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RECENT DEVELOPMENTS IN THE ENVIRONMENTAL DURABILITY OF SIC/SIC 
COMPOSITES 

 
Linus U.J.T. Ogbuji 

QSS Group, Inc. 
Cleveland Ohio 44135 

 
Abstract 
Two types of pest behavior in SiC/BN/SiC composites are distinguished and illustrated: 
one intrinsic and progressive, the other extrinsic and catastrophic. Their similarities and 
differences are presented. Some recent remedies for SiC/BN/SiC pest are discussed. 
   
Introduction: Types of Pest in SiC/SiC Composites 
The oxidative degradation of ceramic-matrix composites (CMCs) in service environment 
at intermediate temperatures, known as pest or pesting, is a major limiter of performance 
and service lifetimes in SiC/SiC composites. It is caused by selective attack of the fiber 
coatings/“interphase” by ambient oxidants,1,2 manifested in loss of composite behavior. It 
is an intermediate-temperature problem in SiC/SiC composites. At lower temperatures 
oxidation is too slow to be a problem; at higher temperatures fast oxidation of the matrix 
protects the composite with a cover of silica. Elimination or suppression of pest is an 
important goal in the development of CMCs for turbine engine and other applications. An 
effective screening test and a few remedies for SiC/SiC pest are discussed in this paper. 
 
In order to control SiC/SiC pest, we must first understand the nature of it. It has become 
necessary to distinguish between two types of CMC pest, because each type calls for a 
different remedy. So far, CMC pest has been portrayed as a progressive phenomenon, 
with material degradation starting at the surface and advancing inward.3 Recent work 
has revealed a more serious kind of pest, which is specific to SiC/SiC composites. This 
pest mode is peculiar to SiC/BN/SiC composites in which a carbon film underlies the BN 
interphase; and it has been demonstrated in the burner riga proxy ambient for the 
turbine engine combustor, with its moisture-laden, high-velocity hydrocarbon flame.1,4 In 
this type of pest, damage is not progressive but rather catastrophic, causing rapid and 
pervasive damage. Progressive and catastrophic pest may be designated Types I and II, 
respectively, to distinguish them. 
 
Both types of pest proceed by destroying the interphase, which plays two crucial roles in 
the mechanical response of a CMC. One role of the interphase is to deflect matrix cracks 
along the fiber sides, thus preventing catastrophic crack propagation across fibers; the 
other is to effect, by its compliance, transfer of load from matrix to fiber and the sharing 
of load between fibers. These two roles add up to what is called “composite behavior,” 
which culminates in “graceful failure” of the composite: i.e., fracture that is characterized 
by copious pull-out of fibers. Pest (of both types) degrades composite behavior in two 
ways: (1) It replaces the compliant BN interphase with non-compliant borosilicate/silica 
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which prevents the deflection of matrix cracks; (2) it bonds the fibers together or to the 
matrix, preventing broken fibers from sliding and pulling out 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.Schematic illustration of the origin and fracture features in Type I pest. 
 
 
Figure 1 illustrates Type I pest. Surface-intersecting cracks facilitate ingress of oxidants 
to the sample interior and thus promote pest. In SiC/BN/SiC the interphase BN coating 
on the fibers can itself constitute a pathway for oxidant ingress when fiber ends become 
exposed. Type I pest in SiC/BN/SiC is caused by permeation of oxidation along those 
routes. The fracture surface has a “picture frame” appearance,5 which is illustrated in 
Fig. 1(b). The “picture” is a core of undamaged material characterized by pull-out of 
fibers , and the surrounding  “frame” is a brittle-fracture zone of damaged material. In 
SiC/BN/SiC, advance of the damage front correlates with recession of the interphase as 
it is attacked by ambient oxidants.6 Hence, Type I pest degradation is time-dependent, 
like fatigue or creep, and should be amenable to modeling for lifetime prediction. The 
residual strength of a SiC/SiC tensile bar undergoing a Type I pest is proportional to the 
cross-sectional area of undamaged material at the core.3,5 Type I pest is relatively slow, 
being controlled by the consumption of BN interphase. A primary cause of Type I pest is 
the intrinsically inadequate oxidation resistance of the BN interphase. 
 
Type II pest occurs when the BN interphase is effectively undermined by a continuous or 
skeletal film of carbon that is sometimes found on the fibers, and which constitutes an 
even more effective conduit for oxidant ingress. The mechanistic difference between 

(a)

(b)

(a)

(b)
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Types I and II pest is best understood with reference to Fig. 2(a). A fiber (omitted for 
clarity) is separated from its BN interphase coating by a film of carbon. Upon exposure to 
the ambient, the BN presents a cross-sectional area πr2tB to the flame (where r is radius 
of the coated fiber and t thickness of the BN layer). Oxidation causes the BN to recede 
to a depth hB; in the absence of the carbon layer this amounts to Type I pest. When the 
carbon film is present it recedes to a greater depth, hC, thus exposing the BN to 
additional oxidation on its inner wall facing the fiber. This additional attack on the BN 
wall, area 2πr(hC- hB), is the hallmark of Type II pest: it does not occur in Type I pest.  
 
Since r and t are measured in micrometers while hC is measured in centimeters (being 
typically the sample width1,7), the area of BN attack in Type II pest is vastly larger than in 
Type I. Consequently, degradation of Type II pest reaches deep into the material interior 
very quickly. A big difference between the two types, then, is the speed of attack: Type I 
correlates with the linear recession of the BN interphase (which is slowed down by the 
borosilicate from BN oxidation5), while Type II follows a short-circuit path of adventitious 
carbon and destroys the material very quickly.1 Also, a tensile specimen under Type II 
pest fails like a monolithic ceramic, with fracture occurring all in one crack plane, as 
illustrated in Fig. 2(b).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.Schematics of Type II pest in SiC/BN/SiC: (a) its origin in an interphase sub-
layer of carbon; (b) its manifestation in flat and brittle tensile fracture across the sample. 
 
 
There are other differences between the types of pest. Type I pest occurs in all oxidizing 
media, but Type II has only been observed in the high-velocity flame of a burner rig.1,2,6,8  
A likely reason for this is that diffusion of CO/CO2 from the oxidation of carbon, through 
the resulting boundary layer, is enhanced by increasing ambient velocity (an effect that 

(a) (b)(a) (b)
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has been observed in the hydrolytic recession in H2O of SiC9 and Si3N410 substrates). 
Also, Type I pest is intrinsic to the system, being tied to the BN oxidation resistance; in 
contrast, Type II is driven by adventitious carbon, an extrinsic factor. The last distinction 
is important to the respective remedies for pest. 
 
A high fiber volume fraction is desirable for load carrying strength in SiC/SiC composites; 
but it also hinders matrix processing, leaving little gap between fibers for infiltration of 
the SiC matrix. Hence, there is extensive contact between the coatings on adjacent and 
crossing fibers, and consumption of the coatings can spread rapidly from fiber to fiber. 
This is especially so when the coating includes a carbon film beneath the BN. All these 
factors make Type II degradation orders of magnitude faster than Type I. Free carbon, 
which is responsible for Type II pest, is often present in SiC/BN/SiC composites because 
their various constituents rely heavily on organo-metallic ingredients. 
 
Experimental: Screening Test For SiC/SiC Pesting 
Our test for SiC/SiC pest susceptibility is to expose a sample in an atmospheric-pressure 
burner rig (APBR) flame, and then measure its residual tensile response. The material is 
a tensile bar, with fiber ends and their associated coatings exposed along the machined 
edge. The picture shows a sample in the APBR flame, while the schematics illustrate 
relevant details of its architecture. The fibers on whose ends the flame impinges are 
designated [0°] fibers, for distinction from the [90°] fibers, which lie in the longitudinal 
direction of the sample. In the absence of open matrix cracks, flame gases have no 
direct access to the [90°] fibers and the interphase coatings around them. Since only the 
[90°] fiber tows bear load in the subsequent tensile test, a severe reduction in fracture 
strength or strain implies that interphase degradation has spread quickly from the [0°] to 
the [90°] fiber tows; this is a good indicator of Type II pest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.Testing for Pest in SiC/SiC: Left, a sample in the APBR flame; Right, the 
Schematic details of sample architecture. 
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Following exposure and tensile test the sample is examined by imaging and analytical 
techniques to determine: (a) appearance of the fracture surface (fibrous or flat/brittle); (b) 
evidence of glass formation and other interphase degradation products around fibers in 
the fracture plane; (c) interphase integrity in the flame zone of the sample; (d) presence 
of a carbon layer between BN interphase and SiC fiber in a pristine area of the sample 
(such as under the tensile-test grips); etc. 
 
Results and Discussion 
Figure 4 illustrates the dramatic effect of Type II pest on the mechanical properties of Hi-
NicalonTM/BN/SiC materials, in which excess carbon in the fiber “sweats” out during melt-
infiltration of the matrix to form a compact layer of carbon beneath the BN interphase. 
The residual strength and fracture strain of the three samples exposed in the burner rig 
are drastically diminished from those of the as-received (AR) sample. In effect, pested 
material fails at or just above the elastic regime, indicating that the material is behaving 
as a monolith rather than a composite.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.The stress-strain behavior of as-received Hi-Nicalon/BN/SiC (#0), and three 
samples (1–3) of the same material that underwent Type II pest in the burner rig (BR). 
 
 
Figure 5 shows features of Type I pest: brittle fracture along the edge and fibrous 
fracture in the interior. When Hi-NicalonTM/BN/SiC bars were exposed to quasi-static 
room air in a box furnace (containing ~2.5% H2O), pest started at the cut edges and 
stepped inward, tow by tow: after 500 hours at 800 °C damage had reached the 3rd 
tows from each end (consuming ~15% of the cross-section).  In contrast, Fig. 6 shows 
the more pervasive degradation that result from Type II pest. The characteristic features 
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Fig. 5.“Picture Frame” fracture surface in Hi-NicalonTM/BN/SiC exposed for 200 hours 
in a box furnace (room air); Type I pest is evident in brittle fracture of fibers at the edges, 
while the center exhibits millimeters-long fiber pull-out like the as-received material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.SEM micrographs of fracture surface from Hi-NicalonTM/BN/SiC exposed 150 
hours in a burner rig, showing Type II pest features: (a) flat/brittle fracture throughout the 
sample; (b) fibers bonded together by glass, with holes between them for venting 
gaseous products, and fiber fracture that was typically initiated at bonding spots. 
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include flat fracture from edge to edge. At higher magnification, Fig. 6(b), it is evident 
that the fibers have become bonded together or to the matrix by silica, with prominent 
holes from venting the B(OH)x volatiles from hydrolysis of borosilicates. In Hi-NicalonTM/ 
BN/SiC, the offending free carbon came from stoichiometric excess in the fiber. 
 
Figure 7 shows a variety of SylramicTM/BN/SiC that exhibited Type II pest, and flat 
fracture very similar to that in Fig. 6. The difference is that in this material 
(SylramicTM/BN/SiC) the offending carbon film came from substantial char residue left by 
the removal of fiber sizing, rather than from the fiber itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.SEM micrograph of the fracture surface from as-received SylramicTM/BN/SiC 
showing a compact “coating” layer on the fibers; the EDS spectrum on the right  
identifies this layer as almost entirely carbon (from incomplete removal of sizing). 
 
 
Figure 8 shows the results of studies aimed at reducing or counteracting the presence of 
graphitic carbon in SiC/BN/SiC composites. Each histogram pair shows the strength of a 
specific SiC/BN/SiC vintage before and after exposure in our burner rig. Hi-
NicalonTMfiber (pair #6) contains ~40% excess carbon, which causes Type II pest. Its 
successor, Hi-Nicalon-S (#1), has <5% excess carbon, but our burner rig tests showed 
that this level of carbon was still high enough to cause Type II pest. Histogram pairs #2 
and #3 illustrate the effects of further reductions in free carbon, made by the 
manufacturer in the case of Hi-Nicalon-S (II), or through special heat treatment in our 
labs (III).11 Histogram #4 shows the high resistance to pest achieved in 
SylramicTM/BN/SiC composites by inducing in-situ growth of an additional BN layer 
through special heat treatment,12 while #5 shows that such resistance is again lost when 
a carbon layer exists beside the in-situ BN.   

 



NASA/CR2002-211687 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.Tensile strength of various SiC/BN/SiC materials with different carbon contents, 
before and after exposure in the burner rig, illustrating some remedies for Type II pest 
(“APBR” and “LPBR” in this paper refer to the same rig: Our atmospheric-pressure 
burner rig is sometimes referred to as a “low-pressure burner rig”, or “LPBR.”). 
 
 
It is clear from Fig. 8 that the most effective remedy for Type II pest is to exclude free 
carbon that may arise from handling or treating the constituents. In contrast, Type I pest 
is intrinsic, and its suppression/reduction calls for remedies that increase oxidation 
resistance of the interphase. These include the use of high-purity and high-temperature 
BN for improved crystallinity,11 doping the BN with Si,6 and inducing an auxiliary BN layer 
through in-situ treatment of the composite.13  
 
Summary and Conclusion 
Two types of pest occur in SiC/BN/SiC composites. Type I corresponds to the linear 
recession of BN under oxidative attack by the ambient; Type II (the more severe type) 
arises when the BN layer is undermined by a film of adventitious carbon. Remedies for 
Type I involve improvements in the intrinsic oxidation resistance of the BN, while Type II 
may be prevented by the strict exclusion of free carbon from the system.  
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