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Abstract 
 
Recent investigations have successfully 
demonstrated closed-form analytical solutions of 
spontaneous capillary flows in idealized 
cylindrical containers with interior corners. In 
this report, the theory is extended and applied to 
complex containers modeling spacecraft fuel 
tanks employing propellant management devices 
(PMDs). The specific problem investigated is 
one of spontaneous rewetting of a typical 
partially filled liquid fuel/cryogen tank with 
PMD after thrust resettling. The transients of this 
flow impact the logistics of orbital maneuvers 
and potentially tank thermal control. The general 
procedure to compute the initial condition (mean 
radius of curvature for the interface) for the 
closed-form transient flows is first outlined then 
solved for several ‘complex’ cylindrical tanks 
exhibiting symmetry. The utility and limitations 
of the technique as a design tool are discussed in 
a summary, which also highlights comparisons 
with NASA flight data of a model propellant tank 
with PMD.  
 
 

Introduction 
 
Recent investigations have successfully 
demonstrated asymptotic techniques for the 
solution of spontaneous capillary flows in 
idealized containers with interior corners1. The 
approach yields simple closed-form solutions for 
important features of the flow such as transient 
flow rate and 3-D interface shape without 
applying approximations such as hydraulic 
diameter, friction factors, or weighted capillary 
pressures. More recently, these techniques have 

been applied to cylindrical containers of irregular 
polygonal cross-section2, the results of which 
compare favorably with benchmark drop tower 
experiments.  
 
In this report, the theory is further extended to 
complex containers modeling spacecraft fuel 
tanks employing propellant management devices 
(PMDs). However, the general approach is 
expected to be useful to many low-gravity fluids 
management and handling operations. The 
specific problem investigated is one of 
spontaneous rewetting of a typical partially filled 
liquid fuel tank with PMD after thrust resettling. 
The transients of this flow impact the logistics of 
orbital maneuvers and potentially tank thermal 
control, particularly when the liquid inventory 
represents a significant percentage of the total 
mass of the spacecraft.  
 
The method of solution is briefly outlined where 
it is shown that the mean radius of curvature of 
the interface at equilibrium can be used to 
compute the pivotal initial condition for the flow 
throughout the container. This mean radius R 
may be expressed analytically for an important 
though restrictive class of simple containers 
using the approach of de Lazzer et al.3 It is 
shown herein that this approach may be extended 
to certain more complex containers that are 
symmetric. (Computations of R using Surface 
Evolver4 may be employed for containers of 
arbitrary complexity.) Once R is known, the 
existing analytical solutions may be applied and 
the key characteristics of the flow may be 
determined in closed form. Examples of tanks 
with central radial and radial wall vane PMDs 
are provided. Transient flow rates are presented 
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modeling the thrust resettling problem for three 
‘complex’ containers patterned after the tank and 
PMD employed in the Vented Tank Resupply 
Experiment (VTRE Shuttle Flight Experiment). 
Despite the violation of several theoretical 
assumptions the results of comparisons to the 
VTRE data argue favorably for the use of the all-
analytical approach as an efficient and accurate 
design tool to predict complex capillary flows in 
low-g propellant management systems. It is 
recommended that the approach also serve as a 
guide to fully transient 3-D numerical 
calculations (CFD). 
 

Review of Flow in jth Corner 
 
Detailed comparisons between experiments and 
theory have demonstrated that spontaneous 
capillary flows in irregular polygonal containers 
with j interior corners satisfying the Concus-Finn 
corner5 wetting condition are controlled by the 
local capillary flow in the corners2. Assuming a 
wetting fluid and locally parallel flow [(Hj/L)2 << 
1], the dimensionless leading order governing 
equations simplify to the nonlinear lubrication 
equation 

zzzt hhhh += 22 ,                      (1) 

 
where h = hj is the dimensionless height of the 
meniscus measured along the bisector of the jth 
corner at location z (see Fig. 1 for notation). 
 

 
Figure 1. Fluid column in an isolated corner j, angle 
2αj. The 3-D surface profile is S(y,z,t) with 
characteristic height and length, H = Hj and L = Lj, 
respectively. 

 
This implies that the capillary surface is a 
construct of circular arcs in the cross-flow plane 
(x-y plane), and, once h(z,t) is determined, the 
entire 3-D transient surface is known from 
 

2/1222 )()1( jjjjjj yfhfhS −++= ,      (2) 

where  

jjjj fhy δsin≤ , 

 
and θαπδ −−≡ jj 2/ . The parameter fj is the 

measure of interface curvature (driving force) in 
the jth corner satisfying the Concus-Finn 
condition (

jj απθ −< 2/ ) and is given by 

j

j
jf

αθ
α
sincos

sin

−
=                      (3) 

 
where θ is the contact angle and αj is the 
particular corner half-angle. The static contact 
angle boundary condition is correct to leading 
order because the predominant flow direction is 
parallel to the contact line. The problem of 
sudden capillary rise6,7,1 (i.e. imbibition), akin to 
termination of thruster firing during routine tank 
settling, applies constraints h(0,t) = 1, h(L,t) = 0, 
and conservation of mass to eq. (1). The solution 
for the jth interior corner provides important 
design quantities such as liquid column length Lj, 
flow rate jQ� , and position of the receding bulk 

meniscus zb as functions of time. These quantities 
are provided below in dimensional form: 
 

2/12/12/1702.1 tHGL jjj =              (4) 

 
2/12/52/12349.0 −= tHGFfQ jjAnjj j

� ,        (5) 

 
where Hj is the constant height (a.k.a. constant 
pressure or curvature) condition at z = 0. The 
total flow rate may be determined simply as  

∑=
n

j
jtot QQ ��  

and the location of the receding bulk meniscus is 
approximated2 by  

2/1

702.1 





= + t

R
z brb µ

ση               (6) 

where 

∑

∑

=

=+

−

−−
≈ n

j
Anj

n

n

j
jijAnj

br

F
R

A

FF

1
2

1

2/1 )sin(cos4103.0 αθ
η

. 

 
The geometric function 

j
j

j
jAnF δ

α
δθ

−=
sin

sincos ,                (7) 
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and Gj is given by 
  

j

ji
j f

F
G

µ
ασ 2sin

= ,                         (8) 

where Fi is a weak function of θ and α and may 
be treated as a constant Fi ≈ 0.142 (see reference 
1, Fig. 6 for exact value). Note also that Fij = 
(Fi)j ≈ 0.142. σ and µ are the fluid surface 
tension and dynamic viscosity, respectively.  
 
From eqs. (4) through (8) low gravity containers 
may be sized, fluids selected, or flow times 
predicted. Such quantities, which can be rapidly 
computed by hand, are accurate to ±6% for 
perfectly wetting fluids6,7,1 and represent an 
improvement over previous design relationships 
that used corner friction factors and weighted 
capillary pressures8. 
 
However, the transients of the spontaneous 
corner flows may not be calculated without 
knowledge of Hj. The constant height Hj at z = 0 
is directly related to the mean radius of curvature 
R of the interface at equilibrium for the container 
in question, which is a function of container size, 
shape, fill level, and liquid contact angle(s). R 
could also depend on the fluid’s history if more 
than one local equilibrium interface 
configuration is possible. (R ≡  1/2H, where H is 
the mean curvature of the interface.) For an 
important class of cylindrical containers with 
sufficiently planar interior corners satisfying the 
Concus-Finn condition 
 

jj HfR = .                         (9) 

It is therefore necessary to determine R for the 
container before Hj and the subsequent transient 
flows in each corner may be computed. 

 
Calculation of Tank Mean Radius of Curvature 

 
In the zero-gravity environment, for cylindrical 
containers of arbitrary cross-section that possess 
at least one interior corner satisfying the Concus-
Finn condition, de Lazzer et al.3 apply the 
divergence theorem to the Young-Laplace-Gauss 
equation 

R
u

u 1

1
2

=
∇+

∇
⋅∇   

over a presumed solution domain Ω∗ bounded in 
part by circular arcs of radius R that cut off 
corner flow sections and meet the rigid walls in 

the prescribed contact angle θ.  See Figure 2 for 
the case of a rhombus. When such a domain can 
be found, the divergence theorem yields 
 

Rds /cos **

21

Ω=∫
Σ∪Σ

θ .              (10) 

Here Σ1 denotes the totality of boundary arcs on 
the rigid part of the boundary, and Σ2 denotes the 
circular arcs that appear, see Figure 2b. On Σ1,  
θ* = θ is the prescribed contact angle of the 
liquid with the material of the containing vessel; 
in accordance with the method, θ* is set equal to 
zero on Σ2, corresponding to the hypothesis that 
the fluid rises vertically on the Σ2 arcs.  
 
For the cases of regular polygonal and rhombic 
cylinders, de Lazzer et al found that by inserting 
arcs symmetrically into corners as indicated in 
Figure 2, a unique value of R consistent with the 
construction could be found. We outline that 
procedure for the rhombic case in eqs. (11) to 
(13) below.  It does not follow directly from the 
method that the value thus determined actually 
corresponds to a solution of the form desired; 
however the correctness of the procedure for the 
case of a regular polygon was later demonstrated 
by Finn and Neel10. These authors go on to point 
out that in a general configuration the application 
of the method becomes difficult and additionally 
can lead to erroneous results. Nevertheless, the 
procedure does lead to formally solvable closed 
form expressions for R for a variety of relevant 
container section types, several of which have 
been verified experimentally: squares1,6, rhombi7, 
rectangles1, equilateral triangles1, irregular 
triangles2, and simple cylinders with regular 
vanes9. Although the hazards pointed out by Finn 
and Neel are real, one may presume on the basis 
of their success with the regular polygon that at 
least some of these special cases correctly 
represent reality. Beyond that, the close 
correlation we have found in the cases we 
consider, with numerical results from the Surface 
Evolver and comparison with experiment, speak 
strongly for the underlying correctness of the 
present application.  
 
In a general case and especially for asymmetric 
configurations, strong caution must be advised. 
In the present paper, symmetric interfaces in 
symmetric containers will be assumed in like 
manner as in de Lazzer et al, since such 
interfaces are frequently observed in practice. 



                                                                                                           

NASA/CR—2002-211974 4 

 As illustrated in Fig. 2, for a cylinder with 
rhombic section where the Concus-Finn 
condition is only satisfied in the corners with 
acute angles3, along the ith portion of the 
perimeter the contact angle for use in eq. (10) is 
θi. The area contained within the projected 
perimeter is Ω* and is identified by a heavier line 
weight in this and figures to follow. The sought 
mean radius of curvature of the interface is R. 
The dashed lines sketched in Fig. 2b will be 
discussed shortly. 
 

a. b.

A A

Σ1

Σ1Σ1 Σ1Σ1

Σ1Σ1

Σ2

R

Σ2

A-A

Ω*

θ

θ
 

Figure 2. Rhombic cylinder with wetting of acute 
edges only, after de Lazzer et al3. 
 

The left hand side of eq. (10) may be evaluated 
and represented as the summation of projected, 
interface perimeter lengths iΣ , weighted by 

iθcos , and enclosing area Ω*: 

Ri

n

i
i /cos *

1

Ω=Σ∑
=

θ .               (11) 

For the polygonal section depicted in Fig. 2, θ1 = 
θ, following de Lazzer et al θ2 = 0, and  eq. (11) 
becomes 

 R/cos *
21 Ω=Σ+Σ θ ,             (12) 

 
which when solved for R yields 





















 Σ
−−

Σ
=

2/1

22 cos

4
11

2

cos

θ
θ

P

AP
R ,     (13) 

where P and A are the total perimeter and area of 
the container cross-section, respectively, and 
  

∑
=

=Σ
n

j
An j

F
1

with FAnj given by eq. (6). For the rhombic 
section of Fig. 2 is Σ = 2FAn. FAnj is the 
dimensionless geometric constant of proportion-
ality for the cross-flow area Aj and mean radius 
of curvature squared; namely, 

jj AnjjAnj FhfFRA 222 == . 

 
Note that Σ of eq. (13) bears no relation to Σi of 
eq. (11).  
 

Modified Approach to Calculate R 
 
An alternative application of the technique of de 
Lazzer et al may be pursued by identifying and 
analyzing symmetric sub-sections of a given 
container cross-section. For example, the 
smallest symmetric subsection of the rhombic 
cylinder example of Fig. 2 is the quarter section 
identified by dashed lines in Fig. 2b. This 
symmetric subsection is redrawn in Fig. 3. An 
additional angle θ3 must be specified along the 
symmetry boundaries. Assuming the Concus-
Finn condition is satisfied only at the acute 
vertex, eq. (11) for the geometry of Fig. 3 
becomes 
 

R/coscoscos *
332211 Ω=Σ+Σ+Σ θθθ .  (14) 

 
Along the exposed (unwetted) faces of the 
rhombus Σ1, θ1 = θ, the contact angle of the 
liquid on the wall material. Along the fluid 
interface spanning the corner Σ2, θ2 = 0. 
Additionally, because the dashed lines identify 
planes of symmetry for the surface, along Σ3,  
θ3 = π/2. Substitution of these quantities into  
eq. (14) produces 

 

R/cos *
211 Ω=Σ+Σ θ ,              (15) 

 
which is identical to eq. (12) only Σ1 in this case 
does not include the symmetry plane  portions of 
the perimeter of the subsection.  Solving eq. (15) 
for R in this case yields 

 

















 Σ
−−

Σ
=

2/1

22 cos

4
11

2

cos

θ

θ

w

w

P

AP
R ,     (16) 

 
which produces the same value for R as 
computed by eq. (13) since for this symmetric 
subsection Σ = FAn/2, and Pw and A are 25% the 
values for the full domain solution, eq. (13). Pw is 
the perimeter of the section minus the symmetry 
boundaries. 
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Σ1Σ1
R

Σ2

Σ3

Σ3  
Fig. 3. Symmetric subsection for rhombus of Fig. 2. 
Symmetry planes identified by dashed lines.  
 
As will be demonstrated, this modified approach 
to compute R is useful in determining flows in 
more complex containers. But the technique is 
fundamentally limited by the assumption of 
symmetric interfaces in symmetric containers. 
Uniqueness and stability of particular presumed 
interfacial configurations based on intuition and 
experience may also be difficult to establish10 
and will depend on fluid fill level and history for 
real systems.  
 
 

Calculation of R in Complex Cylindrical 
Containers with Symmetry 

 
Cylindrical Tank with Central Radial Vanes 
 
By viewing more complex container cross-
sections as collections of symmetric subsections 
it is possible to compute R analytically for  
a variety of important container types  
with applications to low-g propellant/cryogen 
management. 
 
For example, a cross-section of a long, partially-
filled, right circular cylindrical propellant tank 
model with central radial vane structure is 
sketched in Fig. 4a. Again, due to the symmetry 
of the tank the equilibrium mean radius of 
curvature of the interface R may be determined 
by analyzing the smallest symmetrical element of 
the section as sketched in Fig. 4b. Assuming the 
Concus-Finn condition is satisfied between each 
of the vanes, eq. (16) for the geometry of Fig. 4b 
yields again 
 

















 Σ
−−

Σ
=

2/1

22 cos

4
11

2

cos

θ

θ

w

w

P

AP
R ,   (17) 

 
where Pw = 2V + 2αr, A = α r2, and Σ = FAn as 
given by eq. (6) for the wetted corner formed by 
the vane of vertex angle 2α. For θ = 0, defining 

nondimensional quantities rR /≡R  and 
rV /≡V , eq. (17) becomes 

 


















+

−−
+

=
2/1

2)(
11

)(

α

αα

V

V
R An

An

F

F
.   (18) 

 
Eq. (18) is constrained by at least the condition 

δα sin/sinVR ≤ ; the interface cannot pin on 

the vane edges. Other constraints are possible, 
such as the case of wetting between the vanes 
and the circular tank wall which is not considered 
here though increasingly likely as the vane length 
V approaches 1. 
 
The symmetrical tank sketched in Fig. 4 may be 
generalized to a tank possessing n-vanes. For 
such a tank, and for θ  = 0, eq. (18) is presented 
in Fig. 5 for a variety of dimensionless vane 
lengths V. The domain of each curve is limited 
by the constraint of no pinning on the vane 
edges. As is observed from the figure, the case of 
only 2 vanes with V = 0 recovers the correct 
solution of the right circular cylinder without 
vanes, R = 0.5. It is also observed from the figure 
how R  decreases with increasing number of 
vanes (decreasing α). 
 
 

a. b.V

r

Σ1

Σ3

Σ2

Ω*

R
Σ1

Σ3

Σ1

2α

 

Figure 4. Simplified cylindrical tank model with 
central radial vane PMD: a. cross-section identifying 
wetted vanes, b. symmetric element of shaded region 
in a. with Σ3 identifying symmetry planes. 
 

 
Despite the limitation of no pinning allowed on 
the vane edge, the dimensional mean radius of 
curvature of the interface R = rR may be 
computed from eq. (18) for a number of vane 
lengths V = rV of practical importance.  
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0.2

0.3
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0.5

0 0.2 0.4 0.6 0.8 1

V

R

2 vanes

3

4

24

12

8

6

48

 
Figure 5. R vs. V for n-vaned tank patterned after the 
tank of Fig. 4. 
 
Regular n-gon Tanks with Radial Wall Vanes 
 
Another benchmark tank model readily 
addressed by the analysis outlined herein is that 
of regular polygonal cylindrical tanks with radial 
vanes emanating from the corner vertices. 
Several such tanks are sketched in Fig. 6 for  
n = 3, 4, 6, and 12. As n increases this tank 
model approaches that of a right circular 
cylindrical tank with radial vanes emanating from 
the tank wall. The tank with n = 12 is presented 
in Fig. 7 in greater detail. 
 

 

r 

r 

r 

r 

 
Figure 6. Regular polygonal tanks with radial wall 
vanes: n = 3, 4, 6, and 12. 
 
Again, due to the symmetry of the tank the mean 
radius of curvature of the interface R may be 
determined by analyzing the smallest 
symmetrical element of the section as sketched in 
Fig. 7b for the case n = 12. This element is a 
right triangle with acute vertex angles π/n and 
π(1/2 – 1/n). Assuming θ = 0, the Concus-Finn 
condition is satisfied in each interior corner 
formed by the vanes, and eq. (17) for this 
problem may be solved for R and 
nondimensionalized by tank circumscribing 
radius r yielding  


















+

−−
+

=

2/1

2))sin((

)2sin(
11

2

))sin((

n

nF

F

n An

An π

ππ

V

V
R .

(19) 

a. b.

r

V Σ1

Σ3

Σ2

Ω*Σ3

Σ1

R

 
Figure 7. Regular polygonal tank with radial wall 
vanes, n = 12: a. cross-section identifying wetted 
vanes, b. symmetric element of shaded region in a. 
with Σ3 identifying symmetry planes. 
 

Eq. (19) is constrained by at least 2 conditions:  
 
1. δα sin/sinVR ≤ , interfaces can not pin on 

vane edges.  
2. δαπ sin/sin)/sin( n≤R , a single inter-

face can not span two corners.  
 
Again, other constraints are possible, such as the 
case of a single interface wetting two vanes near 
the tank axis for large V. This case is not 
considered here though increasingly likely as the 
vane length V approaches 1. 
 

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
V

R

48

24

8

6
4

n  = 3

12

VTRE

 
Figure 8. R vs. V from eq. (19) for tank of Figs. 6 and 
7 with n = 3, 4, 6, 8, 12, 24, and 48. Dashed line at 
curve terminus implies vane pinning constraint, dot-
dashed line implies single interface spans two corners. 
 
 
R is computed via eq. (19) as a function of V for 
a variety of n and presented in Fig. 8. The 
domain of the solutions is limited by at least the 
two constraints identified on the figure. For the 



                                                                                                           

NASA/CR—2002-211974 7 

case n = 12, the curve identifying the complete 
range of R(V) with noted constraints is presented 
for later discussion. 
 
Solution to Transient Flows using R  
 
Once R is known for the tank, Hj values for each 
corner flow are computed using eq. (9) and the 
design quantities provided in eqs. (4), (5), and 
(6) may be determined. In addition, the entire 
surface profile of the liquid throughout the 
container may be computed. The solution follows 
from a global similarity solution and is 
applicable at long times throughout the container, 
despite the fact that both the flow and interface 
shape are not known in the neighborhood of the 
bulk meniscus2. By approximating the global 
similarity solution for the meniscus centerline 
height in each corner by the polynomial 
 

)429.0571.01(
2++ −−≅ jjjj Hh ηη             (20) 

with 

2/1

2/1

2sin)(
587.0 −+











= tz

FH

f

jjij

j
j ασ

µ
η    (21) 

 
subject to the constraint  

1
sin2/1

≤≤ +
+

j

jij

jb

F

f
η

α
η  

 
the 3-D transient interface in each corner may be 
computed via eq. (2). 

 
Note that for the tanks of Figs. 4 and 7, the index 
j is somewhat superfluous since all interior 
corners of the tank are identical. 
 
Examples of Design Utility 
 
Cylindrical tanks may be designed with optimal 
characteristics using the analytical solution 
approach. A hypothetical example might be a 
PMD which would minimize tank rewetting time 
following resettling without an excessive mass 
penalty for unnecessary vanes. To address this 
optimization problem one might compute a ratio 
of total flow rate to total vane length. For the 
specific case of the central radial vane tank 
model sketched in Fig. 4 this ratio employs eq. 
(5) and is given by  
 

2/1
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25 sin
349.0 
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,     (22) 

where V is the vane length and FAn, R, α, and f 
are functions of the number of vanes n. 
Substituting R from eq. (18) into (22) and 
retaining only dimensionless geometrically-
dependent terms, one computes 
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(23) 
 where the prefactor of 100 serves to make Q an 
O(1) quantity for simplicity in presentation. For 
the tank with PMD sketched in Fig. 4, for θ = 0, 
Q from eq. (23) is presented for a variety of vane 
lengths V in Fig. 9. The vane edge pinning 
constraint restricts the range of each curve in a 
similar fashion as the curves computed and 
presented in Fig. 5. Q is maximized for n = 12, V 
= 0.68, which means that the highest rewetting 
flow rate per unit vane length is achieved for 
these conditions for this PMD-type. (It is 
interesting to note that Q is maximized for n = 12 
and thus α = 15º. This value also corresponds to 
the wedge half-angle yielding the maximum 
capillary flow rate for a fixed volume spreading 
drop11.) 
 
This example optimization is one of several that 
may be constructed for a variety of complex tank 
geometries. Such analytical schemes are quickly 
accomplished, accurate, and trivial in terms of 
commitment compared to numerically based 
techniques.  
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Figure 9. Dimensionless flow rate to vane length ratio 
Q for radial center vane PMD sketched in Fig. 3. 
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Limitations of the Theoretical Approach 
 
The preceding analysis to compute R assumes a 
priori knowledge of the interior corners of the 
container that satisfy the Concus-Finn condition. 
The analysis also assumes knowledge of a local 
and symmetric equilibrium surface (one of 
perhaps many10). For more complex symmetric 
containers such as those shown in Figs. 4 and 7 it 
is assumed that the interface is also symmetric.  
 
For the ensuing transient flow problem, the bulk 
interface is assumed to rapidly achieve a constant 
mean radius of curvature R. The interior corners 
must be sufficiently planar such that the flow 
may be approximated by the system defined by 
eq. (1), Fig. 1. The planar interior corners must 
also be of sufficient size such that the interface 
does not pin on wettability boundaries, i.e. the 
terminus of a vane (where the equilibrium 
contact angle is no longer unique). Such pinning 
flows are address analytically by Romero and 
Yost12 and experimentally by Mann et al.13 
Slightly non-planar interior ‘corners’ may be 
treated by a modified analytical approach14.  
 
For cylindrical containers of increasing 
complexity, a generally increasing number of 
constraints must be applied to the solution for R. 
These constraints limit the range of applicability 
of the present solution procedure. Modified or 
alternate techniques may be developed for 
constraint conditions such as edge pinning or 
single interfaces spanning more than one interior 
corner. The more general though complex 
approach of Finn and Neel9 may also be applied. 
Such techniques will be discussed in a 
subsequent publication as will be the significant 
impact of contact angle hysteresis for real 
systems where θ > 0, which has been ignored. 
 

Application to Tank PMD Rewetting 
 
The analysis outlined herein naturally applies to 
spontaneous capillary driven flow as occurs in 
liquid propellant tanks following termination of 
thruster firing for orbital maneuvering, docking, 
or tank resettling. Other examples include myriad 
low-g fluids management applications (i.e. on-
orbit container filling) and drop tower tests. 
Attention here is focused on the former where the 
results of the Vented Tank Resupply Experiment 
(VTRE) provide in-flight data of PMD rewetting 
following thrust resettling. 
  

VTRE PMD Rewetting after Thrust Resettling 
 
VTRE was conducted aboard the Space Shuttle 
in 199615. The experiment explored a variety of 
practical issues concerning propellant 
management in a space-based system. One of the 
tests performed involved thrust resettling of a 
20% filled spherical tank with PMD: 12 axial 
radial (center post) vanes and 12 axial radial wall 
vanes. The test was conducted by exploiting the 
Orbiter primary Reaction Control (RCS) jets to 
settle the liquid contents in a most unfavorable 
location within the tank to observe the 
spontaneous redistribution of the liquid upon 
termination of the thrust. A schematic of the r = 
0.178m tank is provided in Fig. 10a with a cross-
section in Fig. 10b. The test fluid was R-113 at 
20 °C with σ = 0.0167N/m, µ = 7.21·10-4 kg/m·s, 
ρ = 1570 kg/m3, and θ = 0. 
 

b.

r

A-Aa.

A A

 
Figure 10. Spherical VTRE tank with 12 inner and 
outer radial vane PMD: r = 0.1778 m. Tank vent at 
top, propellant outlet at bottom. 
 

L(t)

b.

L(t)L(t)

b.

c.
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Figure 11. Approximate VTRE interface 
configurations for �����������	�
������
�����������������
with g > 7(10)-4go (go = 9.8m/s2) acting positive-
upward, t = 0, b. L(t) during PMD rewetting  
with g ���O (10-6go), c. L(t) at data termination, g ���O 
(10-6go), t = tf, d. equilibrium, g ���O (10-6go). 
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The equilibrium interface for g �����������������
Fig. 11d—liquid centered over propellant outlet, 
vapor centered over tank vent. During 
unfavorable thruster firing the liquid contents 
reorients to the configuration sketched in Fig. 
11a. Following termination of the thruster firing 
the fluid spontaneously returns to the low-g 
equilibrium configuration of Fig. 11d by the 
combined influence of surface tension, surface 
wettability, and container/vane geometry. It is of 
critical design importance to understand 
quantitatively what minimal PMD will produce 
the desired performance.  
 
As a first application of the theoretical technique 
to model PMD rewetting following termination 
of thruster firing, the VTRE data was re-analyzed 
to determine the transient meniscus tip location 
Lj(t) in the interior corners of the tank formed by 
the vanes of the PMD. The fact that the tank was 
filled to approximately 20% led to the initial 
condition of a predominantly flat surface (Fig. 
11a) that did not contact the center radial vane 
structure. Thus, upon termination of the thrust, 
rewetting of the tank consisted first of 
spontaneous corner flows along the radial wall 
vanes to the base of the central radial vane 
structure at the propellant exit port, Figs. 11b and 
11c. The central radial vane structure was then 
wetted from below and the spontaneous flow 
along this path eventually returned the liquid to 
the equilibrium configuration shown in Fig. 11d. 
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Figure 12. Corner tip location L vs. t1/2 for VTRE 
during spontaneous rewetting of two outer wall vanes. 
Solid line is eq. (4) with R = RVTRE = 0.412. 
 
The flows of interest are identified schematically 
in Figs. 11b and 11c. VTRE data for the 
meniscus tip location L of two radial wall vanes 
is provided in Fig. 12. Significant optical 
distortions prevented accurate measurements for 
other vanes. These data are collected from the 

VTRE flight video tapes following termination of 
the Orbiter RCS firing. The Tracker Image 
Analysis System developed by NASA16 is used to 
digitize the video images. The meniscus location 
is computed by applying optical corrections for 
camera rotation, depth of field, and projection of 
the 3-D spherical flow onto the 2-D CCD array. 
Measurement accuracy is estimated to be better 
than ±5%, the largest uncertainty arising from a 
5% change in scale factor from the front to 
midplane of the spherical tank. A tank flange 
obscured data for time less than that shown on 
Fig. 12.  
 
For the two vanes analyzed, L(t) is presented 
against t1/2 in Fig. 12 as suggested by theory,  
eq. (4). The flows are nearly identical reflecting 
the degree of symmetry of the initial condition 
(thrust well-aligned with tank axis) and computed 
slopes for each vane agree to within 4%. Because 
the time for the initial wall rewetting was so short 
(<1.7s), L vs. t also appears linear for this test. 
Nonetheless, the precision of the linear fit for  
L vs. t1/2 argues favorably for application of  
the transient analysis outlined herein. Thus, 
applying the form suggested by eq. (4) to the data 
of Fig. 12 
 

2/1232.0 tLVTRE = ,                (24) 

 
where the experimentally determined coefficient 
0.232m/s1/2 is accurate to ±5%. Increased 
uncertainty is expected for t < 1s. It is insightful 
to mention that for this 0.356m diameter tank 
average corner flow velocities are as high as 
0.232m/s within 1s of thrust termination. Such 
velocities increase with container size to the  
½-power. Initial velocities in a similar 1m 
spherical tank and fluid are likely to be 0.39m/s.  
 
Substituting the thermophysical properties of  
R-113, eq. (4) is equated to eq. (24) and solved 
to determine RVTRE = 0.412. This is the 
experimentally determined value of R, which 
when used to predict meniscus tip location L(t)  
during rewetting provides the collapse of the 
experimental data illustrated in Fig. 12 and 
prediction by eq. (4) to within ±5%.  
 

Generalized VTRE Model Section 
 
Because flight data of PMD rewetting is 
extremely rare it is of value to apply the 
analytical approach of this paper to the VTRE 
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tank PMD rewetting test despite the fact that the 
spherical VTRE tank with PMD violates 
numerous assumptions:  
 
1. The tank is spherical, not cylindrical, and 3-D 

curvature affects might be expected to be 
significant. 

2. The widths of both central and wall radial 
vanes vary with axial location. 

3. The mean radius of curvature R for equilibrium 
interfaces is a significant function of fill level. 

4. The VTRE tank might be considered ‘large’ 
and the rapid formation of a bulk interface with 
constant R seems unlikely.  

5. VTRE experimental data show that the 
rewetting flows along the corners formed by 
the radial wall (outer) vanes eventually pin on 
the vane edges and that single interfaces are 
observed to span two interior corners formed 
by the outer wall vanes. It is noted that both 
occur near the end of the rewetting event. 

 

a. b.V1

r Σ1

Σ3

V2
Σ2

R

R
Ω*

Σ2

Σ3
Σ1

Σ1

 
Figure 13. VTRE cylindrical tank model: a. cross-
section identifying inner/outer wetted vanes, b. 
symmetric element of shaded region in a. with Σ3 
identifying symmetry planes. 
 
In the face of such seeming complications the 
analytical technique is applied to model the 
VTRE PMD rewetting event. A generic 
cylindrical model of VTRE is sketched in Fig. 
13a. The smallest symmetrical element is 
depicted in Fig. 13b. Due to the large number of 
vanes, the curved portion of the section is 
approximated as a straight section in Fig. 13b,  
in a fashion after the tank model of Fig. 7 with  
n = 12. However, unlike the example of Fig. 7, 
the curvature of the tank is modeled with 
improved precision by approximating the 
smallest symmetrical element as an isosceles 
triangle, rather than a right triangle. This decision 
is mute for large n, since the difference in models 
is measured by 1/n. Eq. (17) for the cross-section 
in Fig. 13b yields 


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,      (25) 

where 
  

θα cos))2(sin2( 211 VVF ++≡ , 

21 2 AnAnv FF +≡Σ , 

 
and subscripts 1 and 2 denote inner and outer 
vanes, respectively. (Note that α1 = π/12.) 
 
The presumed interfacial configuration of Fig. 13 
leads to eq. (25) for the prediction of R. 
However, other more preferred configurations 
may arise, several of which are anticipated as 
sketched in Fig. 14. One approach to determine 
the transient flow problem for each configuration 
is to first assume the configuration, compute R 
for that configuration using eq. (16), and apply 
the transient solutions of eqs. (4)-(6). The surface 
energy of a given interface configuration will 
help identify preferred states, but mathematical 
proof is required to establish if a given 
configuration is indeed unique9.  
 
Concerning the configurations of Fig. 14: Fig. 
14a is the case under consideration. Cases 14b 
and 14c are the limiting cases of interface 
pinning on V1 and V2, respectively. Case 14d is 
the limiting case of a single interface (I2) wetting 
two adjacent out vanes, V2. Case 14e is the 
limiting condition of V2 intersecting the interface 
(I1) in V1. The cases of 14f, 14g, and 14h are 
actually different configurations and not limiting 
cases of the sought configuration 14a. Case 14f is 
the condition where I1 wets both V1 and V2 and 
cases 14g and 14h arise when a third interface I3 
is present: 14g when I1 only wets V1 and 14h 
when I1 wets both V1 and V2. Other 
configurations might be considered. For brevity 
in the following discussion, the cases of 14f, 14g, 
and 14h will not be consider despite being 
increasingly probable as V1 and V2 approach 1. 
The notation I1, I2, and I3 is used to identify 
interfaces in the inner and outer vanes and 
between V1 and the outer wall, respectively, as 
indicated in Fig. 14. 
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h.g.

a.

f.e.

d.c.b.

I1

I2

I3

 
Fig. 14. Some possible interface configurations for the 
symmetric subsection of the VTRE model of Fig. 13. 
 

 
The dimensionless mean radius of curvature 
R(V1; V2) from eq. (25) with θ = 0 is presented in 
Fig. 15 for the range of possible V2 values 
identified on the figure. For the interface 
configuration depicted in Fig. 13, the possible 
values for R are at least constrained by: 
 
1. V1 < 1, V1 may not contact tank wall. 
2. V2 < 1, V2 may not contact center post. 
3. 

111 cossin ααVR ≤ , I1 does not pin on V1. 

4. )44tan( 11 απ −≤ VR , I2 does not pin on V2. 

5. )1( 21 VR −≤ f , V2 does not touch I1. 

6. )44tan()2sin(2 11 απα −≤R , I2 does not 

span 2 outer vane corners. 
7. 

vΣ≤ 2FR , R cannot exceed tank maximum. 

 
It is important to repeat that the above list is not 
exhaustive. 
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Figure 15. R(V1;V2) for tank sketched in Fig. 13. 
Upper horizontal dashed lines imply V2 pinning, 
diagonal dot-dashed line implies V1 pinning, lower 
horizontal dashed lines imply V2 intersects I1. 
 
VTRE Model Section: Special Case 
 
For the special case of V2 = 0.35, θ = 0, eq. (25) 
is solved and presented in Fig. 15 along with 
constraints #3 through #7 identified for this 
VTRE-like cylindrical model. It is observed that 
the limiting constraint is interface pinning on the 
inner vanes (I1 pins on V1, #3) and the curve for 
larger values of R  (smaller V1) is approximate at 
best. Constraints #5 and #6 are coincidentally 
nearly identical for this special case of V2 and the 
curve for lower values of V1 is irrelevant since 
the fluid configuration is no longer even closely 
modeled by the schematic in Fig. 13. 
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Figure 16. R for model VTRE tank (Fig. 12) with  
V2 = 0.35: Constraints are identified by list number for 
this geometry. 
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For the further restricted case of V1 = 0.6 and  
V2 = 0.35, the Surface Evolver4 algorithm is used 
to compute the full 3-D surface for a cylindrical 
tank of radius r, diameter D, and cylindrical 
section length L. The cylindrical tank has circular 
disc end caps (lids). The aspect ratio m of the 
cylindrical portion of the tank is defined by L/D. 
The computed equilibrium surface is shown in 
Fig. 17 for θ = 8.11º for a tank with aspect ratio 
m = 3, and 52% liquid fill volume. A computed 
cross-section of the smallest symmetrical element 
at the mid-plane of the tank is shown in Fig. 18. 
 

 
Figure 17. Surface Evolver solution of VTRE-like 
cylindrical model with V1 = 0.6, V2 = 0.35, θ = 8.11º. 
Oval voids on the perimeter are dry region of the tank 
wall. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Smallest symmetrical element cross-section 
of cylindrical VTRE model shown in Fig. 17: a. 
Surface Evolver solution, b. schematic identifying 
parameters. Compare with Fig. 13b. 

 
Several Surface Evolver-computed values (SE) 
for the container mean radius of curvature R, are 
listed in Tables 1 through 4 for comparison with 
values computed using eq. (25). Holding all other 
parameters fixed, Tables 1-4 list values for R 
dependent on contact angle θ, vane lengths V1 
and V2, aspect ratio m, and liquid fill level. 
Nominal uncertainties for the SE results are 
provided. The two techniques to determine R  are 
in excellent agreement. 
 
Local SE-computed values for R1 and R2 for the 
respective surfaces adjacent to V1 and V2 are 
also listed in the tables for each case. These radii 
are computed in the plane bisecting the container 
normal to the cylinder axis (Fig. 18). The 
differences between R for the tank computed by 
eq. (25) and R1, and R2 computed by SE provide 
a measure of error for the use of eq. (25) arising 
from the infinite container assumption. This error 
might be considered small in light of such low 
aspect ratio m containers. It is clear from Table 2 
that all SE values for R1 and R2 approach eq. (25) 
values for R  as m increases.  
 
 
Table 1. Comparison of present theory eq. (25) and 
Surface Evolver (SE) computations: Effect of contact 
angle θ; V1 = 0.6, V2 = 0.35, m = 1, Qliq = 55%.  
θ         Rtheo          R            R1         err.      R2          err. 
(º)        eq.(25)     SE          SE         (%)     SE         (%) 
0          0.1268     0.1273    0.138    7.2      0.122    1.6 
5          0.1271     0.1276    0.134    0.4      0.122    1.6 
10        0.1279     0.1285    0.135    1.5      0.128    1.6 
20        0.1319     0.1325    0.140    4.3      0.132    1.5 
30        0.1399     0.1406    0.154    0.6      0.141    1.4 
40        0.1540     0.1550    0.176    0.5      0.161    1.2 
44.7     0.1639     0.1653    0.189    3.7      ������������- 
 
 
 
Table 2. Results of Surface Evolver: Effect of aspect 
ratio m; volume of liquid fixed, θ = 0, Rtheo = 0.1268, 
V1 = 0.6, V1 = 0.35. Case m = 2 almost uncovers lid, 
case m = 4 uncovers lid. 
m         R                 R1         err.       R2         err.      Q 
(L/D)    SE              SE         (%)      SE        (%)    (%) 
0.75      0.1260        0.158    3.3      0.144    6.9      73 
1           0.1273        0.138    7.2      0.122    1.6      55 
2           0.1269        0.128    0.0      0.122    8.2      28 
4           0.1059        0.107    0.4      0.103    9.7      14 
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Table 3. Results of Surface Evolver: Effect of liq. fill 
Qliq; θ = 0, Rtheo = 0.1268, V1 = 0.6, V2 = 0.35, m = 1. 
Qliq       R                 R1         err.       R2         err. 
(%)       SE              SE         (%)      SE        (%) 
30         0.1273       0.130    2.3       0.122   8.2 
55         0.1273       0.138    7.2       0.122   1.6 
70         0.1271       0.144    2.1       0.136   7.3 
80         0.1260       0.160    1.2       0.153   6.5 
 
 
 
Table 4. Results of Surface Evolver: Effect of vane 
size/ratio V1, V2: θ = 20º, m = 1, Qliq = 55%, SE errors 
< 2%. 
V1        V2       Rtheo          R              R1               R2 
                        eq. (25)    SE            SE              SE 
0.60     0.35     0.1268      0.1325     0.140     0.132 
0.60     0.45     0.1134      0.1193     0.131     0.125 
0.90     0.35     0.1031      0.1001     0.103     0.100 
 
 
 
Comparison of Theory and Experiment: VTRE 
 
As previously mentioned, the VTRE rewetting 
event only involved the outer radial wall vanes 
due to a low fill level in the spherical tank as 
depicted in Fig. 11. Thus the cylindrical tank 
geometry discussed in this paper that models the 
spherical VTRE tank rewetting event following 
thrust resettling is that of Fig. 7. R for this 
cylindrical model was solved as a function of V 
and presented in Fig. 8.  
 
By equating radii of the spherical VTRE tank 
and cylindrical VTRE model, and by evaluating 
V based on initial interface location (refer Fig. 
11a) and detailed VTRE design drawings17 
represented only schematically in Fig. 10, a value 
of V = 0.21 may be determined for the rewetting 
event. As demonstrated in Fig. 8, with n = 12, 
this low value for V shows that, at equilibrium, 
the interface pins on the vane edges and single 
interfaces cover two interior corners formed by 
adjacent vanes. Thus, both constraints #1 and #2 
are violated. Nonetheless, observations of the 
flight video show that such constraints are not 
exceeded during the larger portion of the 
transient event. If these constraints were ignored 
for the transient rewetting one might simply use 
the value of R computed from eq. (19) with n = 
12 and V = 0.21. As shown using dashed lines in 
Fig. 8, R = 0.396 computed in this manner, which 
is in surprisingly favorable agreement (< 4%) 

with RVTRE = 0.412 determined experimentally. 
An even better prediction is possible using eq. 
(25) setting V1 = 0, FAn1 = 0, with V2  = 0.21. For 
this case R = 0.419. This value is within < 2% of 
RVTRE, the improvement arising from the 
approximation of the symmetric subsection as an 
isosceles triangle as opposed to a right triangle. 
Both predictions, using eqs. (19) or (25), are 
correct to within the experimental uncertainty of 
5% for V2 = 0.21. 
 

 
Table 5. Predicted and measured R for VTRE. 
Technique         R 
Predicted, eq. (19)   0.396 
Predicted, eq. (25)   0.419 
Measured eq. (24), Fig. 12  0.412 
 

 
Further Considerations 
 
Following an acceptable agreement for R 
between theoretical predictions and VTRE flight 
results compared in Table 5, the theoretical 
approach, which allows the closed form 
calculation of the most important flow 
characteristics such as rise height and flow rate, 
can be used to compute transient interface shapes 
throughout the container. For example, the 
surface within the smallest symmetric sub-section 
of the cylindrical 24 vane VTRE model (Fig. 13) 
is computed in Fig. 19 at various times. The tip 
rise height and receding bulk meniscus location 
may be determined explicitly by eqs. (4) and (6), 
respectively. The latter is exaggerated by a factor 
of 2 in Fig. 19 to clearly illustrate the ‘draining’ 
of the container by the corner flows.  
 
The full VTRE model is computed and shown in 
Fig. 20 at time t = 2.5s—the approximate 
duration of the initial VTRE PMD rewetting 
event had all the vanes been wetted. The VTRE 
model with only exterior vanes wetted is also 
computed and shown in Fig. 21 at time t = 2.5s—
the model of the PMD rewetting process actually 
achieved on-orbit. (Note that R in Fig 21 without 
the central vanes is significantly larger than R in 
Fig. 20 with the central vanes.) Computations of 
such surfaces serve well to illustrate the wealth of 
information contained within the closed form 
analytic solutions reported herein.  
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Fig. 19 Transient corner flows in smallest symmetrical 
sub-section of 24-vane VTRE model (times t = 0, 0.5, 
1.0, 1.5, 2.5). 
 

 
Fig. 20. Full VTRE model surface at t =0, 0.5, 2.5s. 12 
Inner and 12 outer vanes not shown. 
 

 
Fig. 21. VTRE model surface without central vanes at 
t = 0, 0.5, 2.5s. Model approximates flight condition 
of PMD rewetting after thrust resettling. 12 outer 
vanes not shown. 
 
 

 

Concluding Remarks 
 
The literature reports an accurate analytical 
solution approach to predict spontaneous 
capillary flows in containers with interior 
corners. Such flows are important to a variety of 
low-g fluids handling operations including 
propellant management. In this paper a procedure 
is outlined and demonstrated that culminates in 
the prediction of transient flows in complex 
cylindrical containers that are symmetric, or 
where the contact angles θi around the projected 
cross-section may be specified. The general steps 
are: 
 

1. Identify the interior corners of the tank 
satisfying the Concus-Finn wetting 
condition. 

2. Derive the mean radius of interfacial 
curvature R  for the tank. 

3. Identify and derive the constraints on R. 
 
 

4. Compute Hj from R for each wetting corner 
of the tank and compute important transient 
quantities such as flow distance, flow rate, 
receding meniscus location and entire 
surface shape. 

 
In this paper the important unknown quantity is 
R, the dimensionless mean radius of curvature of 
the interface at equilibrium, knowledge of which 
enables the determination of the correct initial 
condition for the sought transient solutions. The 
theory of de Lazzer et al3 to compute R, is 
modified to account for symmetry planes within 
complex cylindrical tanks. Three cylindrical 
vaned tank-types of increasing complexity are 
modeled to demonstrate the approach to compute 
R: a circular tank with central radial vanes  
(Fig. 4), a tank with wall mounted radial vanes 
(Fig. 7), and a combination tank which serves as 
a model for the Vented Tank Resupply 
Experiment (VTRE) Shuttle flight tests (Fig. 13). 
It is shown that even for the most complex tank, 
agreement in R for the present theory with 3-D 
numerical predictions is typically better than 5% 
for aspect ratio containers of about 1 or greater. 
The results apply in general to symmetrical 
polygonal tanks and certain tanks with curved 
walls as demonstrated. Some of the limitations of 
the theory are noted. 
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The results of the analysis greatly speed and 
simplify calculations of capillary driven flows in 
complex containers which model important 
problems such as PMD rewetting following 
thrust resettling. Experiments concerning PMD 
rewetting were conducted during VTRE testing 
and these data are digitized and presented in Fig. 
12. R computed from the VTRE experimental 
data agrees to ±4% with R computed using the 
theoretical approach as shown in Table 5, despite 
the apparent violation of a significant number of 
assumptions. 
 
The all-analytical approach espoused herein may 
be used to quickly and accurately determine 
solutions to problems commonly thought to 
require extensive 3-D transient CFD. The 
approach is ideal for design optimization and an 
example problem is solved. The technique may 
be applied as a guide to CFD modeling, or serve 
as a ‘benchmark’ to numerical techniques in 
certain limiting cases. The analytic approach may 
also be exploited to design test tanks mimicking 
the smallest symmetrical sub-section of larger 
tanks for ground tests (i.e. low-g aircraft). The 
tanks may be significantly smaller than the full-
scale tanks, or even scale models, making data 
taken from brief periods of low-g more 
representative of on-orbit performance.  
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Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in
idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex
containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem
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the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a
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