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Modeling of Unsteady Three-Dimensional Flows
in Multistage Machines

Kenneth C. Hall, Principal Investigator
Professor and Chair

Department of Mechanical Engineering and Materials Science

Edmund T. Pratt, Jr. School of Engineering

Duke University
Durham, NC 27708-0300

Abstract
This report describes progress made on NASA Glenn Research Center Grant

NAG3-2627 for the period April 2001 through September 2002. This grant was funded
by NASA as part of the GUIde Consortium!III program. This report details work to date,
as well as plans for the upcoming reporting period.

Introduction
Despite many years of development, the accurate and reliable prediction of

unsteady aerodynamic forces acting on turbomachinery blades remains less than
satisfactory, especially when viewed next to the great success investigators have had in
predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main
reasons for the discrepancy between theory and experiment and/or industrial experience
is that many of the current unsteady aerodynamic theories model a single blade row in an
infinitely long duct, ignoring potentially important multistage effects. However, unsteady
flows are made up of acoustic, vortical, and entropic waves. These waves provide a
mechanism for the rotors and stators of multistage machines to communicate with one
another. In other words, wave behavior makes unsteady flows fundamentally a multistage
(and three-dimensional) phenomenon.

In this research program, we have has as goals (1) the development of
computationally efficient computer models of the unsteady aerodynamic response of
blade rows embedded in a multistage machine (these models will ultimately be capable of
analyzing three-dimensional viscous transonic flows), and (2) the use of these computer
codes to study a number of important multistage phenomena.

Recently, Hall and Smelova (1999) have developed a three-dimensional unsteady
multistage Euler analysis under an AFOSR grant. For a given multistage fan or
compressor, they first generate a computational mesh for each blade row. The steady and
unsteady multistage flows are computed using the Euler and linearized Euler equations
and conventional computational fluid dynamic (CFD) techniques, with so-called mixing
planes (the inter-row computational boundaries of the computational grid) used to couple
together the solutions computed in the individual blade rows. For the unsteady flow
solution, several linearized unsteady flow calculations are performed simultaneously, one
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corresponding to each spinning mode in the model. The only coupling among the various
spinning modes is at the inter-row boundaries. The method is very efficient. A typical
unsteady multistage flow calculation might take on the order of ten times the
computational time required for a single row steady flow computation.

For flows in which nonlinear effects are thought to be important, most researchers
have relied on time marching techniques. However, these methods, as previously
discussed, are computationally expensive. Recently, Hall, Thomas and Clark (2000) have
developed a novel technique for computing unsteady nonlinear flows in turbomachinery
cascades. The unsteady flow is represented by a Fourier series in time with frequencies
that are harmonics of the excitation frequency -- blade passing frequency in the case of
wake/rotor interaction, or the blade vibratory frequency in the case of flutter. Borrowing
from the structural dynamics community, they use a harmonic balance technique to write
a set of coupled partial differential equations for the unknown flow solution at each
harmonic. A pseudo-time term is introduced into the harmonic balance equations so that
the equations may be solved by using conventional time marching computational fluid
dynamic techniques.

 Both the linearized multistage analysis and the single row harmonic balance
analyses described above have a number of distinct advantages over more conventional
time-domain solutions. First, because the solutions are computed in the frequency
domain, the time-marching algorithm is only used to converge the solution to steady
state. Thus, acceleration techniques, including local-time time marching with multi-grid
acceleration, can be used. Second, complex periodicity conditions may be applied for
each harmonic, so that the computational domain for each blade row may be reduced to a
single blade passage. Finally, for many applications, just a few spinning modes in the
multistage analysis, or higher harmonics in the harmonic balance analysis, need to be
incorporated where engineering accuracy is sufficient. The result is that these methods
are potentially two orders-of-magnitude faster than conventional time-marching methods,
making them ideal for both routine design work and parametric studies to gain insight
into complex flow physics.

Research Progress and Challenges During this Reporting Period
In this research program, we will further develop both the multistage and

harmonic balance analyses, and to use them to study problems of importance to the gas
turbine industry. At the GUIde Consortium Meeting held in August 2001, we gave an
oral presentation of our plans for this grant, including a timeline for completion of the
major tasks (see Table!1). The steering committee recommended that the tasks be
completed in a different order, with an emphasis on the early completion of Task 5, the
development of a linearized multistage Navier-Stokes analysis of multistage flows. This
Task is dependent on Task 3, the development of a block structured version of the
multistage code. We have, therefore, revised our timeline for the completion of the major
tasks (see Table 2).

During the present reporting period, our efforts have been focused on Tasks 3 and
Task 5. With regard to Task 3, in a previous AFOSR grant, investigators at Duke
University developed a three-dimensional linearized multistage analysis of inviscid
(Euler) unsteady flow in turbomachinery. However, a number of modifications to the
previous computer code are required if the code is to model viscous flows. First, the
original computational code used an H-grid structure. H-grids, while relatively simple to
use in a CFD code, do not have adequate resolution to resolve boundary layers, especially
near the leading and trailing edges of an airfoil. Therefore, in the present research, we are
implementing using an H-O-H grid structure, with an O-grid around the airfoils, with H-
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grid extensions upstream and downstream of the O-grids. During this reporting period,
we have made good progress on this task. We now have a single blade row Navier-Stokes
code that uses and H-O-H grid structure. We have included the additional viscous terms
in the Navier-Stokes, including Reynolds stress terms modeled using the Spalart-
Allmaras turbulence model.  We are currently in the process of debugging this analysis,
and hope to have both steady and linearized unsteady three-dimensional viscous analysis
capability shortly.

Simultaneously, we have continued development of an inviscid multistage
analysis. (This analysis will be the combined with the single row block structured Navier-
Stokes analysis to form a multistage Navier-Stokes analysis.)  Some preliminary results
have been obtained.  Figure 1 shows a typical example.  Shown is the computed unsteady
pressure difference across the surface of a vibrating rotor airfoil that has a helicoidal
shape.  For this example, the rotor has 38 airfoils, and the downstream stator has 50
airfoils. In the non-rotating frame of reference, the flow is entirely axial.  Both the rotor
and the stator do no turning of the flow field, and the steady axial Mach number is 0.35.
The hub to tip ratio is 0.5.   The rotor airfoils vibrate in torsion.   Also shown in Figure 1
is the semi-analytical solution due to Namba (private communication).  Note the
generally good agreement between the two theories.  In this example, nine spinning
modes are used to couple the unsteady flows in the rotor and stator blade rows.

Shown again in Figure 2 is the same solution shown in Figure 1, along with the
solution computed for the rotor in isolation, i.e., without multistage effects.  Note the
substantial differences in the two solutions.  Clearly multistage effects have a dramatic
influence on the unsteady aerodynamic response of the rotor, and should not be
neglected.

Shown in Figure 3 is the convergence history for the shown in Figure 1. Note that
the flow is computed in the frequency domain; frequencies appear as parameters so that
the flow may be solved as a steady state problem.  Thus, the goal is to drive the residual
of the solution to zero. The solution is seen to converge more than six orders of
magnitude in only 2000 iterations.  Furthermore, only a single blade passage is required
for each blade row, making the calculation extremely efficient.

In August 2002, the principal investigator gave a brief presentation of the
progress of this project at the GUIde Consortium annual meeting.  These vu-graphs are
attached for reference.  The project has suffered a minor setback, which was reported at
the annual GUIde Consortium meeting.  The doctoral student working on the project,
Dmytro Voyotovich, a native of the Ukraine, returned to the Ukraine for a short visit in
June of 2002. To return to the United States, he was required to apply for a new student
visa.  However, because of heightened security measures in the wake of September 11th,
the time required to obtain such visas has been greatly increased He has been recently
notified that he will receive his visa shortly. However, as of October 20, 2002, he but still
has not received his visa, and cannot return to complete his studies. In his absence, a
post-doctoral student, Kivanc Ekici, has largely taken over Dmytro's portion of the
project, and is now making good progress.

The main technical issue that we have considered in recent months was to revisit
the issue of the coupling of unsteady solutions in the individual blade rows via spinning
modes at the interface boundary between the individual blade rows. The results for model
problems, when compared to known solutions, were reasonably close, but did show some
small but systematic errors, and more troubling, did not converge to the correct solution
as the number of spinning modes was increased. Instead, small but persistent errors
remained in the solution. We have systematically looked for this error, and concluded
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that the error occurs only when we use multiple spinning modes in our solution, and
further, that the error is most likely being introduced at the interface boundaries that
connect the individual blade rows.  We have just recently found and corrected this
problem.

Figure 4 shows a typical example. Shown is the computed unsteady two-
dimensional aerodynamic force for "Configuration B," a model multistage test case
(stator/rotor/stator) presented in an earlier paper by Silkowski and Hall (1997). In this
example, a single mode is used to couple solutions in the three blade rows. Also shown
for comparison are the computed results using previous two-dimensional theories using
semi-analytical flow solvers. Figure 5 shows the same example, but now with nine
coupling modes. Note the excellent agreement we now achieve, at least with previous
two-dimensional theories.  We are in the process of performing similar validation tests on
a semi-analytical three-dimensional solution due to Namba for unsteady multistage flow.

Having eliminated a systematic error in our technique, we will now concentrate
our efforts on extending the method to three-dimensional Navier-Stokes Analyses.  We
have already completed large portions of this analysis. We have developed an unsteady
linearized Navier-Stokes analysis, although the method does not yet model tip flows, nor
does it account for no–slip conditions on the hub and tip casings.  These features will be
added and combined with the current Euler analysis to produce the desired three-
dimensional Navier-Stokes analysis of unsteady flows in multistage machines (Tasks 3
and 5).

References
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Table 1. Original timeline for research.

Project Timeline

TASK # DESCRIPTION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Investigate the influence of vane 
clocking and spacing on flutter and 
forced response of representative 
turbomachines.

2 Investigate the propagation of low 
engine order excitations through 
multiple stages.

3 Develop block-structured version of 
multistage linearized Euler 
analysis.

4 Develop harmonic balance version 
of multistage analysis.

5 Develop Navier-Stokes version of 
linearized and harmonic 
balance multistage analyses.

Prepare final report.

Table 2. Revised timeline for research.

Project Timeline

TASK # DESCRIPTION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Investigate the influence of vane 
clocking and spacing on flutter and 
forced response of representative 
turbomachines.

2 Investigate the propagation of low 
engine order excitations through 
multiple stages.

3 Develop block-structured version of 
multistage linearized Euler 
analysis.

4 Develop harmonic balance version 
of multistage analysis.

5 Develop Navier-Stokes version of 
linearized and harmonic 
balance multistage analyses.

Prepare final report.
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Figure 1. Computed unsteady pressure jump across airfoil surface. Shown are real and
imaginary parts of unsteady pressure difference across airfoil surface. Also shown is

semi-analytical solution due to Namba (personal communication).
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Figure 2. Computed unsteady pressure jump across airfoil surface. Shown are real and
imaginary parts of unsteady pressure difference across airfoil surface. Also shown is

uncoupled solution, i.e., solution computed without multistage effects.
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Figure 3. Convergence history of unsteady multistage calculation.
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Figure 4.  Real and imaginary part of unsteady aerodynamic lift for plunging rotor blade
embedded in a multistage machine (stator/rotor/stator).  Current three-dimensional Euler
analysis is compared to an isolated blade row analysis (LINSUB [Whitehead, 1987]), and
the coupled mode method of Hall & Silkowski (1997). Note almost exact agreement with

previously derived multistage analysis. These solutions were computed using one
coupling mode.
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Figure 5.  Real and imaginary part of unsteady aerodynamic lift for plunging rotor blade
embedded in a multistage machine (stator/rotor/stator).  Current three-dimensional Euler
analysis is compared to an isolated blade row analysis (LINSUB [Whitehead, 1987]), and
the coupled mode method of Hall & Silkowski (1997). Note almost exact agreement with

previously derived multistage analysis. These solutions were computed using nine
coupling modes.
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