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SUMMARY

The research described in this report has been funded by NASA Lewis Research Center
as part of the Advanced Subsonic Technologies (AST) initiative. The program operates
under the Large Engine Technologies (LET) as Task Order #31. Task Order 31 is a three
year research program divided into three subtasks. Subtask A develops the experimental
acoustic and aerodynamic subsonic mixed flow exhaust system data bases. Subtask B
seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow
exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and
calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both
the aero-acoustic data bases developed in Subtask A and the analytical methods
developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The
mixed flow systems defined in Subtask C will be experimentally demonstrated for
improved noise reduction in a scale model aero-acoustic test conducted similarly to the
test performed in Subtask A. The overall object of this Task Order is to develop and
demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust
system technology.

Specific functions to be performed in conjunction with the contractual execution of
Subtask A include:

e Identify E3 mixer hardware for test in GE Cell 41 anechoic test facility

e Procure the design, refurbishment, and fabrication of E3 scale model test
hardware

e Develop a detailed test plan for acoustic and LV data measurement

e Perform acoustic and aero-flowfield measurements per the Test Plan

e Process all acoustic data for scaling, flight transformation and extrapolation to
FAR 36 Stage 3

e Process the aero-flowfield data

e Analyze the data to establish aero and acoustic databases, and

e Perform pre-test aero CFD predictions for test planning and data comparison.

The activities to be performed in conjunction with Subtask B include:

e Performing CFD aero analyses on the E3 configurations to assess CFD code
enhancements

e Modify the MGB jet noise predictions to assess internal as well as external jet
noise

e Perform acoustic predictions with CFD/MGB unified analysis on the E3
configurations, and compare to data

e Document assessment of the CFD/MGB unified analysis.

The Subtask C specific functions include:

e Design aero-flowpaths for LDMF configurations

e Assess technical and viability of a separate flow nozzle with a core nozzle
suppressor

NASA/CR—2002-211597 iii



e Seek NASA test configuration approval
e Develop detailed drawings for instrumentation and model design
e Procure model design and fabrication
e Develop a detailed test plan for acoustic and aero-flowfield testing
e Perform acoustic and aero-flowfield measurements per the test plan
e Process all acoustic data for scaling, flight transformation and extrapolation to
FAR 36 Stage 3
e Process the aero-flowfield data
e Perform detailed test analysis to
a) Enhance the understanding of subsonic mixed-flow exhaust system jet
noise characteristics
b) Improve the existing aero and acoustic design databases
¢) Develop design approaches to meet the jet noise reduction goal (-3
EPNdB), and
e Perform pre-test aero and acoustic predictions and compare to data.

The information reported on in this document pertains to the activities associated with
Subtask A of Task Order 31. The details associated with the E’ test configurations, the
scale model test program, the data analysis, and discussion of the data results are all
detailed in this report.
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1.0 INTRODUCTION

Jet mixing noise limits the amount of engine noise reduction that can be achieved at high
power settings for current high bypass engines, and for advanced engines with bypass
ratios less than 10. Methods for reducing jet mixing noise are therefore needed for
engines with bypass ratios less than 10 that do not introduce significant performance and
weight penalties.

Current production engines have bypass ratios in the range of 4 to 8. One certainty is that
future noise certification rules will become more stringent. The question is by how
much, from Stage 3 to Stage 3 - 3dB?, or - 4dB? The development of jet noise reduction
concepts that are applicable to, and practical for, the current class of engines, therefore,
becomes ever more significant. Because of the long lead time required to introduce new
engines into the marketplace with sufficient fleet penetration to have a significant impact
on community noise exposure, only by reducing the noise of current production engine
models can it be hoped to reduce community noise impact in the next 15 to 20 years.

As part of the NASA Advanced Subsonic Technology (AST) program Noise Reduction
charter, GE Aircraft Engines is involved in a three year research program sponsored
under the NASA Large Engine Technology (LET) Contract NAS3-26617. The objective
of the NASA/GEAE LET Task Order 31, Subsonic Jet Noise Reduction, is to develop
high bypass exhaust system technology to reduce jet noise by 3 EPNdB relative to 1992
technology.

Subtask A under Task Order 31 calls for exhaust system acoustic testing in the GE
Aircraft Engines Cell 41 anechoic free jet test facility. The scale models tested in Cell 41
were selected Energy Efficient Engine, E’ Long Duct Mixed Flow (LDMF) exhaust
system configurations with multi-lobed mixers. Subtask A establishes an aero and
acoustic diagnostic database from which to calibrate and refine current aero and acoustic
prediction tools.

Subtask A aero-acoustic testing utilizes select exhaust mixer systems from the Energy
Efficient Engine, E°, engine development program. The E* engine (Figures 1.1 and 1.2),
was developed under NASA contract in the 1970°s and early 1980’s as a demonstrator of
advanced engine technologies [Ref. 1]. Part of the E’ engine development was the design
of the E* LDMF exhaust system. The E’ exhaust system was developed in three phases of
design/analyses, scale model development, and scale model test. Figures 1.3 through 1.5
show cross-sections from the three phases of E* scale models [Ref. 2].

Subtask A uses four 12-lobed mixers and one free/confluent mixer from the E’ data base
of LDMF configurations. Some refurbishment of the existing hardware was required.
New hardware was also fabricated. New scale model hardware included, Cell 41 model
adapters, upstream flow path hardware, including the E’ fan and core ducts, two new
nozzles, and laser velocimeter glass windows for viewing the mixing process for one of
the nozzles.

NASA/CR—2002-211597 1
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Specific program objectives of the Subtask A aero-acoustic testing were to:

e Obtain acoustic data on various mixed flow exhaust systems that exhibit
variations in mixer geometric characteristics and mixing performance.

¢ Quantify internal mixing noise relative to uniform mixed-flow conditions with
a reference conic nozzle.

e Perform Laser Velocimeter measurements both of the external jet plume and
internal mixing process to measure the jet flow velocities and turbulence intensity.

e Measure nozzle exit total pressure and temperature profiles.

e Measure surface pressure distributions on the fan duct, core duct and internal
nozzle contours along with the fan and core side pressures on one of the lobed mixers.

o Establish the 1992 jet noise bench-mark based on a free (confluent) mixer
configuration. The confluent mixers will be the basis from which the goal of reducing jet
noise by 3 EPNdB will be measured.

CFD based aero flowfield pretest predictions were performed on several of the Subtask A
test configurations. These predictions have been compared with the measured pressure,
temperature, velocity, and turbulence intensity data for evaluating the quality of the CFD
prediction.

NASA/CR—2002-211597 7






2.0 MODEL DESCRIPTION
2.1 Selection of E* Mixer Configurations:

The cross section of the GE E’ engine-nacelle design in Figure 2.1 shows the
relationship of the mixer to the overall engine flowpath. The engine has a fan-to-core
exhaust system bypass ratio of 7.3 at take-off conditions.

The E3 model exhaust system is a 12% geometric scale model of the NASA/GE
development engine. The scale was maintained at 12% for the Cell 41 test hardware for
consistency between the new hardware and previously tested E’ configurations.
Geometric simulation of the exhaust system flowpath in the 12% scale model included
the fan duct, core flow duct, mixer, centerbody, and exhaust nozzle.

Existing E’> model hardware that was reused in Cell 41 include four multi-lobed mixers
and a confluent (annular) mixer, two core plugs, and removable 2 fan duct total pressure
(Pp) rakes.

Key geometric characteristic of the five mixer configurations tested are summarized
below in Table 2.1. All Cell 41 lobed mixers had 12 lobes. This simplified data sampling
and configuration comparison. Sufficient geometric and aero-characteristic variation was
obtained from these mixers through the variation of the other mixer geometric parameters
(e.g., lobe penetration, mixer length and lobe shaping).

Table 2.1 Geometric characteristic of the mixer configurations

Configuration | Mixer | No. Of | Lobe Description | Lobe Height | Mixer Spread Loixer

Number Lobes Penetration Angle (°) Dinpiane

1 V1l | N/A Confluent N/A N/A N/A

2 V2 12 Scalloped 0.43 38.9 0.18

2A V2A | 12 V2 Mixer + 0.43 38.9 0.18

2”extension

3 Fo9B 12 Scalloped + 0.48 31.2 0.22
Staggered

4 FI2A| 12 Skewed 0.38 35.6 0.19

5 F8 12 Scalloped 0.39 36.5 0.19
(Ps-Inst)

Configuration V2A is the V2-Integrated Core/Low Spool (ICLS) mixer and centerbody
but with a 2 inch model scale (16.67 inches full scale) cylindrical spacer inserted into the
outer fan duct upstream of the mixer. The spacer translated the tailpipe and nozzle aft
thereby increasing both the mixing area and mixing length.

NASA/CR—2002-211597 9
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Figures 2.2 through 2.6 illustrate the acoustically tested Cell 41 mixer configurations.
Figure 2.7 shows a photo of the four acoustically tested mixers (Mixers V1, V2, F12A, &
FI9B).

Mixer Performance -

The mixer performance characteristics at a typical cruise condition for the selected E’
mixer configurations are shown in Table 2.2. The performance characteristics shown are
mixing effectiveness, %K4, mixer pressure loss, %AP;/P;, and an overall performance
benefit quoted as %ACT relative to a unmixed, cold-flow configuration. These are
empirically derived values obtained from nozzle thrust measurements performed at
FluiDyne Engineering Corporation during the E* development test programs [Ref. 2].

Table 2.2 Performance characteristic of the mixer configurations

Mixer Mixing Mixer Pressure Loss, Mixer Overall
Effectiveness, %AP/P; Performance,
%K4 %ACT
V1 - Confluent 18 0 24
V2 -ICLS 67 .66 .65
V2Al - Extended >67 <.66 ~.80
Tailpipe
F9B - Quarter Periodic 61 .56 .63
F12A - Skewed 85 1.80 35
F82 - 70 .38 .80
F8 - Adjusted 60 .50 ~.65

I Note: Configuration V24 (2-inch tailpipe extension), was never performance tested.
2 Note: Data based on extended tailpipe configuration.

Mixing Effectiveness, K4, is defined as the percent of actual thrust gain due to thermal
mixing divided by the ideal gain in thrust for a fully-mixed flow. Mixing Effectiveness
is a measure, as a percentage, of how well the overall temperature of the exhaust system
is raised based on measured thrust.

The mixer pressure loss is obtained from the change in measured cold, i.e., non-heated
core flow, thrust coefficient with and without the lobed mixer. The without configuration
is represented with a confluent mixer. It is measured at cold-flow conditions to remove
any thermal mixing benefit thereby isolating the lobe mixer pressure loss (correcting for
changes in Reynold’s number due to temperature). The mixer pressure loss is a measure
of how much additional pressure loss the mixer creates in the process of achieving
increased temperature mixing.

The %ACT is an overall performance efficiency term combining the benefit of thermal

NASA/CR—2002-211597 11
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mixing and the penalty of mixer pressure loss. It is obtained by comparing the hot core
flow thrust coefficient to the cold-flow confluent mixer thrust coefficient.

The best overall performance configuration, therefore, is assumed to be the extended
tailpipe V2A mixer. Acoustically tested mixers V2 and F9B both provide similar thrust
performance. Mixer F8 is assumed to also have similar thrust performance to mixers V2
and F9B. Recall, however, that mixer F8 was not tested acoustically due to the pressure
instrumentation tubing on the mixer lobes. Mixer F12A, while providing a high amount
of thrust based thermal mixing, does so at the expense of significant internal pressure loss
and consequently, provides relatively poor overall thrust efficiency for a lobe mixer. The
confluent (free) mixer offers improved performance potential relative to an unmixed
exhaust system based on the nominal level of thermal mixing.

2.2 Cell 41 Adapter and Model Hardware Design -

New scale model hardware fabricated for the Cell 41 test include Cell 41 model adapters,
upstream flow path hardware, new nozzles, and laser velocimeter glass windows for
viewing the mixing process in the nozzle.

The Cell 41 adapters integrate the model to the Cell 41 facility. The hardware was
designed to allow for differential thermal growth. Regions between the core and fan
streams were thermal insulated where feasible to minimize the amount of heat transfer
from the core to the fan.

The Subtask A model geometry did not include fan duct bifurcations. This was to
minimize the 3-D cross-flow effects and to simplify the flowfield in the mixing region.
In place of bifurcations, the model was designed with upstream fan and core duct support
struts (Figure 2.8). The core duct struts supported the cantilevered core plug and
provided routing passages for the core duct pressure instrumentation. The fan duct struts
provided for routing of the core duct pressure instrumentation and the fan duct inner
surface pressure instrumentation. The fan duct struts also provided the model with a
means of maintaining fan-to-core duct concentricity and centering.

The support strut system consisted of 3 equally spaced symmetrical struts. The struts are
NACA 63018 hybrid airfoils with a constant chord length of 4 inches and maximum
thickness of .68 inches. The struts are considered hybrid NACA 63018 airfoils because
the actual airfoil thickness-to-chord ratio (t/c), is 17% not 18%. The 17% airfoil was
generated by scaling the NACA 63018 airfoil thickness to 17% while maintaining the 4
inch chord length. Figure 2.9 (a) illustrates the 17% hybrid airfoil cross-section. Flow
analysis performed on this airfoil showed acceptable strut trailing edge wake
characteristics.

The design requirements of the support struts were to have minimum wake shedding

while providing model structural rigidity and allowing for routing of the pressure
instrumentation. The final strut airfoil thickness was dictated by the pressure

NASA/CR—2002-211597 18
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Figure 2.9. Strut aerofoil cross sections and the strut pressure manifold system for E* mixers

tested in Cell 41 Anechoic Free Jet Facility.
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instrumentation routing requirements. For ease of model installation and model change-
out, the core duct pressure instrumentation was manifolded in the core struts. Figures 2.9
(b) and 2.9 (c) illustrate the strut manifold design.

The aero-flowpaths aft of the struts are consistent with the E3/FluiDyne performance test
geometry except for the fan duct outer contour and nozzle, and the absence of fan duct
bifurcations. The fan duct and nozzle contour is different to accommodate the planar
(flat) Laser Velocimeter windows. Figure 2.10 illustrates the contour differences
between the FluiDyne performance geometry and the Cell 41 acoustic configuration. The
differences are small. Analysis of the two geometries indicate that the flow
characteristics and fan-to-core bypass ratios very nearly match.

To accomplish the Subtask A test objectives, two nozzles were fabricated and tested.
Both nozzles were manufactured to the same internal contour. One nozzle was dedicated
to internal Laser Velocimeter (LV) measurements by incorporating three planar LV
windows. This nozzle has external brackets that secure the LV windows. Figure 2.11
illustrates the circumferential orientation of the three LV windows in the Cell 41 test
facility. Figure 2.12 illustrates the LV nozzle in Cell 41. This nozzle is used for static
(M=0), LV measurement testing only. There are no surface pressure instrumentation for
the LV nozzle. The second nozzle, which is instrumented with two rows of surface static
pressure taps oriented 195-degrees apart and is externally clean, is for aero-acoustic
testing.

The Cell 41 model assembly is detailed in Figure 2.13. Figures 2.14 through 2.16 are the
photographic views of the model assembly in Cell 41.

2.3 Model Instrumentation:

The Cell 41 Subtask A hardware has 108 surface pressure taps. Generally, two axially
rows of pressure taps were located circumferentially in line with a lobe chute and valley.
This was consistent throughout the test configuration variations since all the lobed mixers
have the same number of lobes (12). Model surfaces that were pressure instrumented
were the fan duct outer contour, fan duct inner contour, core plug and a mixer crown and
keel (both fan and core side). Figure 2.17 illustrates the model surface pressure
measurement locations.

One mixer was pressure instrumented in the lobe region, mixer F8 (Figure 2.18). The
lobed mixer pressure instrumentation tubing was bundled aft of the mixer and routed out
through the nozzle. The pressure tubing was bundled and routed aft so as to not
compromise the fan and core duct contours ahead of the mixer and for ease of mixer
installation (Figures 2.19 and 2.20). All other surface pressure instrumentation were
inlaid to the flow surface. The surface pressure data were measured throughout the test
program.
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Figure 2.11. Circumferential Orientation of the nozzle LV windows.
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Figure 2.13 was unavailable at time of printing.
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Figure 2.20. Static pressure tubes routed for least interference.
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The fan duct total pressure profile could be measured by two removable PT rakes
(reference Figure 2.13). The fan duct PT rakes were installed and tested at certain select
times of testing for comparison with upstream facility charging station total pressures.
All acoustic testing, however, was performed without the fan duct rakes.

A single PT probe extends from the leading edge of all three core support struts. The PT
probe was permanently attached to the strut to measure the core total pressure as a
reference check with the Cell 41 facility core charging station pressures.

Nozzle exit total pressures and temperatures were measured with a kiel-temperature probe

(Figure 2.21). The exit survey probe was mounted to the model nozzle with a bracket
designed to support a two-axis actuator that positioned the Kiel probe.
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Rl

Figure 2.21. Kiel-Temperature probe (KT-36-228-CH/CON-F) for nozzle exit total pressure and
temperature survey, a=36", d=0.25”.
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3.0 TEST FACILITY
Anechoic Free-Jet Noise Facility -

The GEAE Cell-41 anechoic free-jet jet noise facility, shown in Figure 3.1 is a cylindrical
chamber 43ft. in diameter and 72ft. tall. The inner surfaces of the chamber are lined with
anechoic wedges made of fiberglass wool to render the facility anechoic above 220 Hz.
The facility can accommodate single flow and dual flow model configurations. The
corresponding throat areas for these streams are 22 and 24 square inches. The streams of
heated air for the dual flow arrangement, produced by two separate natural gas burners,
flow through silencers and plenum chambers before entering the test nozzle. The
operating domain of the facility in terms of total temperature, pressure ratio, mass flow
rate and jet velocity is indicated in Figure 3.2 for single and dual flow operation and for
static and simulated flight operation. Each stream can be heated to a maximum of
1960°R with nozzle pressure ratios as high as 5.5, resulting in a maximum jet velocity of
3000 feet/second.

For this test program both single flow and dual flow nozzle set-up is required. For all
dual flow configurations, the core flow will be provided through the core burner and flow
delivery plenum system. Fan flow will be provided through the fan burner and flow
delivery plenum system. For the conic nozzle, a single stream is required which will be
provided through the fan burner/flow delivery plenum system. The tertiary air stream
system (freejet simulation) consists of a 250,000 scfm (at 50in. of water column static
pressure) fan and a 3,500 horsepower electric motor. The transition duct work and
silencer route the air from the fan discharge through the 48in. diameter free-jet exhaust.
The silencer reduces the fan noise by 30 dB to 50 dB. Tertiary flow at its maximum
delivery rate permits simulation up to a free jet Mach number of about 0.4. Mach number
variation is achieved by adjusting the fan inlet vanes. The combined model, free-jet and
entrained airflow is exhausted through a ‘T’ stack silencer aligned directly over the model
in the ceiling of the chamber. The ‘T’ stack is acoustically treated to reduce noise
transfer from the facility to the surrounding community.

The facility is equipped with two systems of microphone arrays (see Figure 3.3) to
measure the acoustic characteristics of the test models in the farfield; a fixed array of
microphones and an array on a traversing tower. The fixed array has 17 microphones
mounted from the false floor, the wall and the ceiling of the test cell. These provide
measurements at a minimum distance of 26.75ft. from the nozzle reference location and
cover the polar angle range from 6; = 50° to 155°. The traversing tower contains 13
microphones, mounted at polar angles ranging from ©; = 45° to 155°, and provides
measurements at a minimum distance of 22ft. from the nozzle reference location. The
traversing tower can be physically positioned at any azimuthal angle (¢) between +55°
with respect to the fixed microphone array. However, to ensure non-interference from
close proximity to wedges in its extreme positions, data acquisition is normally limited to
1+45° relative to the fixed microphone array. The azimuthal angle ¢= 0 is defined as the
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Figure 3.3.  Plan view of Cell 41 Anechoic Freejet Facility showing tower microphone
traverse capability.
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45° (N-E) position. For the E’ nozzle acoustic test program, the axisymmetric character of
the nozzle implies that its orientation is irrelevant, therefore the traversing tower remains
in the ¢ = 10° location throughout the test. Acoustic data is acquired from both the fixed
(at ¢ = 45°) and tower microphones.

Laser Doppler Velocimeter (LDV) System-

The facility is also equipped with a laser Doppler velocimeter (LDV) system. The LDV
system, illustrated in Figure 3.4, is a three dimensional Laser Fiber Flow system. The
optical system consists of a 60 mm diameter fiber optic probe, a 1.9 beam expander, and
a 1.5 beam expander with 140 mm diameter front lens. The focal length of this lens is

2000 mm. The optical system has 3.272340 beam angle, 114.2572 mm beam distance, 36
fringes, and 9.0096 micron fringe spacing. The Laser Doppler Anemometer (LDA)
system is modified to obtain online data from a counter processor with x-y plotter using a
Fluke 1752A computer. The seeding to each flow stream is provided using individual 100
psi vacuum pump. For high temperature flow, one micron alumina powder is used for
seeding. A photograph of the fiber flow probe of the LDV system mounted on a 3-
dimensional actuator table system and the LV window nozzle in Cell 41 are shown in
Figure 3.5.

Velocity histogram data are obtained from a counter processor through D/A converter,
which provides a voltage related Doppler frequency and a Bragg cell frequency of 40
mega Hz. The measured voltage is converted to velocity using the following relationship:

Velocity, m/sec. = (volt x amplification factor - 40 mega Hz.) x fringe spacing, micron

The amplification factor for the present system is 100. The measured data and the
corresponding laser locations are digitized simultaneously and averaged with 20 readings
and stored in the Fluke computer, while instantaneous data are plotted on the x-y plotter.

Data Acquisition Systems -

Cell 41 is supported by well-calibrated acoustic and aerodynamic data acquisition
systems. Acoustic data is analyzed by an on-line system, which computes 1/3-octave

band data for model scale at a 40° arc corrected to standard day conditions (i.e., S99F and
70 % relative humidity) and narrowband data as measured. In addition, this data is
recorded on magnetic tapes for post processing.

All static and total pressures including model surface pressures are measured using an
aerodynamic data acquisition system consisting of multiport scanivalve contained
pressure transducers, signal conditioner, and analog/digital converters. The pressure
signals are supplied to a Micro VAX computer system where it can be analyzed or down-
loaded to GE’s mainframe computer system.
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A front-end computer with touch-screen application is used for signal and facility control
and for real time data monitoring. Temperature data (thermocouple signals) are fed
directly to the front-end computer.

On-line 1/3-octave data or post processed acoustic data are further analyzed per the flow
chart of Figure 3.6 for scaling, flight transformation, and extrapolation to any sideline (or
arc) location.
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4.0 TEST PLAN
Acoustic Testing -

The acoustic test matrix was patterned to follow two typical engine cycle operating lines
for take-off and climb. The cycles represented are the E> high bypass ratio mixed-flow
operating cycle and a high bypass ratio engine separate flow exhaust system cycle. The
typical take-off and climb characteristics of these two engine cycles are listed in Table
4.1 and illustrated in Figures 4.1 and 4.2. Refer to Tables Al through A6 (Appendix) for
exact test conditions for each nozzle configuration.

Table 4.1. Typical Test Conditions

Point NPRr | NPRc | TTEr Vj TT/TTE | TTc Vj V mix Far
(°R) (/s) (°R) (/s) (f/s) (Ib)
Mixed Flow Cycle
1 1.4 1.365 | 540 771 2.513 1357 | 1179 [ 819 418
2 1.45 1.428 | 540 808 2.559 1382 | 1270 | 863 467
3 1.5 1.493 | 540 842 2.602 1405 | 1354 | 903 515
4 1.55 1.560 | 540 874 2.648 1430 | 1435 [941 562
5 1.6 1.631 | 540 903 2.693 1454 | 1513 [ 977 608
6 1.65 1.703 | 540 930 2.738 1479 | 1586 | 1010 [ 654
7 1.70 1.776 | 540 955 2.782 1502 [ 1657 | 1041 [ 698
Separate Flow Cycle
8 1.483 |[1.293 | 540 831 2.333 1260 | 1036 | 852 468
9 1.589 |[1.389 | 540 897 2.390 1291 | 1181 [ 926 561
10 1.698 | 1.505 | 540 954 2.457 1327 | 1328 |[994 656

A key distinction between the two engine cycles, from a jet noise standpoint, is that for a
constant exhaust system gross thrust, the separate flow cycle operates at a higher bypass
ratio than the mixed flow cycle. Consequently, the corresponding mixed flow velocity, a
correlation parameter for jet noise, is lower for a separate flow cycle than for a mixed
flow cycle at ideal constant thrust conditions.

Conducting the test along both mixed and separate flow engine cycle conditions enabled
the thermodynamic effects of engine cycle design on jet noise to be investigated. The
impact of mixer lobe shape on jet noise was assessed at constant cycle conditions, while
the impact of cycle condition is investigated for a given mixer configuration.

A single flow conic nozzle was tested at the fully-mixed average test conditions. The
conic nozzle represents a fully mixed near-uniform nozzle exit flow configuration. It is
the ideal scenario being strived for by the lobed mixer configurations (in terms of
complete, 100% mixing).
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Figure 4.1. Aerothermodynamic test conditions with respect to core stream pressure ratio as a
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Acoustic data was measured both statically, and at simulated flight conditions of
Mach=0.24 and 0.28. Free jet back-ground noise, (jet off / wind on operation), was
evaluated to ensure sufficient jet signal-to-(back-ground) noise ratio. With the exception
of the lowest test condition, this ratio was generally greater than 10 across the
measurement range of 10Hz to 100kHz.

The acoustic test configurations are summarized in Figure 4.3. A total of 6 distinct nozzle
configurations were tested. Each of the configurations was tested under both static and
simulated flight (free jet Mach number = 0.24 and 0.28) conditions. The tabulated reading
numbers identify the individual test points.

Aero-Flowfield Measurements-
Nozzle exit total pressure and temperature surveys were performed for two conditions
statically. The LV data measured on the jet plume was performed both statically and

wind-on. Figure 4.4 illustrates what configurations were tested acoustically, exit
surveyed, and LV measured.
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5.0 ACOUSTIC DATA

Acoustic tests were conducted as per engine core nozzle vs. fan nozzle pressure ratio
operating lines shown in Figure 5.1a. Series-1 operating line simulates ICLS E> engine
with LDMF. The mixer and confluent configurations were all tested at selected
conditions on this line. Limited acoustic tests were also conducted on series-2 operating
line that is typical of an engine with a separate flow nozzle. The conditions selected on
the series-2 line match the ideal thrust of the corresponding test point on the mixed flow
series-1 line.

For ease of identifying acoustic data of different configurations at comparable nozzle
flow conditions, the selected test aero condition on each of the operating lines is specified
by a number referred to as point number. Point numbers 1-7 signify test conditions on
series-1 mixer operating line and point numbers 8-