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The relative importance of electrical power systems as compared with other spacecraft bus systems is examined.
The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human
Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies
highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources,
flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management
and distribution.

SPACE POWER ARCHITECTURES FOR NASA MISSIONS:
THE APPLICABILITY AND BENEFITS OF

ADVANCED POWER AND ELECTRIC PROPULSION

David J. Hoffman
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135



GRC Systems Assessment Team

� List of contributors:

– Clint Ensworth Regenerative Fuel Cells
– Jeff Hojnicki Power Management & Distribution
– Tom Kerslake Photovoltaic Arrays
– Lee Mason Stirling Radioisotope Power
– Paul Schmitz Flywheel Energy Storage & A/C
– Dale Stalnaker Lithium-polymer Energy Storage
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Relative Importance of Power

The Power system is typically 20% 
to 30% of Spacecraft Dry Mass.

– Pie Chart shows the average mass 
breakdown by system for 24 spacecraft.

– Data from “Space Mission Analysis and 
Design”, Wertz & Larson, 3rd Ed., 
Appendix A.

� Power is a relatively heavy mission critical system required 
by every other system (except Structures).

� Relative to spacecraft dry mass, the return on investment 
from advanced power system technology can be greater than 
any other spacecraft system for a wide variety of missions!
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Aerospace Power Systems

Power generation - required for every mission; 
advanced technology can be 
mission enabling.

Energy Storage - when required, improvements 
in this subsystem typically 
result in the largest systems-
level mass reductions.

PMAD - improvements benefit ALL 
missions, especially large high 
power missions with 
significant power conversion 
requirements.

Investments in advanced technology for each power 
subsystem will benefit the widest variety of missions!

Typical Power Subsystem
Mass Breakdown by Function
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1ST Space Solar Array: Vanguard 1 (1958)
• 6 body-mounted solar cell panels
• 18 single crystal 2 x 0.5 cm 10% eff. Silicon cells/panel
• 1 Watt Total Power
• 6 years life

Solar Arrays in Space

Largest Solar Arrays - International Space Station (2000)
• 30 kW Solar Array (34 x 12 m) with 32,800 solar cells
• Single crystal 8 x 8 cm 15% efficient Silicon solar cells
• Eight Arrays when complete - 240 kW Total Power Generation
• 15 year life in LEO

Most Efficient Solar Arrays:
* Deep Space 1 (1998)

• 24% multi-junction GaInP2/GaAs/Ge solar cells
• 7x refractor concentrator array (SCARLET)
• 2.5 kW Total Power, 44 W/kg

* Galaxy XI - Hughes 702 (1999)
• Two-junction GaAs/Ge solar cells
• 2x trough concentrator array
• 10 kW Total Power, 70 W/kg
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PV Array Technology Thrusts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

Cell Efficiency, AM0 @ 28°C

A
rr

ay
 S

p
ec

if
ic

 M
as

s,
 k

g
/m

^2

100 W/kg

50 W/kg
DS-1 (SCARLET)
Terra (EOS AM-1) 

200 W/kg

300 W/kg

500 W/kg

1000 W/kg

MBG Cells

Thin Si Cells

Thin-Film
 Cells

Thin-Film Cell Arrays
Enables Large SEP & SSP

Lowest Mass & Cost

Note: Specif ic Pow er (W/kg & W/m^2) reference
lines assume a 0.85 cell packing factor.

ISS
Arrays
28 W/kg

(PF = 0.70)

200 w /m^2 300 w /m^2 400 w /m^2

3-j MBG Cells

4-j MBG Cells?

Thin Si Cellsa-Si Cells

CIGS Cells

High η  Cells on Flexible Planar or Inflatable Arrays
Enables Nanosats & Large Sats & ISS

Smallest Array Area

High η  Cells on Rigid  Planar Arrays
Lo-Med. Power LEO & Hi-Power GEO

100 w /m^2

70 W/kg
Hughes 702

2-j MBG

<

<

<

N
A

SA
/T

M
—

2001-211081
6



Near Term Thin-Film Application
Europa Orbiter

� Multi-Year Transfer & End-Game

� 20 kW (1-AU) Solar Electric Propulsion

� Extremely High Radiation Environment 
at Europa

� Very Low Mass UltraFlex™ Wing

� Thin Film PV on 1-mil Stainless 
Steel reduces Wing Specific Mass 
(kg/m2) 3x (compared with 
crystalline cells)

� Thin Film PV Issues:
– Full scale array designs
– Demonstrate Rad Tolerance
– Demonstrate LILT Performance

AEC Able UltraFlex™ Wings
On the Mars 2001 Lander

AEC Able UltraFlex™ Wings
On the Mars 2001 Lander
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Far Term Thin-Film Application
Humans to Mars

� Multi-Year LEO-ETO-LEO Ops

� High Power (800 kW) Electric Propulsion

– Array Span of 100+ m

� Rendezvous & Chemical Burn to Mars

� High Radiation Environment

� Power System Launch Mass is the Driver

� High-Efficiency (17%) Thin-Film PV on 
Thin Polymer Substrate Enables
Mission
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Solar System Exploration Missions
� Mars Landers, Rovers, and Drills 
� Europa Orbiter/Lander, Io Volcanic Explorer
� Saturn Ring Explorer, Titan Organic Explorer
� Neptune Orbiter with Triton Flyby
� Venus Lander - Combined Power & Cooling
� Outer Planets/Solar Probe Missions

Stirling Radioisotope Power System

DOE SRPS System ConceptStirling Attributes
� Scalable Power Output: 100W to 10kW+
� Low System Mass

• 5 W/kg (SOA, Lo Power) to 10 W/kg (Adv, Hi Power)

� High Efficiency to Minimize Pu-238
� Continuous, Long Life Power Output
� Minimal Sensitivity to Operating Environment
� Universal Power Converter

• Solar, Isotope, Reactor Heat Sources

GPHS Modules per 100 Watts (EOM)
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Benefits of RFC Systems

Benefits of RFC Systems
� High Specific Energy

– Theoretical H2/O2 perf.: 3660 Wh/kg

– Target performance: > 400 Wh/kg

– Perf. improves as discharge time 
increases

� Long Cycle Life of fuel cell & electrolyzer

RFC Mission Applicability
• Un-piloted Aerial Vehicle

• Ultra Long Duration Balloon
• Stratospheric Satellites

• LEO Energy Storage

• Mars Surface Power
• Mars/Lunar Rover

• Lunar Surface Power
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Benefits of Passive RFC Systems
� Higher Specific Energy

– reduction in ancillary mass (potentially)
– lower parasitic power losses

� Round trip efficiency
– about the same or better than active systems

� Reduced Complexity
– potentially more reliable, longer life, lower cost
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Flywheel Systems Level Benefits

Energy Storage Only:
� Very high usable Specific Energy

– Saves mass 
� Higher Efficiency

– Saves power 
� Long Life - 15 years in LEO

– Less maintenance
– Fewer replacements

� Less Volume than NiH2 Batteries
– Saves space

� Known State-of-Charge

Integrated Power & Attitude Control (IPACS)
� All of the energy storage benefits, plus… 
� Combined Functions - less total hardware

Mission Applicability:
� LEO Spacecraft
� LEO Space Stations
� Peak Power
� Load Leveling
� Large Momentum Control
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Power Management & Distribution
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TCS
Active
TCS 

� Advanced high voltage/high power converters & high temperature 
electronics in the Power Distribution Unit (PDU) & Power Processing 
Units (PPUs) of a Solar Electric Propulsion system.

– Eliminate Array Regulator Unit (ARU) & active TCS for PDU
– Add advanced converter to PPU

PMAD System Benefits for a 
MARS SEP Mission

� Potential mass savings
– 1858 kg (42%) of PMAD
– 14% of total EPS mass

� Complexity/cost savings
– No ARUs
– No active TCS

� Reliability improved
– No TCS failure mode

Eliminate

Add Adv. Converters
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Applications for Advanced 
Batteries at NASA

Planetary Orbiters Planetary RoversPlanetary Lander

LEO Spacecraft Astronaut EquipmentGEO Spacecraft
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Benefits of Lithium-Ion
Energy Storage

Example Mass Benefits of Adv. Power Generation & Energy Storage Technology 
as Applied to 

Far Ultraviolet Spectroscopic Explorer (FUSE) Spacecraft

14% MORE  Payload using 
Advanced Lithium-Polymer Batteries

20% MORE Payload
using Advanced Lithium-Polymer 
Batteries, 4-Junction Solar Arrays, 
and Advanced PMAD Technology.

Baseline: 
GaAs Solar Arrays (19% Eff. Cells, 40 W/kg)
NiCd Batteries (38 Whr/kg, 78% RT Eff.)

S/C Total dry mass = 1340 kg.
(All values are given in kg.)
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All Cases:
Atlas IIIb//Star48V
2009 Launch
2020 flyby

Electric 
Propulsion and 

Stirling 
Radioisotope 
Converters

Radioisotope 
with Stirling 
Converters

Direct RTG Electric Prop-
8cm Ion 

thrusters

Stirling Radioisotope 
Power & 
Ion Electric Propulsion

• No launch window 
constraints, direct, fast 
trajectories

• Stirling Converter Reduces 
required number of Pu GPHS 
bricks

Doubles 
Payload Power 
& Mass at Flyby

Synergistic Benefits of 
Power & Electric Propulsion

Space Science: Pluto Flyby
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Other Bus
582 (54%)

Payload
433 kg (41%)

Power & Prop
53 kg (5%)

Baseline
Battery: 64 AH NiH2 IPV (27 Wh/kg)
Array: 16 m2 GaAs (15%) (30 W/kg)

350 kg Initial Payload Mass

Advanced Power

Additional 74 kg Payload Mass
(21% Increase)

Battery: 59 AH Li (80 Wh/kg)
Array: 10 m2 3j GaAs (24%) (90 W/kg)

Synergistic Benefits of 
Power & Electric Propulsion

Earth Science: LEO LIDAR Mission

Benefits
� 24% more payload
� Active altitude control
� Extended mission life

Multi-junction Array
Li Battery

Hall Thrusters

Advanced Power & Propulsion
Battery: 44 AH Li (80 Wh/kg)
Array: 5.6 m2 3j GaAs (24%)(90 W/kg)
Prop: Solar Electric Hall Thruster

Additional 83 kg Payload Mass
Over baseline (24% Increase)

61% Reduction in Power System Mass

Multi-junction Array
Li Battery

LIDAR Mission & Spacecraft Highlights
• Measure atmospheric wind profiles 

from 0 to 20 km altitude using a high 
power laser instrument (LIDAR).

• 5 year life goal, 3 year minimum life
• 450 km, 97° inc lination s un s ync  orbit
• Fixed arrays (instrument pointing req.)
• No propulsion system required 
• 875 W payload, 155 W bus
• 1065 kg baseline spacecraft mass

Power
62 kg (6%)

Payload
424 kg (40%)

Other Bus
582 kg (54%)

Other Bus
582 kg (54%)

Power
136 kg (13%)

Payload
350 kg (33%)
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The Relative Importance of 
Power & Propulsion

Improvements in Power & Solar Electric Propulsion (SEP) will 
have the most significant impact on Launch Mass

Instruments
13%

Power
16%

Structure
39%

All other 
subsystems 

combined
32%

Neptune Orbiter Spacecraft 
126 kg Dry Mass

Neptune Orbiter Spacecraft
+ SEP Transfer Stage 
1450 kg Launch Mass

S/C Power + 
SEP Stage (Wet Mass)

84%

S/C Wet Mass
 w/o Power

16%
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