8600,-0.8600, 0.8600, 0.8600, 0.8600, , ., , .,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600,, , ,
0.8991, 0.8991, 0.8991, '0.8991, 0.8991, 0.8991,, , , ,
0.9294, 0.9294, 0.9294, 0.9294, 0.92%84, 0.92%94, , , , ,
0.9585, 0.9585, 0.9585, 0.9585, 0.9585, 0.9585, , , , ,
1.0000, 1.0000, .1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , ,

TN2= 1460., 2060., 2110., 2260., 2460.,

2610., 2760., 2960., 3110., 3860.,

AM2 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , , ,

ATWO= 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , |,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000,  1.0000, 1.0000, 1.0000, -, , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000,. 1.0000, 1.0000; 1.0000, , , . .,
1.0000, 1.0000, 1.0000, 21.0000, 1.0000, 1.0000, , ., , ;
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, . , ., ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000; , , , .,

Table Ii- 4. CONCEPT 1B: 4000 PPH WATER/METHANOL SYSTEM "AEO".
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TSHP=1000., 2160., 2660., 2760., 2960.,
3110., 3860., . ; .
AMSHP= 0.0, 0.0002, 0.0004, ., ., . ., , + .

SHPAV= 0.014585, 0.014585,:.0.014585, , ., . . ., .
0.291690, 0.291690, 0.291690, ., ', . , , , .
0.616090, 0.616090, 0.616090, ', , , ., i .
0.713806, 0.713806, 0.713806, -, P
0.928%928, 0.928928, 0.528928, P e
1.041749, 1.041749, 1.041749, o e i
1.396256, 1.396256, '1.396256,

v . £

’ ’ ’

P T
~
~

w e W W NN

7 ’ g

TWD= 1000., 2160., 2660., 2760., 2960.
3110., 3860., .
AMWD = 0.0, 0.0002, 0.0004, ,

’ 7 ’

WDOT=.0.0055, 0.0055, 0.0055, , ., ., . .o
0.1090, 0.1090, 0.10%0, -, , , .o
0.2086, 0.2086, 0.2086, , ., , . o
0.2346, 0.2346, 0.2346, , . , . ;o
0.3001, 0.3001, :0.3001, , . , + fo
0.3345, 0.3345, .0.3345, , , , ., Py
0.4934, 0.4934, 0.4934, ., . . ., v

L T R T T

’ 7 1
¢

I ’

~

TN1= 1000., 2160., 2660., 2760., 2860.,
3110., 3860., . ; ’
0.0, 0.0002, 0.0004, , , . . . . .

2 ’ #

7 ’ ’

AM1 =

AONE= 0.5000, 0.5000, 0.5000, ", , ., ., . .
0.7007, 0.7007, 0.7007, , , . 4 4+ +
0.9475, 0.9475, 0.9475, , , . , . .+ .
0.9585, 0.9585, 0.9585, «, , , . . . .
1.0000, 1.0000, :.0000, , ., + . + . .
1.0000, 1.0000, 1.0000, , + + + + +
1.0000, 1.0000, 1.0000, , , . + + . .

I3 ’ 7

TN2= 1000., 2160., 2660., 2760., 2960.,
3110., 3860.,

’ I3 ’

1 7 ’

.0000, .,

r ’ ’

AM2 = 0.0, 0.0002, 0.0004, ., . , , . , .

ATWO= 1.0000, 1.0000, 1.0000, , ., , + . + .
1.0000, 1.0000, 1.0000, , ., . . + .+ .
1.0000, 1.0000, 1.0000, ., , , + . + .
1.0000, 1.0000, 1.0000, ', ., , + + .
1.0000, 1.0000, 1.0000, P
1.0000, 1.0000, %.0000, P
1.0000, 1.0000, 1 P

Table II- 5. CONCEPT 1B: 4000 PPH WATER/METHANOL SYSTEM "OEI".
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TSHP=1460., 2060., 2110., 2260., 2460.,
2610., 2760., 2960., 3110., 3860.,

AMSHP= 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , ., .

SHPAV=-0.0015, 0.0021, 0.0214, 0.0366, 0.0486,-0.0605, , , , .
6.0283, 0.0323, 0.0567, 0.0825, 0.1138, 0.1543, , , ", .
0.0559, 0.0616, 0.0878, 0.1140, 0.1489, 0.1925, , , ,
0.1641, 0.1743, 0.2046, 0.2393, 0.2834, 0.3397, ., , ., ,
0.3117, 0.3287, 0.3749, 0.4144,°0.4677, 0:5434, , , . .,
0.4549, 0.4794, 0.5413, 0.5923, 0.6583, 0.7427, , ', , .
0.6262, 0.6585, 0.7408, 0.8407, 0.8284, 1.03%6, , , , .,
0.878%9, 0.9203, 1.0325, 1.1200, 1.2320, 1.3741, , ., , .
1.0000, 1.0446, 1.1710, 1.2671, 1.3922, 1.5493, ., , ,
1.4794, 1.5403, 1.7296, '1.8792, 2.0443, 2.2695, , , , .,

TWD=. 1460., 2060., 2110., 2260., 2460.,

2610., 2760., 2960., 3110., 3860.,

AMWD = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , , ,

WDOT=0.0405, 0.0435, 0.0474, 0.0531, 0.0603, 0.0792, ., , , .
0.0785, 0.0808, 0.0884, 0.0944, 0.1022, 0.1116, -, ., ., .
0.0863, 0.0889, 0.0971, 0.1036, 0.1118, 0.1220,, ., , ,
0.1125, 0.1158, 0.1261, 0.1340, 0.1442, 0.15869, , , , .,
0.1580, 0.1627, 0.1771,:0.1884, 0.2029, 0.2209, , , , .,
0.2025, 0.2083, 0.2264, 0.2407, 0.2590,-0:2819%, , , , .
0.2539, 0.2612, 0.2837, 0.3014, 0.3242, 0.3526, , , , ,
0.3341, 0.3434, 0.3727, 0.3960, 0.4256, 0.4625, , , , .
0.3709, 0.3813, 0.4138, 0.4393, 0.4721, 0.5130, , ., ., .
0.5531, 0.5689,. 0.6176, 0.6561, 0.7054, 0.7671, , , ., .,

TN1= 1460., 2060., 2110., 2260., 2460.,

2610., 2760., 2960., 3110., 3860.,

AM1 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , . .,

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , ., ., ,
0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , , , ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , ., , -,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , . .,
0.8991, 0.89%91, 0.8%91, 0.8%91, 0.8991, 0.8991, , , ., ,
0.9294, 0.9294, 0.9294, 0.9294, 0.9294, 0.929%, , , ., ,
0.9585, 0.9385, 0.9585, 0.9585, 0.9585, 0.9585, , , , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., .,
1.0000, 1.00006, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .,

TN2= 1460., 2060., 2110., 2260., 2460.,

2610., 2760., 2960., 3110., 3860.,

AM2 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , . .

ATWO= 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , -,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ', , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0Q000, , , ., ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.000C, , , , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., , . .

Tabtle II--6. CONCEPT 1C: 5000 PPH WATER/METHANOL SYSTEM "AEQ™.
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TSHP=1000., 2160., 2660., 2760., 2960.,
3110., 3860., , , /
AMSHP= 0.0, 0.0002, 0.0004,. , , , ..+ , .

1.044484, 1:.044484, 1.044484,
1.373392, .1.373392,.1.373382,

’ v i ’

SHPAV= 0.016680, 0.016680, 0.016680, ., A
0.333608, 0.333608, 0.:333608, N
0.664710, 0.664710, 0.664710, , Py
0.751297, 0.751297, 0.751297, , o
0.938156, 0.938156,. 0.938156, . -

D L T T U NI NN

N~ m w

’ ’ 7 7 7

e
N~ s N w N

1 ’ ’ ’ r

TwWD= 1000., 2160., 2660., 2760., 2960.,
3110., 3860., , .
AMWD = 0.0, 0.0002, 0.0004, ,

’ ’ ?

I3 ’ .

WDOT=:0.005%9, 0.005%, 0.0059, , , , , , + .,
0.1174, 0.1174, 0.1174, ., . . + + ¥ .
0.2137, 0.2137,-0.2137, . . . . . . .
0.2380, 0.2380, 0.2380, , , , . + .
0.2954, 0.2954, 0.2954,. ., , , ., .. .
0.3292, 0.3292, 0.3292, ., % . i+,
0.5868, 0.5868, 0.5868, , , , ., . .

N N s e N

v ’ ’

TN1= 1000., 2160., 2660., 2760., 2960.,
3110., 3860., , ; ,
AM1 = 0.0, 0.0002, 0.0004, , -,

-
-
~
~
“

’ 7 ’

~

I3 ’ 7

AONE= 0.5000, 0.5000, 0.5000, , ., , ..+ + ,
0.7007, 0.7007,-0.7007, ", , , + .., .
0.9475, 0.9475, 0.9475, , , , + . .
0.9585, 0.9585, .0.9585, , . , . . .
1.0000, 1.000C, 1.0000, , ., , , &
1.0000, 1.0000, 1.0000, v , ., + + .
1.0000, 1.0000,.1.0000, , , ,:s ,

“w N NN s s N

, s 2

TN2= 1000., 2160., 2660., 2760., 2960.,
3110., 3860., ,
AM2 = 0.0, 0.0002, 0.0004, , , , , . ,» .

z 2 7

’ ’ ’

ATWO= 1.0000, 1.0000, 1.0000, , ., , » .+ . .
1.0000, 1.0000, 1.0000, ., ~ . , + + .
1.0000, 1.0000; 1.0000,:, , , s +
1.0000, 1.0000, '2.0000, ., , , + + / .
1.0000, 1.0000, 2.0000, , , , ; , ,
1.0000, 1.0000, 1.00005 , , . + . , .
1.0000, 1.0000, 1.0000C, , ., ., . , + .

I 7 £

Table II- 7. CONCEPT 1C: 5000 PPH WATER/METHANOL SYSTEM "OEI".
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TSHP=1460., 1935., 2060., 2260., 2460.,

2760., 2960., 3160., 3310., 4060.,
AMSHP= 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, ., , , ,
.0021, 0.0214, 0.0366, 0.0486,

SHPAV= 0.0015, 0 0.0605, , , ., .,
0.0112, 0.0149, 0.0301, 0.0424, 0.0599, 0.0803, , , , ,
0.0278, 0.0317, 0.0602, 0.0842, 0.1203, 0.1573, , ., , ,
0.1243, 0.1331, 0.1685, 0.2088, 0.2511, 0.3034, , , ., ,
0.2706, 0.2860, 0.3294, 0.3666; 0.4213, 0.4924, , , ., ,
0.5903, 0.6215, 0.6996, 0.7645, 0.8484, 0.9555, , -, ,
0.8706, 0.9111, 1.0267, 1.1159, 1.2314, 1.3779, , ., . .
1.0958, 1.1437, 1.2808, 1.3852, 1.5212, 1.6931, , , ., ,
1.2237, 1.2752, 1.4267, 1.5413, 1.6901, 1.8779, ., , . ,
1.7471, 1.8153, 2.0282, 2.1965, 2.3941, 2.6514, , ., , ,

TWD= 1460., 1935., 2060., 2260., 2460.,
2760., 2960., 3160., 3310., 4060.,

AMWD = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, ., ., , ,

WDOT= 0.0305, 0.0335, 0.0424, 0.0451, 0.0478, 0.0522, , , ,
0.0381, 0.0395, 0.0433, 0.0464, 0.0502, 0.0551,. , , , ,
0.0742, 0.0765, 0.0840, 0.0899, 0.0978, 0.1066, , , , .,
0.1003, 0.1033, 0.1134, 0.1226, 0.1324, 0.1443, , , , ,
0.1449, 0.1492, 0.1626, 0.1733, 0.1868, 0.2036, , , , ,
0.2420, 0.2480, 0.2710, 0.2883, 0.3107, 0.3387, , , ,=,
0.3289, 0.3383, 0.3682, 0.3917, 0.4218,.0.4593, , , , ,
0.3886, 0.3995, 0.4337, 0.4607, 0.495%3, 0.5384, , , , ,
0.4274, 0.4394, 0.4768, 0.5063, 0.5443, 0.5914, , , , ,
0.6226, 0.6400, 0.6943, 0.7372, 0.7920, 0.8605, , , , ,

TN1= 1460., 1960., 2060., 2260., 2460.,

2760., 2960., 3160., 3310., .4060.,

AML = 0.0, 0.2, 0.4, 0.5, 0.8, 0.7, , , , ,

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , ., . ,
0.7007, 0.7007, 0.7007, 0.7007, ©.7007,7°0.7007, , , , .,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600; 0.8600, , , , ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , , ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , ., ,
0.8991, 0.8991, 0.8991, 0.8991, 0.8991, 0.89%1, , , , .
0.9585, 0.9585, 0.9585, 0.9585, 0.9585, 0.9585, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,

TN2= 1460., 1960., 2060., 2260., 2460.,
2760., 2960., 3160., 3310., 4060.,
AMZ = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , ., , ,
ATWO= 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,:,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0006, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1

.0000, ,
.0000, ,

L T T T SR
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TSHP=1460., 1935., 2110., 2260., 2460.,
2660., 2760., 2960., 3110., 4060.,

AMSHP= 0.0, 0.2, 0.4,.0.5, 0.6, 0.7, ,., .,

SHPAV= 0.0015, 0.Q0042, 0.0111, 0.0307, 0.0429, 0.0654, , , . , .,
0.0132, 0.0173, 0.0428, 0.0640,°0.0878, 0.1197, , , , .,
0.0297, 0.0352, 0.0635, 0.0887, 0.1236, 0.1659, , , , ,
0.1358, 0.1469, 0.1835, 0.2206, 0.2693, 0.3289, , , ., ,
0.2968, -0.3150,./0.3643, 0.4053, 0.4637, 0.5442, , , , -
0.4938,.0.5215, 0.5929, 0.6515, 0.7277, 0.8248, , , . .,
0.6125, 0.6460, 0.7287, 0.7589, 0.8887, 1.0031., , , ", &
0.8738, 0.%159, 1.0252, 1.1152, 1.2313, 1.3784, , , ., .
0.9916, 1.0374,:1.1661, 1.2656, 1.3952, 1.5590, , , ., .
1.5052, 1.5682, 1.7655, 1.9216, 2.0906, 2.3242, ., ., ,; .,

TWD= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2960., 3110., 4060.,
AMWD = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , W . .
.0577, 0.0631,

WDOT= 0.0436, 0.0442, 0.0496, 0.0532, .0 R
0.0567, 0.0585, 0.0646, :0.0692, 0.0750, 0.0820, , , . .,
0.0806, 0.0832, 0.0908, 0.0970, 0.1050, 0.1147, ., ., , .
0.1086, 0.1123, 0.1235, 0.1326, 0.1438, 0.1575, , , , .
0.1597, 0.1645, 0.17%4, 0.1912, 0.2061, 0.2250, , , . .
0.2190, 0.2254, 0.2455, 0.2612, 0.2814, 0.3067, ., , ., .,
0.2536, 0.2610, 0.2839, .0.3022, 0.3254, 0.3545, , , , ,
0.3320, 0.3414, 0.3710, 0.3941, 0.4238, 0.4610, , , , .
0.3688, 0.3791, 0.4118, 0.4376, 0.4706, 0.5117, , ., ,
0.5543, 0.5700, 0.6191, 0.6576, 0.7070, 0.7687, , , , .

TN1l= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2960., 3110., 4060.,

aM1 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , ,

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7Q07., , .., .,
0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, ., , , .
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , , .,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , ., .
0.8991, 0.8991,°0.8991, 0.8991, 0.8891,°0.8991, , , , .
0.9383, 0.9383, 0.9383, .0.9383, 0.9383, 0.9383, ., , ., .
0.9585, 0.9585, 0.9585, 0.9585, 0.9585, 0.9585, , ., . .
1.0000, 1.0000,:1.0000, 1.0000, 1.0000Q, 1.0000, , , ., .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., ., .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., ., ., .

TN2= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2960., 3110., 4060.,

aAM2 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , ., .,

ATWO= 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., ., , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000G, ., , ., .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 21.0000,, , , .
1.0000, 2.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., .,

Table II- 9. CONCEPT 3: REHEAT BEFORE POWER TURBINE "AEOQ".
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TsSHpP=1460., 1935., 2110., 2260., 2460.,
2660., 2760., 2960., 3110., 4060.,

AMSHP= 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , , ,

SHPAV= 0.0010, 0.0029, 0.0076, 0.0211, 0.0285, 0.0450, , , , .
0.0373, 0.0419, 0.0675, 0.0867, 0.1109, 0.1405, , , , ,
0.089%5, 0.0959, 0.1220, 0.1473, 0.179%s6, 0.2207, ., , ., .
0.1475, 0.1580, 0.189%96, 0.2207, 0.2622, 0.3139, , ., ., ,
0.2630, 0.2787, 0.3241, 0.3619, 0.4117, 0.4740, , , , ,
0.4212, 0.4436, 0.50886, 0.5614, 0.6294, 0.7158, , , , ,
0.5632, 0.5917, 0.6742, 0.7405, 0.8248, 0.9324, , , , ,
0.8272, 0.8670, 0.9820, 1.0710, 1.1880, 1.3354, , ., ., ,
1.0000, 1.0437, 1.1778, 1.2775, 1.4076, 1.5714, , . , .
1.3730, 1.4271, 1.5960, 1.7287, 1.8%928, 2.1003, , , ., .,

TWD= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2960., 3110., 4060.,

AMWD = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, ., , , ,

WDOT= 0.0300, 0.0308, 0.0341, 0.0366, 0.0397, 0.0434, , , . ,
0.0659, 0.0717, 0.0751, 0.081%5, 0.08%0, 0.0980, , , . ,
0.0954, 0.0985, 0.1080, 0.1156, 0.1253, 0.1372, , ., , .,
0.1160, 0.1198, 0.1316, 0.1409, 0.1529, 0.1675, , , , ,
0.1571, 0.1619, 0.1770, 0.1889, 0.2041, 0.2229, , , , .
0.21306, 0.2194, 0.2397, 0.2557, 0.2761, 0.3016, , , , ,
0.2569, 0.2646, 0.2889, 0.3082, 0.3327, 0.3634, , , , ,
0.3313, 0.3412, 0.3723, 0.3968, 0.4285, 0.4682, , , , ,
0.3762, 0.3871, 0.4214, 0.4486, 0.4835, 0.5270, , , , ,
0.5104, 0.5250, 0.5705, 0.6063, 0.6523, 0.7099, , , , .,

TN1= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2960., 3110., 4060.,

aMl = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , ., , .

AONE= 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, 0.7007, , ., , .
0.7007, 0.7007, 0.7007, 0.7007, 0.7007, ©0.7007, ., . , ,
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , , .
0.8600, 0.8600, 0.8600, 0.8600, 0.8600, 0.8600, , , ., ,
0.8991, 0.8%91, 0.8%991, 0.89%91, 0.8991, 0.8991, , , , .
0.9383, 0.9383, 0.9383, 0.9383, 0.9383, 0.9383, , , ., .
0.9585, 0.9585, 0.9585, 0.8585, 0.9585, 0.9585, , , , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , . ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000C, , , , ,

TN2= 1460., 1935., 2110., 2260., 2460.,

2660., 2760., 2%960., 3110., 4060.,

AM2 = 0.0, 0.2, 0.4, 0.5, 0.6, 0.7, , , , ,

ATWO= 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , , .,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , ., , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, , , ., ,
1.0000, 1.0000, 1.000C, 1.0000, 1.0000, 1.0000, , , ., ,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.00Q00, , , ., ,
1.0000, 1.0000, 1.000C, 1.0000, 1.0000C, 1.0000, , , ., .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ., , , .
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.000C0, , , ., ,

Table II- 10. CONCEPT 3: REHEAT BEFORE POWER TURBINE "OEI"
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