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Abstract - An intelligent system for monitoring the 
microgravity environment quality on-board the International 
Space Station is presented.  The monitoring system uses a 
new approach combining Kohonen’s self-organizing feature 
map, learning vector quantization and back propagation 
neural network to recognize and classify the known and 
unknown patterns.  Finally, fuzzy logic is used to assess the 
level of confidence associated with each vibrating source 
activation detected by the system. 
 

I. INTRODUCTION 
 
Starting with Flight 6A (STS-100) in April 2001, the 
International Space Station  (ISS) will become scientifically 
operational.  It will provide the scientific community with 
much longer periods of microgravity condition compared to 
the US Space Shuttle. The Principal Investigator 
Microgravity Services (PIMS), part of the Microgravity 
Measurement and Analysis Project (MMAP) at the NASA 
Glenn Research Center (GRC), has the responsibility for 
measuring, analyzing, and characterizing the microgravity 
environment on-board the ISS since many of the experiments 
conducted on the ISS require the knowledge of the 
microgravity environment quality for accurate analysis of the 
science experimental data.  
 
The main objective of this work is to develop an intelligent 
monitoring system, which not only can classify incoming 
signals into known patterns, but also identify the unknown 
ones, in near real time.  Since the ISS is being built in 
increments, its fundamental frequency will change some until 
assembly is complete.  Thus, identifying the unknown 
patterns is as important as the known ones.   The monitoring 
system is fully automated from analyzing the sensor data to 
making the final decision as to what vibrating sources are 
active, with some degree of confidence. 
 
 
 

II. THE INTELLIGENT MONITORING SYSTEM 
 
Currently, the acceleration data analysis and interpretation to 
characterize the Space Shuttle and other spacecraft platforms 
microgravity environment is performed by a PIMS data 
analyst.   The acceleration data received from the sensors are 
in time domain.  They are, then, transformed to frequency 
domain by means of Fast Fourier Transform (FFT), from 
which the so-called Power Spectral Density (PSD) is 
generated.  PSD is a function that quantifies the distribution 
of power in a signal with respect to frequency, and it is used 
to identify and quantify vibratory (oscillatory) components of 
the acceleration environment.   The major peak values of the 
PSDs represent the fundamental or natural frequencies of 
different vibrating sources, which are to be correlated with 
the type of vibrating sources.  Such analysis is time 
consuming.  To ease the analyst’s work, it is desired to 
automate the analysis process described above.  Also, 
automation will provide space-experiment principal 
investigators (PIs) easy on-line access to the acceleration data 
via the PIMS world wide web site, where they can see what 
vibrating sources are active in near real time, which might 
impact their experiments. 
 
The intelligent monitoring system is designed to perform the 
following four tasks:  
 
(1) Detect the current vibrating sources on-board the ISS in 

near real time (Source Detection) 
(2) Classify known patterns (Pattern Classification) 
(3) Recognize unknown patterns (Pattern Recognition) 
(4) Assess the level of confidence associated with each 

vibrating source activation (Confidence Determination) 
 
The schematic diagram of the overall monitoring system is 
shown in Fig. 1, and described in detail below. 
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Fig. 1 The Overall Monitoring System 
 
Source Detection 
 
In terms of source detection, the system must automatically 
detect the fundamental frequencies of the vibratory 
disturbance sources from the acceleration data measured by 
the accelerometers (sensors) located at different locations on-
board the ISS.  The fundamental frequencies correspond to 
the major peaks of the PSD data.   A data point is considered 
as a major peak only when its function value (the PSD value, 
in this case) is significantly higher than the preset reference 
value.   The reference line is chosen as the slope line of a 
group of data, from which a bandwidth (i.e. the deviation 
from the reference value) is selected.    Thus, a point that is 
within the bandwidth is considered as noise.   On the other 
hand, a point that is beyond the bandwidth, and whose sign of 
gradient changes from positive to negative, is considered as a 
major peak.     
 
 

Pattern Classification 
 
On-board the ISS, there are many disturbance sources, such 
as fans, pumps, life support systems, etc.   For the purpose of 
source classification, these disturbance sources need to be 
identified as soon as they are detected.  The well-known 
Kohonen’s Self-Organizing Feature Map (SOFM) [1] is used 
to cluster the known patterns.   A known pattern consists of 
the nominal values of the previously measured frequency and 
acceleration of an existing disturbance source.   SOFM is a 
special class of artificial neural networks.  It is based on 
competitive learning in which the output neurons compete 
among themselves to be activated or fired, and the winner 
takes it all.   Furthermore, SOFM is characterized by the 
formation of a topological map of the input patterns in an 
unsupervised manner.  The topological map allows one to 
visualize the order of organized input patterns in the input 
space.  
 
The classification approach used in this work consists of 
cluster and class (patterns) grouping.  A cluster is a group of 
data with the same classification features.  In this case, a 
cluster represents a group of measured frequency and 
acceleration values of a single vibrating source, and the mean 
value of this group is called the cluster center.   Thus, each 
cluster center contains a pair of data representing the nominal 
fundamental frequency and the nominal acceleration values 
of a known vibrating source.   A class is formed by grouping 
several clusters that share the same attributes into a group.  In 
other words, class is one level higher than cluster.   Since the 
ISS has multiple degrees of freedom, it possesses multiple 
fundamental frequencies, known as structural modes.   In this 
case, several clusters represent the structural modes of the 
ISS. These several clusters form a class.  Likewise, the 
harmonics of a vibrating source, which by themselves are 
clusters, also form a class.  Grouping clusters into classes is 
accomplished by using Learning Vector Qantization (LVQ) 
[2,3], which is a supervised learning technique.  The strength 
of LVQ networks is that they can be trained to recognize 
classes made up of multiple unconnected regions, which 
cannot be accomplished by SOFM.  A multiple-unconnected-
region is referred to a class that contains both the 
fundamental frequency of a vibrating source and its related 
harmonics.  The aforementioned ISS structural modes and its 
harmonics is a typical example of such multiple-
unconnected-region.   LVQ offers the advantage of grouping 
several clusters into the same class (same source, in this 
case). 
 
Pattern Recognition 
 
To prevent possible misclassification, the classified patterns 
need to be verified.   For each known pattern, the allowable 
tolerance (deviation) range from the nominal values of  
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frequency and acceleration are specified.  Thus, as soon as an 
input pattern is assigned to a cluster, a verification process 
begins by checking if the pattern falls within the maximum 
allowable range (the maximum allowable range is knowledge 
based. For example, the Ku band antenna, used by the Shuttle 
for communication and data downlink to ground, has a 
disturbance signature around 17 Hz with associated 
acceleration magnitude level between 100 to 300 µgrms. 
Knowing such range from past data, an allowable deviation 
range from the nominal value is specified, for example, ±5% 
based on past observation.)  Therefore, a pattern, which has 
been classified and verified, is recognized as a known pattern.  
On the other hand, any pattern that falls outside of the 
allowable range is recognized as an unknown pattern 
(meaning that the system has not seen it before or trained yet 
to recognize it). 
 
The pattern recognition is accomplished by building two 
separate filter masks for frequency and acceleration.  Each 
mask can perform instant filtering by means of neural 
network mapping.  The mapping is accomplished by using 
another class of artificial neural networks, called 
backpropagation neural network  (BPNN) [4], which uses 
supervised learning rules.  A BPNN based on a Gaussian 
distribution with respect to the nominal value of any known 
pattern has been trained.  The distribution is bounded by three 
standard deviations (±3σ).  Therefore, if a frequency value 
with a ±5% deviation from the nominal frequency of a 
vibrating source of interest is specified, the deviation is 
equivalent to (±3σ), likewise, for acceleration.  It is 
worthwhile to note that the BPNN was trained in terms of the 
unit of σ, which is dimensionless.  Therefore, there is only 
one trained BPNN for both frequency and acceleration. 
 
To recognize a pattern, the BPNN generates the so-called 
Degree of Belongingness (DOB) between 0 and 1 for both 
frequency and acceleration.  For instance, a value below 0.1 
(using 3σ) for either frequency or acceleration means that the 
detected source does not belong to the cluster, and is 
recognized as an unknown pattern.  On the other hand, if the 
detected frequency is exactly the same as the nominal 
frequency, then the DOB value of frequency will be 1, 
likewise, for acceleration. 
 
Confidence Determination 
 
The objective here is to provide an index, which gives a 
relative assessment as to how confident the monitoring 
system is regarding the determination of which source is 
active at any moment in time.    
 
On-board the ISS, there are many accelerometers with 
different sampling rates.  They may be moved to different 
locations from time to time, and may or may not be located in  

the scientific racks where the experiments are located.   
Therefore, the locations of known sources, sensors and racks 
should be known by the system.   Such information is used to 
design the decision- making process, which in turn generates 
the confidence index. 
 
It is very possible that the same disturbance source is detected 
by more than one sensor.  In this case, it is desired to 
determine which sensor is most relevant to a specific 
experiment.  Instead of classifying the relevance as relevant 
or irrelevant, it is quantified using the concept of partial truth.  
As a result, the degree of relevance (DOR) is between 0 and 
1, where 0 and 1 mean very irrelevant and very relevant, 
respectively.  The DOR between sensors and experiment 
racks greatly depends on their geometric relationship.  
 
To accomplish this, fuzzy logic [5] is used since it is suitable 
for dealing with imprecision and uncertainty.  Fuzzy logic 
measures the truth of a given situation as a matter of degree.  
Between the input and the output, there is a black box that 
does the work through the use of if-then rules.  The input for 
the fuzzy logic contains membership functions of each input 
variable, and the output also contains membership functions 
of each output variable.   In this work, there are three input 
membership functions: the DOB of frequency, the DOB of 
acceleration, and the DOR of sensors with respect to 
experiment racks.  The DOB and DOR values are both 
between 0 and 1.  The output membership function of fuzzy 
logic is the degree of confidence (DOC), which is also 
between 0 and 1, where 1 represents 100% confidence that a 
source of interest is active, and 0 means that the source is not.  
An example of a fuzzy logic rule for a sensor is:  if DOB is 
high and DOR is high, then the DOC is high.  
 

III. TECHNICAL NOVELTIES 
 
In the course of developing the monitoring system, many 
technical problems arose, but were overcome.   Below we 
briefly discussed how they were overcome and how the 
process leads to some technical innovations (novelties) in the 
field of pattern classification.   
 
(1) Generating Additional Dimension for Pattern  

Classification 
 
Generally speaking, the more dimensions used in pattern 
classification, the better the classification will be.  This is 
simply because each pattern will have more distinct features.  
In this work, however, once the acceleration data have been 
transformed from time domain to frequency domain through 
FFT, it is difficult to relate a detected fundamental frequency 
magnitude level in the frequency domain to its corresponding 
acceleration in the time domain.  Such task is time consuming 
and resource intensive in terms of storing and tracking data in 
two domains.  
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In the time domain, an acceleration magnitude value is the 
combined effect of all vibrating sources at that instant of 
time.   Therefore, the acceleration values in the time domain 
can not be used to identify which vibrating sources are active.   
Consequently, source detection has to be made in the 
frequency domain.  However, it is necessary to know the 
corresponding acceleration value for each detected frequency 
in the frequency domain.  To do so, one of Parseval theorems 

[6] is used.  The theorem states that there exists an 
equivalence between the root mean square (RMS) value of a 
signal computed in time domain to that in frequency domain.  
The equivalent RMS acceleration can be calculated as 
follows: 
 
                                             k  
 ARMS = [∑ p(i)∆f ]1/2  (1) 
                                           i=0 
 
where k=0,1,2.,(n/2), n is the number of samples in the time 
domain, p(i) is the PSD value at frequency f(i), and ∆f is the 
frequency resolution  
 
This theorem is used to attribute a fraction of the total power 
in a signal to a user-specified band of frequencies by 
appropriately choosing the limits of integration.  However, 
the theorem does not address what the appropriate limits of 
integration are.  In this paper, a procedure for quantifying the 
RMS acceleration, which addresses the choice of the limits of 
integration, is developed.  It is described below. 
 
Step 1: The PSD data around the frequency of interest are 
reconstructed by a Gaussian distribution to minimize the 
measurement noise.   Conceptually, the standard deviation 
(σ) value of this distribution should be relatively small in 
order to make a narrow band around the frequency of interest. 
The σ value was determined by simulations using some sets 
of previous Space Shuttle missions data in frequency domain 
and time domain.   For each data set, the error between the 
estimated RMS acceleration from the frequency domain and 
the actual RMS acceleration from the time domain was 
compared while varying the σ value.   As a result of the 
simulations, it was found that setting the σ value equal to ∆f 
yields the smallest error.   The accuracy comparisons are 
shown in Tables I and II. 
 
Step 2: The reconstructed PSD data are integrated with 
respect to frequency from fi-∆f to fi+∆f, where fi and ∆f stand 
for the frequency value of interest and the PSD frequency 
resolution, respectively.   Such integration is essentially  
equivalent to the hatched area shown in Fig. 2.   Note that the 
integration limits were determined by the simulations 
mentioned above. 
  
 
 

Fig. 2  Integration of PSD Data with respect to Frequency  
 
 
Step 3: The square root of the integrated result is taken.  As a 
result, the time-domain equivalent RMS acceleration (g) for 
the frequency of interest is recovered. 
 
This procedure was verified using two sets of the Space 
Shuttle missions data in frequency domain and time domain 
(for comparison).  The accuracy of the acceleration 
estimation for each set is given in the following two tables. 
 
Table I  Accuracy Comparison for the First Data Set 
 
PSD 
Data 

Frequency 
Resolution 

Estimated RMS 
Acceleration 

Actual RMS 
Acceleration 

Difference 
% 

Pxx 0.0305 Hz 1.9 milli-g 1.9 milli-g 0 
Pyy 0.0305 Hz 4.9 milli-g 4.8 milli-g 2.1 
Pzz 0.0305 Hz 1.0 milli-g 1.0 milli-g 0 
 
Where Pxx, Pyy and Pzz are the PSD data in x, y and z axes, 
respectively.  Note that the above estimated RMS 
acceleration values were calculated using the proposed 
procedure based on the PSD data at 79.77 Hz, whereas the 
actual RMS acceleration values came from the Space Shuttle 
past mission data collected from sensors in the time domain. 
 
Table II  Accuracy Comparison for  the Second Data Set 
 
PSD  
Data 

Frequency 
Resolution 

Estimated RMS 
Acceleration 

Actual RMS 
Acceleration 

Difference 
% 

Pxx 0.0610 Hz 2.8 milli-g 2.7 milli-g 3.7 
Pyy 0.0610 Hz 1.4 milli-g 1.4 milli-g 0 
Pzz 0.0610 Hz 0.68 milli-g 0.68 milli-g 0 
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Note: The above estimated RMS acceleration values were 
calculated using the proposed procedure based on the PSD 
data at 60.18 Hz.  
 
Generally speaking, the actual acceleration magnitude 
measured in the time domain is the combined acceleration of 
all vibrating sources at that time.  However, it is possible to 
find a vibrating source that happens to be the only active 
source at some instant of time.  Such sources can be found in 
the frequency domain by identifying the dominant PSD value 
at some specific frequency such as 79.77 Hz or 60.19 Hz, in 
this case.  As shown in the above tables, the estimation errors 
are quite small.  This procedure was implemented for this 
work.  As a result, each detected fundamental frequency is 
accompanied by the estimated RMS acceleration magnitude 
to form a pair of data to be used for the pattern classification. 
  
(2)  Proper Scaling with Multiple Dimensions 
 
SOFM uses Euclidean distance to measure the distance 
between an input pattern and the cluster center of interest.   
For example, the Euclidean distance in two-dimensional 
space is defined as 
             
 D = [(x1-x1,c)

2 + (x2-x2,c)
2 ] 1/2  (2)

  
Where x1 and x2 are the values of the input pattern in 
dimensions 1 and 2, respectively, and x1,c and x2,c are the 
cluster centers in dimensions 1 and 2, respectively.   In this 
work, the two dimensions are the frequency and acceleration 
magnitude.  Therefore, the Euclidean distance of an input 
pattern (f, a) to a cluster center (fc, ac) can be expressed as 
 

 D = [(f-fc)
2 +(a-ac)

2]1/2  = [∆f2+∆a2]
½   

(3) 
 
Since SOFM uses Euclidean distance for classification, 
improper scaling between these two dimensions could lead to 
misclassification.  For example, given the following two 
cluster centers, whose units are Hz and g: 
 
 
Cluster  
No. 

Cluster 
center 

Range for the 
1st dimension  

Range for the 
2nd dimension* 

n (71,50*) 69.6 – 72.4 40 – 60 
n+1 (72,40*) 70.6 – 73.4 20 – 60 
Where * denotes 10–6 
 
If a source is detected at 71.8 Hz and 46 micro-g, for 
example, then without proper scaling the data point will be 
classified into cluster n+1 because the first dimension 
(frequency, in this case) is much more dominant than the 
second dimension (acceleration) that results in the shortest 
Euclidean distance between the detected source and cluster 
n+1 (see Eq. 3). In this case, the Euclidean equation 
degenerates from 2-D to 1-D.  However, if a scaling factor of 

2×105 were applied to the second dimension (i.e., the values 
of acceleration are multiplied by this factor in order to 
generate an equally weighted scale to preserve the two 
dimensionality of the data), then the same source would be 
classified into cluster n, which is correct because the 
Euclidean distance is the shortest, and both dimensions are 
equally weighted.  It is very important to have ∆f and ∆a 
(equation 3) to be of the same order of magnitude. Otherwise, 
one dimension alone will dictate the selection of the cluster, 
which will result in patterns misclassification. 
 
(3) A Modified Model for Pattern Classification and 

Recognition 
 
SOFM classifies every input data point into one of the 
established cluster centers.  By default, the boundary between 
any two adjacent clusters is essentially located in the middle 
of the two cluster centers, (see Boundary n-1,nthe boundary 
between clusters n-1 and n, and Boundary n,n+1the boundary 
between clusters n and n+1, Fig. 3). 
 
  dimension 2 
 
Boundary n-1,n                      Boundary n,n+1 

                   
                   Cluster center n 
                    
                P(x,y)           
                    •     
                                         
 
                                                                 
Cluster center n-1                 Cluster center n+1 
 
    dimension 1 
 
Fig. 3  Cluster Centers and Their Boundaries 
 
Therefore, any point, such as P(x,y) (marked by “•”) that falls 
within the region between boundary n-1,n and boundary n,n+1 
belongs to cluster n.    
 
Let’s Suppose that cluster n has a range in each dimension, as 
enclosed by the rectangle around the cluster center (see Fig. 
3), any point that falls outside the rectangular region, but still 
between boundary n-1,n and boundary n,n+1, should not be 
classified into cluster n.  In fact, it should be classified as an 
unknown pattern.  Unfortunately, SOFM has no such ability.  
Lippman [7] proposed an approach to combine SOFM and 
LVQ in order to place the input vectors into the desired 
classes.   His approach enhanced the capability of pattern 
classification.  However, it still can not recognize unknown 
or new patterns.  To address these shortcomings, a hybrid 
model is proposed in this paper.  This model, as shown in 
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Fig.4, combining SOFM, BPNN and LVQ, is referred herein 
as Adaptive Pattern Recognition and Classification (APRC).  
 
In this proposed model, BPNN is inserted in between SOFM 
and LVQ for unknown patterns recognition, while SOFM and 
LVQ are used solely for the classification of known patterns. 
 

 
 
Fig. 4  Adaptive Pattern Recognition and Classification 
(APRC) 
 
(4) Taking into Account Multi-Dimensional Ranges of 

Neighboring Clusters   
  

In multi-dimensional space, each cluster may have a different 
range in each dimension, as shown in Fig. 5.   In this case, the 
Kohonen’s SOFM [1] will classify the data point P(x,y) into 
cluster n due to the shortest Euclidean distance between the 
point and the center of cluster n (even though that data point 
belongs to cluster n-1).   However, in the APRC model, since 
the point falls outside the specified range of each dimension 
of cluster n, that data point will be placed on hold until the 
ranges of the neighboring cluster (cluster n-1, for instance) 
are checked.   As a result, the data point will be classified into 
cluster n-1 as a known pattern.   Without the multi-
dimensional neighboring cluster checking feature of APRC, 
the data point would have been classified as an unknown 
pattern, which would have been incorrect.  The proposed 
APRC model has the ability to avoid such possible 
misclassification in multi-dimensional space for clusters with 
cross-boundary range overlapping.  
 
In multi-dimensional space, this type of misclassification 
could occur even with proper scaling among dimensions.   
The problem is essentially due to the different dimensional 
ranges for each cluster when two cluster centers are close to 
each other.  The only remedy to this problem is to check the 

neighboring clusters in each dimension.  In this monitoring 
system, neighboring cluster checking was implemented using 
BPNN, which compares every unknown pattern with the 
neighbors of the rejected cluster to make sure that the 
unknown pattern, in fact, does not belong to any of the 
surrounding clusters. 
 
    dimension 2  
 
    Boundary n-1,n                      Boundary n,n+1 

                   
                             Cluster center n 
              P(x,y)    
                          
   Cluster       •     
   center n-1                                        
 
                                                                 
                                            Cluster center n+1 
 
                         dimension 1  
 
Fig. 5  Multi-Dimensional Ranges for Each Cluster 
 
 
In summary, the proposed APRC used in this work is 
superior to the Lippman’s model [7] in the following aspects: 
  
(a) Can recognize unknown patterns 
(b) Can avoid pattern misclassification 
(c) Takes into account multi-dimensional ranges of 

neighboring clusters 
 

IV.  APRC PROCESS 
 
Fig. 4 shows the schematic diagram of the APRC approach.  
The procedure of the approach is described below in detail. 
 
The program begins by retrieving PSD data sets generated 
from the real time acceleration data downlinked from the 
International Space Station (ISS) to perform peak detection.   
For each detected relevant peak, the program uses the 
modified Parseval theorem to estimate the RMS acceleration, 
from which the acceleration magnitude level from the time 
domain is calculated, for each detected frequency. 
For each pair of acquired parameter detected (frequency and 
acceleration), the program uses SOFM to screen each set by 
assigning it to some potential cluster.  (Remember that SOFM 
uses Euclidean distance for classification.  Thus, if it is used 
alone, it could lead to patterns misclassification.) 
To overcome the weakness of SOFM, the program then uses 
BPNN to check if the detected pair falls within a prescribed 
range (for both frequency and acceleration).  BPNN either 
affirms or rejects the preliminary clustering made by SOFM.  
If it affirms it, the pair is left in the assigned clustered.  
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Otherwise, BPNN performs cluster-neighboring checking.  If 
a matched is found, the pair is removed from the preliminary 
assigned cluster and reassigned to the new cluster by SOFM. 
If no match is found, the cluster is removed from the 
previously assigned cluster and transferred to a database 
reserved for unknown patterns for further analysis and 
possible training.  Once the pair is affirmed, SOFM, sends it 
to LVQ, which classifies the pair as well as matching the 
value (frequency and acceleration) of the pair with the name 
of the pattern, (for example, fan or pump) in the known 
database.  Once, the name of the pair is identified, the 
vibrating source name along with its value is sent to the 
PIMS web site for display and viewing by principal 
investigator teams.  
 

V.  SIMULATION CASE 
 
At the time when this simulation was performed, no real time 
acceleration data was available from the ISS.  Therefore, the 
monitoring system was simulated using two sets of data from 
previous Space Shuttle missions, and two sets of data from 
previous NASA missions on the Russian MIR Space Station.   
For these four sets of data, the program correctly detected the 
fundamental frequencies of the vibratory disturbance sources, 
recognized and classified them into the right clusters and 
classes.   
 
The result of the simulation is discussed in detail below.   
For the simulation a database was created containing 43 
clusters simulating known patterns to the system and 15 
classes simulating the vibrating classes to which the 43 
clusters belonged to.  The simulation started with peak 
detection of all the three axes PSD data generated from the 
four previous missions mentioned above.  Taking the X-axis 
PSD data as an example, in the range of 0 to 200 Hz, 58 
peaks (clusters) were detected.  Out of these 58 peaks, the 
program recognized 24 as known patterns and 34 as 
unknown.  The reason a large number of unknowns were 
detected is due to the fact that the trained patterns (stored in 
the database as known patterns) were mostly between 0 and 
100 Hz.  Only three known patterns were over 100 Hz in the 
database. 
 
As soon as a peak from the PSD data was detected, the 
modified Parseval theorem was used to calculate the actual 
acceleration magnitude associated with that peak. For 
example, a peak was detected at 38.0859 Hz; the acceleration 
magnitude was calculated to be 11.32 µg.  SOFM temporarily 
assigned the pattern in cluster 17, which has the prescribed 
range of 38±5% for frequency and 10 to 30 µg for 
acceleration.  SOFM passed the values of the detected peak to 
BPNN for verification in order to avoid possible 
misclassification. BPNN compared the frequency and 
acceleration values with the nominal values of cluster 17 (38 
Hz and 20 µg, respectively), and determined the Degree of 
Belongingness (DOB) for frequency and acceleration as 

0.912 and 0.034, respectively.  In this case, the frequency of 
38.0859 was very close to the nominal value, while the 
acceleration of 11.32 µg was just slightly above the minimum 
acceleration 10 µg.  This pattern was confirmed and then sent 
back to SOFM for final clustering.  Since both frequency and 
acceleration values were within the prescribed ranges, that 
pattern was recognized as a known pattern belonging to 
cluster 17.  Finally, SOFM passed that information to LVQ, 
which determines which class that pattern belongs to and its 
actual name. In this case, it was the signature of a fan 
associated with an experiment called glovebox. 
 
This following illustrates how the program was able to 
prevent pattern misclassification.  Let us examine the three 
known patterns in the neighborhood of 71 and 72 Hz, shown 
below. 
 
 

Cluster 
No. 

Nominal 
Frequency (Hz) 

Maximum  
Acc. (µg) 

Minimum  
Acc. (µg) 

29 71 50 40 
30 71 20 10 
31 72 40 20 

 
 
The program detected a relevant peak at 71.2585 Hz with 
calculated acceleration of 38.6 µg.  Initially, this pattern was 
temporarily identified as an unknown pattern because it was 
compared with cluster 29.  The program then checked the 
first neighboring cluster (cluster 30), but the pattern was 
again rejected because its acceleration was beyond the 
prescribed acceleration range of cluster 30.  The program 
checked the second neighboring cluster (cluster 31), and 
successfully recognized the pattern as a known pattern 
(cluster 31).  The reason cluster 29 was picked as the right 
match at the first pass is because SOFM used Euclidean 
distance for clustering. And since Euclidean distance favors 
the shortest distance, therefore, the first choice was cluster 
29. If only SOFM were used, the pattern would have been 
assigned to cluster 29, which would have been the wrong 
cluster, but since BPNN is used to check the prescribed range 
as well as neighboring clusters, two mistakes were avoided. 
First, a misclassification was avoided (cluster 31 instead of 
29).  Second, instead of classifying the pattern as an 
unknown, it was recognized as a known one due to the cluster 
neighboring checking capability of the program  
 
For this simulation, the total CPU time from peak detection to 
pattern recognition and classification was about 4 seconds for 
each axis using a PC with 500 MHz clock speed.  The 
simulation result was verified by examining the 
corresponding color spectrograms in x, y and z-axes, 
respectively.  A spectrogram is a three-dimensional plot that 
shows PSD values (represented by colors) versus frequency 
versus time.  It is primarily for the purpose of visualization.  
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The result showed a 100 % success rate in recognizing and 
classifying the detected frequencies and acceleration 
magnitudes into known and unknown patterns.  In this 
simulation, the degree of relevance for each sensor to any 
specific experiment rack was not tested. 
 

VI. CONCLUSIONS 
 
The monitoring system discussed in this paper has 
demonstrated its capability to automatically detect the 
vibratory disturbance sources, to correctly identify and 
classify them.  The adaptive pattern recognition and 
classification approach presented here has the ability to 
recognize and classify known and unknown patterns, as well 
as preventing possible patterns misclassification.  A 
procedure to quantify the RMS acceleration in the frequency 
domain, which allows for the calculation of the acceleration 
magnitude levels in the time domain, was developed.  The 
acceleration magnitude calculation gives SOFM an extra 
dimension, which lessens to some degrees the potential of  
pattern misclassification.  Fuzzy logic is used to exploit the 
tolerance for imprecision, uncertainty and partial truth, along 
with the experience of the human experts (by means of fuzzy 
logic rules), to make intelligent decisions as to what vibrating 
sources are more relevant to a specific sensor.   
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