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Figure 1.  Ozone corrected irradiance and solar cell
quantum efficiencies.

OZONE CORRECTION FOR AM0 CALIBRATED SOLAR CELLS FOR THE AIRCRAFT METHOD
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ABSTRACT

The aircraft solar cell calibration method has provided technology.  Second, an ozone correction factor is
cells calibrated to space conditions for 37 years.  However, calculated from the measured ozone in the optical path, O3,
it is susceptible to systematic errors due to ozone using Fo. Initially this was applied to the extrapolated value
concentrations in the stratosphere.  The present correction from a Langley plot.  However, especially for higher band
procedure applies a 1% increase to the measured I gap materials, it proves more useful to apply the correction

sc

values. High band-gap cells are more sensitive to ozone to the flight data before performing the Langley plot
absorbed wavelengths (0.4 to 0.8 �m) so it becomes extrapolation.
important to reassess the correction technique. This paper
evaluates the ozone correction to be 1+O3×Fo, where O3
is the total ozone along the optical path, and Fo is 
29.8×10 /du for a Silicon solar cell, 42.6×10 /du for a GaAs-6       -6

cell and 57.2×10- /d.u. for a InGaP cell.  These correction6

factors work best to correct data points obtained during the
flight rather than as a correction to the final result. 

INTRODUCTION

The NASA GRC aircraft calibration method has been
used to provide the aerospace industry with cells calibrated
to orbital conditions for 37 years.  The method measures I ,

sc

the short circuit current, at AM0, air mass zero, for setting
solar simulators to space conditions during ground-based
measurements.  This method has an accuracy of 1% for
Silicon cells based on the standard deviation of the
measurements and a comparison with balloon and shuttle
measurements [1].  

The method is susceptible to a systematic error due to
the nonuniform distribution of ozone in the atmosphere.
This error is presently accommodated by multiplying the
measured I (AM0) by an ozone correction factor of 1.01

sc

based on calculations for Silicon cells [1]. As a basis for obtaining ozone adsorption corrected

However, cell technologies have changed and higher NREL was used [3].  The Langley Plot technique used by
band-gap materials are becoming more important, the Aircraft Calibration Method [1] to extrapolate to orbital
particularly in multi-junction cells.  These cells are  more conditions (AM0) corrects for adsorption processes that are
sensitive to changes in the ozone absorbed portions of the proportional to air pressure.  Since data is taken above the
spectrum.  In addition, daily ozone measurements have tropopause, the water and dust of the troposphere is not of
become available from the Earth Probe TOMS (Total Ozone concern.  But since most of the ozone is concentrated in a
Mapping Spectrometer) [2].  This makes it possible to layer above the data acquisition region, this correction to
modify the ozone correction according to flight conditions. the spectrum must be included.  The irradiance as a
Both reasons make it important to reassess and improve function of wavelength is given by: 
the procedure for ozone correction in the aircraft calibration
method.  I(�) = H (�) exp(-� (�)×O3)              (1)

The revised procedure consists of two steps.  First, the where H  is the extraterrestrial irradiance at 1.0 au from the
cell spectral response function is integrated with the solar sun, � , is the ozone adsorption coefficient as a function of
irradiance spectrum and an ozone corrected irradiance wavelength, and, O3, is the ozone along the optical path.

spectrum. The results are compared to provide Fo, the
correction per matm-cm of ozone, for the appropriate cell

MODEL

spectra, the Simple Solar Spectral Model (SSSM) from
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Figure 2.  Comparison of A-161 flight data with the
silicon cell ozone correction model.

The ozone absorption coefficients used  are those in SSSM. influence of this uncertianty on the final I  is less than
Figure 1 shows the irradiance for five ozone levels given in 0.05%.
Dobson Units (du, matm-cm).  Ozone absorption effects the
spectrum principally in the range of 0.4 to 0.8 �m as well as
below 0.35 �m

Two standard cells that have frequently been flown are
A-161, a Silicon cell, and A-133, a GaAs cell.  They provide
a set of data that can be used to investigate the accuracy
of the ozone correction technique.  In addition, correction
factors for an InGaP cell, typically used as the top cell on
multijunction cells, are also calculated.  Quantum
efficiencies for these cells are available at 20 nm intervals,
and are also shown in fig. 1.  A-161 and A-133 data were
measured in our lab.  A InGaP quantum efficiency was
obtained from Aiken et al [4].   It  is apparent that the higher
band gap materials are more affected by the ozone
adsorption.   

The quantum efficiencies were converted to spectral
response functions and  convoluted with the WM0 based
irradiance spectrum [3] shown fig.1 to calculate I  as a

sc

function of Ozone.  The results are shown in table 1.  The
ozone correction factor, Fo, is defined as:

Fo= (I (0)/I ({O3}) - 1) /{O3}.               (2)
sc sc

Total I (Si) I (GaAs) I (InGaP)
Ozone mA/cm mA/cm mA/cm

sc
2

sc
2

sc
2

0 du 41.24 29.30 17.57

600 du 40.50 28.57 16.99

1200 du 39.81 27.88 16.45

Fo(/du) 29.85×10 42.56×10 57.16×10-6 -6 -6

Table 1.  Calculated I  as modified by ozone adsorption.
sc

 
In order to estimate the precision of the integration for

calculating Fo, two methods were used.  First, a second
set of spectral response (SR) measurements from A-161
was used to compare with the initial result.  Secondly, half
the measurements were discarded to create two data sets
where the resolution was reduced from about 20 nm to
about 40 nm.  These results are summarized in Table 2.

A-161 Fo Fo from full Fo from half
Calculation SR data set resolution

(/du) SR data set (/du)

SR Data Set A 29.85×10 29.60×10-6 -6

SR Data Set B 29.64×10 29.50×10-6 -6

Table 2.  Precision of Fo Calculation for a Silicon solar cell.

From this data, the precision of the integration appears
to be about as good as the SR data, and better than 1%.
If the ozone correction for a cell is even as high as 5%, the

sc

APPLICATION TO FLIGHT DATA 

The flight procedure is described in more detail
elsewhere [1].  Briefly, the plane flies along 45N latitude,
from about 82W to 85W longitude.  The flight typically
reaches a peak altitude near 50,000 ft (120 mb) and
decends to the tropopause, usually lower than 35,000 ft
(250 mb) during the flying season.  Flights take place in the
late October through the end of March, when the
tropopause is lower than at other times of the year. I  and

sc

V  of up to six cells are measured as a function of
oc

atmospheric pressure during the decent. The temperature
of the cells  is controlled to near 25°C during the flight.  To
find I (AM0) the Langley Plot method is used, extrapolating

sc

the logarithmic I  data as a function of pressure or air mass
sc

to zero. This value is then corrected for the Earth-Sun
distance to bring the reported value to 1.0 au.

 
From Appendix A of reference 2, about 80% to 85% of

the ozone is above the top of flight profile, 120 mb.  The
ozone is estimated as 0.83×On/cos(Z) where On is the
reported ozone number for 45N 83W and Z is the zenith
angle. 

 
Short Term, Si

A-161 was flown 20 times during the 2000/2001 flying
season.  It had an average I  of 165.59±0.81 ma.  Daily

sc

ozone numbers  were obtained from the Earth Probe TOMS
web site [5] for 45N83W, a position along the flight path.
The zenith angle ranges from 48° to 68° during the flying
season.  The ozone number varied from 278 to 445 for
flight days during the season with an average of 357.

Figure 2 shows a plot I  corrected for Re, Earth-Sun
sc

radius,  for A-161 for the 2000-2001 season plotted against
the total ozone measurement adjusted as described above

NASA/TM—2002-211714 2



2.005

2.01

2.015

2.02

2.025

2.03

2.035

2.04

2.045

2.05

0 50 100 150 200 250 300

lo
g(

Is
c(

m
A

))

Pressure (mb)

Langley Plot, A-133 (R=1au) with Ozone Correction

Isc= 111.56+/-0.05 mA
Isc= 111.52+/-0.04 mA
Isc= 111.54+/-0.02 mA
Isc= 111.57+/-0.02 mA

107

108

109

110

111

112

113

114

0 200 400 600 800 1000

Is
c 

(m
A

)

Ozone Column Density (d.u.)

Empirical Ozone Correction for A-133
 1985-1997 

b = 110.81 +/- 0.43    
m = 0.00302 +/- 0.00073
m/b= 27.3E-6 +/- 6.6E-6

Isc=111.55 mA

flight data
ozone number correction

altitude correction

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600 700 800 900 1000

O
zo

ne
 D

en
si

ty
 (

du
/m

b)

Pressure (mb)

Ozone Density Model

model 1: 225 du
325 du
425 du
525 du

model 2: 225 du
325 du
425 du
525 du

Figure 5.  Selected A-133 flight data including altitude
dependent ozone correction.

Figure 3.  Dependence of A-133 I  measurements on
sc

total ozone number.

Figure 4.  Ozone density models.  Model 1: Uniform
density in each layer, Model 2: Linearly varying density in
each layer.

for zenith angle.  Applying the model to each of the I
sc

measurements gives I (A-161)=166.70±0.47.  The model
sc

curve shown  in fig. 2, ozone number correction, is
166.70/(1+F ×O3).  The reduction of the standard deviation

si

of the measurements by 40% suggests that this is a
important contribution to the analysis.

Long Term Measurements, GaAs

A-133 was flown over 28 times between 1985 and 1+Fo×O3/cos(Z).  This gives an ozone corrected I
1997.  Total ozone measurements are available for most of measurement.  Figure 5 shows this flight data corrected for
the period, but not from December 1994 to July 1997 [5]. I ozone using the pressure measurement.  This data

sc

over this time period was 109.08±0.72   Using the simple converges to a very narrow range indicating this is a better
total ozone based correction described above gives an I  of method for the ozone correction since the ozone density

sc

111.74±0.63.    The slope of the uncorrected data is variation with altitude, significantly affects the extrapolation
I ×27.3×10 , significantly less than the 42.6×10  expected to air mass zero.
sc

-6      -6

from model.  The corrected data, also shown in fig. 3,
demonstrates the ozone number based correction gives an
over-correction since data from high ozone flights are
typically corrected to higher values that the lower ozone
data.

To improve the method, the correction should be
applied to each data point in order accommodate the
changes in ozone density as the plane descends.  The
altitude dependent ozone profiles in Reference 2 can be
used to calculate ozone absorption variations with pressure.
Dividing the ozone contribution in each layer by the
thickness in pressure, the profiles in Table A.1. of
Reference 2 can be used to generate an ozone density
model as a function of total ozone and pressure or altitude.

Two ozone density models are shown in figure 4.  The
first used a uniform density in each layer.  The second
model uses a linear interpolation between the average
density at each boundary, which is then adjusted to give the
correct  ozone amount  in each layer.  The second model
is the one used to correct the flight data in figure  5. 

To develop an altitude dependent  ozone correction,
the ozone density as a function of pressure is integrated
from the measured altitude to zero pressure.  The model [2]
gives ozone profiles for ozone numbers at intervals of 50
du.  For each interval the fraction of ozone above the
pressure point is used to scale the reported ozone number.

Each I  measurement is then multiplied by
sc

sc

NASA/TM—2002-211714 3



SUMMARY

This paper describes a method for correcting high
altitude I  data for ozone absorption in the atmosphere.

sc

The two parts of the method are first to calculate a
correction factor which is based on the spectral response of
the cell technology.  Then use satellite ozone data to
correct flight data measurements on a point-by-point basis
before extrapolation using the Langley Plot method to air
mass zero.

The correction coefficients for several cell technologies
are as follows: Si, 29.8×10 /du; GaAs, 42.6×10 /du; and-6   -6

InGaP, 57.2×10 /du.  These values are expected to be-6

accurate to better than 1% based on integration analysis.
These coefficients generally result in corrections between
1% and 3%, slightly higher than has been used in the past.

The initial attempt to apply a correction based only on
the optical path angle and the ozone number proved to not
work well for higher bandgap materials.  But applying an
ozone correction to each measured point before perfoming
the Langley Plot extrapolation appears to work well.

For the next flying season (2002-03) the equipment to
actively aquire solar spectra during the flight will be
available.  This will permit the measurement of the ozone
absorption during the progress of the flight.  This will permit
the correction of I  data based on known conditions to

sc

further improve the compensation for ozone absorption.
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