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CHAPTER 1

INTRODUCTION

The analysis of turbulent compressible jets is a critical technology for improving
the performance of advanced aerospace propulsion systems. In both the military and
commercial sectors a need exists for a better understanding and prediction of jet
engine exhaust plumes and fuel injector flows. This dissertation addresses this need
through the development and application of a computational method to analyze these

flows, providing a better understanding of the underlying physics.

1.1 Motivation

The survivability of military aircraft depends on their ability to evade the enemy’s
defenses. Anti-aircraft systems employ infrared detectors and heat secking missiles,
which rely on the high temperature exhaust from the aircraft’s engines. The military
has a great interest in low-observable technology to reduce the size and intensity of
this exhaust plume in order to increase the aircraft’s survival rate.

In the commercial aircraft industry, reducing the noise generated by the aircraft
has become an important focus, as increasingly stringent restrictions on noise levels
are imposed near airports. The primary contribution to community noise is jet noise

from the engine at takeoff. The mechanisms by which the jet generates sound are
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not well understood. Expanding the knowledge of jet aeroacoustics has become the
focus of several recent national programs including NASA’s High Speed Research and
Advanced Subsonic Technology programs.

Both the military and commercial sectors are interested in high speed ramjet and
scramjet propulsion systems. These systems are being considered for fast response
weapon systems, high speed aircraft and efficient airbreathing launch vehicles. The
complete and rapid mixing of the fuel jet with the high speed airstream is key to
their operation. A better predictor of the performance of fuel injectors and their

interaction with the freestream flowfield is necessary.

1.2 Physics of Jets

The physics of jet flows is dominated by turbulent motion. Turbulent flows by
definition are unsteady and randomly varying. Turbulence is three-dimensional and
rotational with many vortical structures. The scales of the structures vary from the
Kolmogorov microscales [1] to scales nearly on the order of the jet diameter. The
large scales contain most of the turbulent energy and transport the majority of the
momentum and energy. The energy is cascaded from the largest scales to the smallest.
The smallest scales then dissipate the energy and are isotropic. The Kolmogorov

scales, k, are extremely small. Their ratio to the scales of the largest eddies is
= Re; (1.1)

where ¢ is the size of the largest scales and Re; is the turbulent Reynolds number.
However, Wilcox shows for a typical turbulent flow the Kolmogorov scales are ap-
proximately seventy two times the mean free path of the molecules [2]. Thus, the

continuum assumption can be used when modeling the flow at this level.
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The turbulent motion in the jet flowfield is confined to the mixing layer, which
is the interface between the flow from the nozzle and the ambient air (figure 1.1).
The mixing layer begins at the jet lip and spreads radially with increasing distance
downstream. The nozzle flow that has not been affected by the mixing layer maintains

an inviscid character and is termed the potential core.

1.3 Computational Methods

An accurate and inexpensive method to predict the complex physics of jet flows
would be a great benefit to low-observable, aeroacoustic, and fuel injector technology.
Experimental studies of jets are an expensive and difficult undertaking and provide
a limited amount of data. Analytical methods in this area are very limited in their
applicability due to the steady-state and low Reynolds number assumptions that
usually accompany them.

Computational fluid dynamics (CFD) offers an excellent alternative for jet analy-
ses. In CFD, solutions to the governing equations of fluid motion are obtained using
numerical methods. In principle, it does not require major simplifications to the
equations that limit the applicability and accuracy of the simpler analytical methods.
CFD provides a complete description of the flowfield at specified discretized points.
In this way it is superior to experimental methods that provide a limited amount of
data. In general, a CFD analysis is also less expensive than an experimental program.

Two sources of error limit the accuracy of CFD. The first error is the error in-
troduced into the solution by the discretization of the equations. This discretization,
or truncation, error is a function of both the numerical scheme used to solve the

equations and the computational grid that specifies the discrete locations at which
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the equations are solved. The second source of error is modeling error. This error
is the result of assumptions made to model the particular geometry or physics of
the problem. Modeling errors are introduced in grid generation, boundary condition
specification and within problem formulation and solution process. In fact some of
the largest and most widespread sources of modeling error occur in formulating and
solving a turbulent flowfield. Three common methods are used to simulate turbulent

flows. They are outlined below.
1.3.1 Reynolds Averaged Navier-Stokes Simulations

The most common approach to simulate a turbulent flow is to solve the Reynolds
Averaged Navier-Stokes (RANS) equations. The RANS equations are obtained by
time averaging the Navier-Stokes equations. The contribution of the unsteady terms
in the equations is averaged out and the effect on the flow is replaced by the Reynolds
stress tensor. In practice, this tensor is modeled using the Boussinesq approximation:
it is replaced by the product of an eddy viscosity and the strain rate tensor. To
further simplify, isotropic turbulence is typically assumed. The process of calculating
the eddy viscosity is commonly referred to as turbulence modeling.

Turbulence modeling has been an active area of research for many years and a great
number approaches exists. But due to the approximations inherent in the method,
these approaches have failed to produce an adequate simulation of a turbulent jet.

The most widely used turbulence model for RANS simulations of jet flows is the k—
¢ model [3]. In this approach, two additional partial differential equations, transport
equations for the turbulent kinetic energy, k, and the turbulent dissipation rate, e,

are solved and the eddy viscosity is computed from these quantities.
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Corrections to the k—e model to improve jet flow predictions have been developed.
Sarkar [4] and Zeman [5] both introduced corrections to account for compressibility
effects which retard the shear layer mixing in high speed jets. Pope [6] developed a
vortex stretching correction that improved the prediction of round jets.

In a cooperative effort among the aerospace community, Barber et. al. [7] com-
puted several jet flows using RANS techniques. They found that the solutions were
highly dependent on the formulation of the turbulence model and the corrections
used. They concluded that no one model provided adequate predictions over a range
of jet conditions.

RANS simulations are the least CPU intensive method for computing a turbulent
flow. Typically, the discretized equations are marched in time to convergence at
a steady state. Time accuracy in intermediate steps is not necessary and is often
sacrificed for computational speed. In general, the results obtained represent only
the time average of the flowfield. Some unsteady information may be available from

the turbulence model itself (i.e. turbulent kinetic energy is computed in the k—e

model).
1.3.2 Direct Numerical Simulations

In theory the simplest and most straightforward way to compute a turbulent
flowfield is by performing a Direct Numerical Simulation (DNS). DNS methods solve
the Navier-Stokes equations in a time accurate manner without approximation. In
order to obtain an accurate representation of the turbulence, the turbulent motion
down to the Kolmogorov scales must be accurately resolved in both time and space.

In other words, the grid spacing must be no larger than the Kolmogorov scale, k. The
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Kolmogorov scales vary with the turbulent Reynolds number as shown in equation
(1.1). In order to resolve just one large scale eddy we would need é grid points in
each direction, a total of RG?M points. And since the time step is linearly related to
the grid size through the Courant Friedrichs Lewey (CFL) number [8], the cost of the
simulation is on the order of Re?. The amount of computer memory available limits
the size of the computational grid that can be used and the computer’s processing
speed gives a practical limit to the number of time steps possible in a simulation.
Therefore, based on available computational resources, DNS is limited to very low
Reynolds number flows.

One way to help alleviate this Reynolds number limitation on DNS is the use
of high order numerical methods [9-15]. These methods have the ability to accu-
rately capture small scale structures with fewer grid points than possible with tradi-
tional second-order accurate codes. This increased accuracy does come at the price
of increased computational expense and the trade-off between the two has not been
sufficiently investigated.

Freund [16-18] has computed Mach 0.8, 0.9, and 1.92 jets using a DNS technique.
These jets had Reynolds numbers of 800, 3600, and 2000 respectively. This work has
produced excellent agreement with experimental data and provided great insight into
the flow behavior. But the Reynolds numbers of the jets are orders of magnitude

smaller than any nozzle of practical interest.

1.3.3 Large-Eddy Simulations

A compromise between the approximations necessary in RANS and the computa-

tional limitations of DNS is Large-Eddy Simulation (LES) [19-23]. In LES the large
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scales of turbulent motion are simulated directly in the Navier-Stokes equations, but
the small scales are modeled in a manner similar to RANS turbulence modeling.
Because the larger scales carry most of the momentum and energy, computing them
directly should increase the simulation’s accuracy. And, since the small scales are dis-
sipative and isotropic, modeling them using a simple eddy viscosity approach appears
viable. The scales are separated by spatially filtering the Navier-Stokes equations.
This filtering process replaces the equations with a set of resolved (large scale) equa-
tions of motion that contain additional unresolved (small scale) terms that must be
modeled. The size of the scales that are resolved and that are modeled is determined
by the width of the filter, A, which is on the order of the grid cell size.

The key to an accurate LES computation is the model used to approximate the
unresolved or sub-grid scale terms. There are many forms of these sub-grid scale
models. The simplest and most popular model, the Smagorinsky model [24] is similar
to Prandtl’s mixing length theory [25]. Germano et. al. [26] developed a very success-
ful model which dynamically adjusts this constant based on the local flow conditions.
Others [27-30] have modified and improved on these basic ideas.

As with DNS calculations, high order schemes are important for proper and effi-
cient resolution of the large scale structures. In addition, most sub-grid models scale
the eddy viscosity by the square of the filter width, which is directly related to the
grid size. In second-order accurate numerical schemes the truncation error is also a
function of the square of the cell size. LES performed with a second-order accurate
code would have a truncation error and a sub-grid model of the same magnitude.

And because they both scale with A? it would be impossible to separate the two by
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performing grid refinement. Therefore it is critical to use a higher order accurate
numerical method when performing LES computations.

Previous studies [31-33] have applied LES codes to high Reynolds number jet
flows. In each of the cited cases, agreement with experimental data has been poor.
A common problem with these studies is the overprediction of the length of the jet’s
potential core. Each solution underpredicts the large scale structures and resultant
turbulent mixing. In all three studies the computational domain began at the noz-
zle exit and a “top-hat” inflow velocity profile was specified. The nozzle geometry
and influence of the jet lip was not modeled. Mankbadi et. al. [31] also artificially

perturbed the inflow conditions to in an attempt to excite the jet and increase mixing.

1.4 Discussion of the Present Work

The objective of the present work is to accurately predict a high Reynolds number
turbulent nozzle flowfield using computational methods and gain an improved under-
standing of the jet’s behavior. A completely new analysis code has been developed
for this purpose. To meet the goal of accuracy, the sources of error present in any
CFD analysis must be minimized. These errors, discretization error and modeling
error are thoroughly investigated.

Discretization error is addressed through the examination of an existing high-order
numerical scheme and the development of a new scheme. Care is taken to consider
both temporal and spatial accuracy conjointly. Both schemes are then examined
analytically through their truncation error and experimentally through numerical
experiments to ascertain their performance in solving representative problems. Grid

refinement is also examined to show how increased resolution affects the solution.
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The largest contribution to the modeling error, modeling of the turbulent struc-
tures, is examined fully. The Large-Eddy simulation technique was selected as the
most promising method to use. The LES equations are derived in detail and the
resulting sub-grid terms are examined. Models for the dominate sub-grid terms are
implemented in the flow solver. Boundary conditions and other modeling issues along
with correct code implementation are tested using simple validation cases and a rep-
resentative jet problem.

Using the knowledge gained from testing the codes on simpler problems, a tur-
bulent compressible round jet is simulated. The jet has a Reynolds number of 1.2
million and an exit Mach number of 1.4. A complete description of the jet flowfield
including turbulence information is presented. The time averaged flowfield is com-
pared to experimental data to ascertain the accuracy of the simulation. Instantaneous
flowfield data and turbulent statistics lend insight into the complex behavior of the
jet. Correlation of velocity signals in the jet’s mixing layer help quantify the large

scale structures present.
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Figure 1.1: Jet schematic
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CHAPTER 2

GOVERNING EQUATIONS

The equations governing the flow of the unsteady compressible jet are presented
below. The fluid is assumed to be a continuum, which implies that the smallest scales

of interest are much larger than the scales of molecular motion.

2.1 The Navier-Stokes Equations

The most general set of equations considered are the three-dimensional Navier-
Stokes equations. As presented below, they express the conservation of mass, mo-
mentum, and energy for an unsteady compressible fluid in tensor form using cartesian
coordinates (x,y,z).

The continuity equation expresses the conservation of mass.

dp  Opu;
a—l_ 6:1;2 N

0 (2.1)

The momentum equation expresses Newton’s Second Law. It relates the time rate

of change of momentum to the forces applied.

dpu;  Opusu; N dp B o
6t 6:@ 81}2 N al']'

(2.2)
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The stress tensor is defined as
O3 = —%uéijSkk + 2/152']' (23)

and the strain rate tensor is

1 du] (91/@
=5 <8:1;¢ * 57;_7> (2:4)

Sutherland’s Law is used to model the viscosity

(S

_OT
Oy + T

Il (2.5)

The constants for u expressed in English units (ﬁif) are C; = 2.27 x 107% and
Cy = 198.6.

Conservation of energy expresses the first law of thermodynamics. It relates the

time rate of change of energy to the amount of heat added and the work done.

dpe;  dpu,ey 8uip_8ujaij 0q;

2.6
ot Jx; Ox; Ox; Ox; (2:6)

The total energy of the fluid, e, is defined from the internal energy, e = ¢, T
e = e+ suiu; (2.7)

The heat flux is represented by
aT

= g 2.8
q e, (2.8)

The system of equations is closed using the equation of state for a perfect gas.

p=pRT (2.9)
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2.2 Axisymmetric Formulation

A solution to the three-dimensional Navier-Stokes equations requires a large amount
of computer memory, storage and CPU time. Taking advantage of the symmetry of
a problem is a common technique used in CFD to reduce the computer resources
required for an analysis. Since the geometry of the round nozzle is symmetric about
its centerline, it may be possible to model the problem using the axisymmetric form
of the Navier-Stokes equations. In order for this assumption to be valid the flow field
must also be symmetric about the centerline.

The axisymmetric form of the Navier-Stokes equations assumes that there are
no gradients or velocity components in the circumferential direction of a cylindrical
coordinate system. The symbols x, r, and # represent the axial, radial, and circum-
ferential directions. The corresponding velocities are represented by u, v, and w. The

resulting equations are presented below.

Continuity
dp  Opu 1dprv
at o e 7 (2.10)
Axial momentum
dpu  Opu*  10pruv  Op  0o.p 00y, 2 0 /v
TR iy TS R R T LB

Radial momentum

dpv  dpuv laprvz @_ do,. 0oy, g v g g( B)
ot + Ox r Jr +8r_ Ox + or —I_UW_UM_?)MT_?)T@T Mr
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The components of the stress tensor are

40u 20v
_ _z2" 2.1
Tor = ( dr 3 d7> (2.132)
40v 20u
2.13b
— <3 or 3 8x> (2.13b)
=/ > (2.13¢)
2 8u 81}) 4 v}
— | = 2.13d
~ { : ( T (2134)
Energy
dpe;  Odpeu 1 dpegrv Opu 1 8prv 5, ( N )
- - UO g zr = Yo
ot Oz r or dz r Or  Ox v 4
+ aﬂ (uo-m' + VOpp — qr) + UT g + VGyy
r
2 v? 0 (/2 v? d /2 wuv
g —cu 2 (22 2.4
1 3”7“ 8r< e > r@:}c (3”7“) ( )
The corresponding heat fluxes are represented by
oT
= —k— 2.15
Ox ( 2)
oT
= —k— 2.15b
R (2.15b)

2.3 Flux Vector Forms

For CFD, it is helpful to recast the equations in flux vector form. This puts all

the equations the same form for easy discretization and solution.

2.3.1 Three-dimensional

The flux vector form of the three-dimensional Navier-Stokes equations is

09 , o8 or
ot Odx Oy
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0G,
0z

oF,
ox

oF, N
dy
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where

p
pu
Q= |pv
pw
PE
[ pu ] [ 0
pu® +p o
E = puv b, = Oy
puw o
(per + p)u) | UOw + V04 + WO, — Gy
L - 0 -
puU Oy
F = ,ov2 +p F, = Tyy
pLw Oy
[(pe: + p) v] [UOye + VOyy + WOy — gy
o - 0 -
puwu oo
G = pW G, = Ty
pw? +p (o
(per +p)w \uo., + V0. + WO, — g

2.3.2 Axisymmetric

The axisymmetric equations are similar to the three-dimensional form with the
addition of a source term. When the source term H is omitted, the equations simplify

to the two-dimensional /planar form.

%—?+a@—f+a@—§+fl:a£“+aa];“+m (2.17)
where
p
Q="
pe:
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pu
pu® +p
puv
L(pec + p) ul
pu
pou
,ov2 +p

({(per +p) v
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0w = 57z (07)
2,,v 2,0 v
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CHAPTER 3

NUMERICAL METHODS

The governing equations are solved using two explicit finite difference methods,
a MacCormack type predictor-corrector method and a Runge-Kutta method. Both
types of schemes are in wide use today for fluid dynamic and acoustic analyses of
nozzle flows. Each scheme has an associated set of strengths and weaknesses which
will be discussed later in this document.

The numerical schemes will be presented in terms of a one-dimensional model

equation

dq , Of _
ot 5. =0 (3.1)

where f = f(g). Extending the schemes to the Navier-Stokes equations (2.16 & 2.17)

is a straight-forward matter.

3.1 Predictor-Corrector Schemes

MacCormack developed a two-step explicit finite difference method [34] which is a
variant of the Lax-Wendroff scheme [35]. This method is very easy to understand and
implement and hence has become very popular in the CFD community. The scheme

is very robust and requires only two storage locations for each dependent variable
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(2-N storage). As a consequence several variants of the MacCormack technique have

been developed. The original technique and a higher order variant will be discussed.
3.1.1 MacCormack 2-2 Scheme

MacCormack’s original scheme is second order accurate in both time and space.
That is to say the truncation error of the scheme is proportional to both the time
step and spatial step to the second power.

The first stage, or predictor step, computes the solution at an intermediate time
based on the solution at the previous time step. It uses a one-sided forward difference

for the spatial derivative.

* n At N 23

% =%~ N (ji-}-l — fi ) (3.2a)
The second stage, or corrector step, computes the solution at the end of the time

step based on the solution at the intermediate time. It uses a one-sided backward

difference for the spatial derivative.

1

gt = K +¢q — A <fi - fi—l)] (3.2b)

The leading truncation error terms for MacCormack’s scheme are

(A)?Pq  (Ax)' f At(Ax)2A84f

6 O3 6 O3 24 Ozt

(3.3)

where f has been linearized by f = Aq. The error associated with the temporal and
spatial terms are dispersive in nature, while the error associated with the cross term

is dissipative. This dissipative term is scaled by the time step.

3.1.2 Gottlieb-Turkel 2-4 Scheme

Gottlieb and Turkel [9] modified MacCormack’s scheme to be fourth-order accu-

rate in space while retaining the second-order time accuracy. They simply modified
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the difference stencil of the spatial derivative to achieve higher accuracy.

* i 1 At W3 T T
49 =q — 6 Ax (—f¢+2 + 8 — 7/, ) (3.4a)
1 1 At
ntl — "o g — (7 f — 8 fF * 4b
q; 9 I:QZ + q; 6 N <7fz fz—l + fz—?)] (3 )

The leading terms in the truncation error for the Gottlieb-Turkel scheme are

(A1) Pq  (Ax)* 0¢ At(Ax)? 9*f ‘
Y — o5 A 3.
6 o " 30 o0 18 o0z’ (3.5)

In addition to retaining the second-order time accuracy, it is important to note that
the cross term is dissipative and is scaled by At (Az)®. Bayliss et. al. [36] extended

this scheme to the solution of the Navier-Stokes equations.

3.2 Runge-Kutta Schemes

As seen with the Gottlieb-Turkel scheme, all higher order variants of MacCor-
mack’s method maintain second-order time accuracy. It will be shown later that one
cannot separate the temporal and spatial accuracy. They are clearly equated through
equation (3.1).

A true fourth-order accurate scheme in both time and space has been developed.
A fourth-order central difference for the spatial derivative is combined with a fourth-
order Runge-Kutta time stepping scheme.

Runge-Kutta schemes are a popular family of numerical schemes with higher order
temporal accuracy. These multi-stage schemes can be formulated for any order of
accuracy. The number of stages in the scheme is equal to or greater than the desired

order of accuracy. Two fourth-order Runge-Kutta schemes are investigated.

NASA/TM—2001-210716 19



3.2.1 Standard Scheme

The standard four-stage fourth-order scheme as given by Jameson [37] is

G =49
1

o =q" _ZAtD(%)
1

@ =q" _gAtD(QI)
1

G =q" —§AtD(Q2)

¢t =q¢" —AID(¢) (3.6)

The operator D is the spatial finite difference operator. For equation 3.1, D (¢) would

be a fourth-order finite difference stencil for —%, A central difference stencil for %
is used here.
d_f _ “Jit2 + 8fir1 — 8fic1 + fie (3.7)
Ox 12(Ax) '

This scheme requires two storage locations for each dependent variable (2-N storage).

The leading terms in the truncation error for this scheme are

_(At)48_5q (Az)* §q B At(A:z;)4A86f
120 ot° 30 92° 30 0

3.2.2 Low Dispersion Scheme

Several researchers [38-41] have developed alternative Runge-Kutta schemes that
have a lower dispersion error than the standard scheme leading to greater stability
and accuracy. To accomplish this, additional stages are required. The additional
stages provide a means to impose the additional constraints necessary to minimize

the error. All of the schemes are based on a general M-stage 2-N storage formulation
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given by

dgm = apmdqm—1 + AtD (¢gm-1) (3.9a)

9m = dm—-1 + ﬁmde (391))

for m = 1... M, and where ¢y = ¢" and ¢y = ¢"*'.

The coefficient «ay is typically
set to zero for the algorithm to be self-starting. Again, the operator D is the spatial
finite difference operator.

Carpenter and Kennedy’s five-stage fourth-order scheme [38] was chosen for its

fourth-order accuracy, low number of stages, and ease of programming. The coeffi-

cients for the scheme are given in table 3.1

stage (m) o G
1 0.00000000000 0.1496590219993
2 -0.41789047450 0.3792103129999
3 -1.192151694643  0.8229550293869
4 -1.697784692471  0.69945045594 88
5 -1.514183444257 0.1530572479681

Table 3.1: Coefficients for fourth-order low-dispersion Runge-Kutta scheme

The leading terms in the truncation error for this scheme are

(At)* d°q N (Ax)* 0% At(A:zz)4A86f

_ k ! 3.10
300 9+° 30 92° 30 O (3.10)

The dispersive error term due to the time step (the first term) is two and one-half

times smaller than the standard fourth-order scheme’s error (3.8).
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3.3 Fourier Analysis of Numerical Schemes

In the field of high order numerical methods for DNS and LES, the proper res-
olution of the waves present in the flowfield is critical. A popular method to assess
the ability of a numerical scheme to resolve waves is the Fourier analysis of the semi-
discretized equation (spatial discretization only) [42].

The semi-discretization of equation 3.1 is

0G4,
rri D (¢.) (3.11)

where ¢, is the discrete solution. We choose a sinusoidal trial solution with wave

number w, which has the form
gnlw,t) = v(w, t)e™™n (3.12)

We substitute 3.12 into 3.11 and solve for v(w,t). The resulting solution of the

equation 1s
Gn(w, 1) = v(w, O)eB‘e[E(“’)t] eiw(zn—c™t) (3.13a)
with

*
¢ = —

Im [D(w)t] (3.13b)

1
where D(w) are the eigenvalues of D. The exact solution to equation 3.1 is
g(w. 1) = v(w, 0)ele=) (3.14)

By comparing the numerical and exact solutions we can see how the numerical scheme

affects the propagation of the wave. The exact solution (equation (3.14)) shows that
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amplitude of the wave should not change. However, in the numerical solution the

amplitude is a function of time (equation (3.13a)). Therefore,

if Re [D(w)] = 0, then the scheme is conservative
if Re [D(w)] < 0, then the scheme is dissipative

if Re [D(w)] > 0, then the scheme is unstable

Similarly, comparing the numerical wave speed ¢* to the exact wave speed ¢ we find

*

. C
if — =1, then the scheme has no phase error
¢

3

if — 1, then the scheme introduces a phase error

To achieve a conservative scheme (Re [b(w)] = 0) the matrix D must be anti-
symmetric. Central difference schemes, such as those used here, satisty this criteria.
Upwind schemes, which are dissipative, do not have an anti-symmetric matrix and
were not considered suitable for this study. The wave speed relative to the exact
speed for each scheme considered here is

¢ sin(wAx)

—_—= , for second-order spatial accuracy

c wAzx
(3.15a)

1, 4
& —zsin(wAz)cos(wAzx) + zsin(wAx ]
— =2 ( Jeos( )+ 5sin( ) , for fourth-order spatial accuracy

c wAT
(3.15h)

Figure 3.1 compares the error in the wave speeds for second- and fourth-order
accurate central difference operators, D. The error is a function of the wave number,
w, and grid resolution, Az. From this Fourier analysis perspective the numerical
scheme can be seen to act as a spectral filter of the exact solution. This error is

sometimes plotted as numerical wave number versus exact wave number (w*Ax versus
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wAz, figure 3.2). It is clear that higher order schemes can resolve higher wave number
waves with less grid resolution. But, neither scheme can adequately resolve very high
wave numbers, even with very fine grid resolution.

If one determines an acceptable error in wave speed for their calculation, the
maximum value of wAx that provides this error can be related to the number of grid

points per wavelength necessary to accurately resolve a wave [43].

2m .
N = m— (3.16)

max

The wave will be properly resolved if it is captured by at least N points. This “points
er wavelength” has become a popular measure of a scheme’s “goodness”. But, this

p g pop g )

measure does not consider the error due to time discretization and the computational

cost of the scheme.

3.4 Filtering

Both numerical methods introduce a dispersive error into the solution. This er-
ror manifests itself in two ways. First, as shown above, waves that are that are not
resolved with enough grid points have their speeds altered. Secondly, new high wave
number waves are introduced into the solution. If unchecked, these errors can grow
and cause the analysis to become unstable. To damp out these waves, an artificial
dissipation term is typically added to the equations [44-47]. All these “classical”
techniques involve the use of a user specified constant that scales the effect of the dis-
sipation. The value of this constant is somewhat arbitrary and varies widely between
cases.

In this study a solution filtering technique is used. This technique can be regarded

in two ways. In the classical sense, solution filtering simply adds a dissipative term to
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the equations to damp the unwanted waves. From a Fourier analysis perspective, this
technique filters the high wave number components out of the solution. A properly
selected filter removes both the numerically introduced waves and the poorly resolved
waves, leaving only the portions of the flowfield that are accurately modeled. Sev-
eral researchers have developed solution filters for CFD including [10,42,48,49]. The
explicit filters of Kennedy and Carpenter [48] were chosen for their ease of implemen-
tation and clear relation to the unfiltered solution. The filtered solution is simply the

unfiltered solution plus a dissipative term.

8271 ;
¢ = ¢ — ap(Az)*” ;‘i (3.17)
dx
where ap = S—anﬁ and n = 1,2,.... Kennedy and Carpenter developed a family
of filters with corresponding boundary stencils for n = 1...7. These filters are

implemented in the analysis code. By choosing the order of the filter, 2n, to be larger
than the order of accuracy of the numerical scheme, one can insure that the filter
does not overly influence the numerical solution. The response of the filters is shown
in figure 3.3. As the order of the filter is increases the cut-off wave number of the
filter is increased and a greater portion of the domain remains unmodified.
Examples of the effect of solution filtering are shown in figures 3.4 and 3.5. A
sine wave on the domain 0 < @ < 7 was filtered 100,000 times (a typical number of
iterations for a jet calculation). To illustrate how increased grid resolution reduces the
effect of the filter, sine waves made up of 5, 15, 25, 35, and 45 points (wAz = 1.257,
0.4189, 0.2513, 0.1795, and 0.1396) were filtered using fourth-, sixth-, and eighth-

order filters. Figure 3.4 shows that increasing the resolution of the wave reduces the

NASA/TM—2001-210716 25



effect of the filter. Poorly resolved waves can be completely eliminated (the fourth-
order filter completely removes the 5 point resolved wave) Figure 3.5 shows how the
resolved wave number increases with the order of the filter. A wave resolved by five
points was filtered with fourth-, sixth-, eighth-, tenth-, twelfth-, and fourteenth-order
filters. The wave (wAx = 1.257) is completely removed by the fourth order filter, but
damped less than 10 percent by the tenth-order filter, and maintained exactly by the

fourteenth-order filter.

NASA/TM—2001-210716 26



NASA/TM—2001-210716

clc

®'AX

1 AN R
\\\\ N \~\A
o N
r . N exact
0.8 - ----2nd order }—
AN AN - . —.-4th order
N AN
N .
N N\
I . .
0.6 .
L \\ .
N N\
N
F \
0.4 N
NEEEEN
A
)
0.2 S
\
N
LAY
A
N
0 " " " " 3
0 05 1 15 2 25 3 35
o AX
Figure 3.1: Error in wave speed
ST
B exact
3 ----- 2nd order
- - = - 4th order
25 |
2
15
-~ - .
s ~N
1 i ~
e =4 N
///‘ \~\ .
05 [ ’ N
r Y
“k
ol . N
0 05 1 15 2 25 3 35

o AX

Figure 3.2: Error in wave number

27



NASA/TM—2001-210716

0.8

0.2

A

T

—e— 2nd order
—=8— 4th order
—o— 6th order
—— 8th order

—+— 10th order |

—#A— 12th order
—=o6— 14th order

0.6

v

0.4

0.5 1

O AX

2 2.

5 3

Figure 3.3: Filter response

28

3.5



NASA/TM—2001-210716

i
Exact R
L —o— 5 Points
1 —a&— 15 Points | |
—o— 25 Points
—x— 35 Points
—— 45 Points

N\
N

Y
1

02 L1 ‘
0 0.5 1 15 2 2.5 3
X
(a) fourth-order filter
1.2 ———————
I [ 7]
Exact
—o— 5 Points

=— 15 Points |

—o— 25 Points | |

. )2 %@\ o
N N
T % X%
./ e\

/o R

02 L

(b) sixth-order filter

Figure 3.4: Effect of grid resolution on filter response

continued

29



Figure 3.4: continued
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CHAPTER 4

1-D ERROR ANALYSIS

The behavior of the numerical schemes presented in Chapter 3 is examined for
three one-dimensional model problems. Truncation error, efficiency, and the conse-
quence of disparate temporal and spatial accuracy are discussed. The schemes are
used to solve the one-dimensional inviscid convection of a gaussian pulse.

The accuracy of these schemes is commonly expressed separately in terms of spa-
tial and temporal accuracy. A great deal of effort has focused on increasing the spatial
accuracy of a numerical scheme without regard to the temporal accuracy. This chap-
ter examines the behavior of two commonly used schemes in terms of truncation error
and computational cost on a model equation. Particular attention is paid to the trun-
cation error of the schemes and how the spatial and temporal errors affect the overall
order of accuracy of the scheme.

Three one-dimensional problems were used to test the accuracy and efficiency of

the schemes. All three are based on the model equation (3.1).
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4.1 Problem Descriptions

4.1.1 Problem 1

The first problem is the linear convection of a gaussian pulse, where ¢ = f = u.

Ju  Ou
— = 4.1
ot + Ox 0 (4.1)
The initial condition is given by
u(z,0) = ug(x) = Le~"(5) (4.2)

The domain is —20 < = < 450 and the solution is run for 0 < t < 400. An exact
solution to this problem exists and is given by
Uer (2, 1) = ug(z — 1) (4.3)

4.1.2 Problem 2

1.2
SU”.

ou 0 [ u?
N + F <?> =0 (4.4)

The initial conditions and simulation time are set so that a smooth final solution is

The second problem is nonlinear where ¢ = u and f =

obtained. The initial condition is

u(z,0) = up(z) = L~ (i5)’ (4.5)

—_

1
8

The domain is —50 < 2 < 50 and the solution is run for 0 < ¢ < 100. A numerical

approximation to the exact solution is obtained using the method of characteristics.
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4.1.3 Problem 3

The third problem is also nonlinear (equation (4.4)), but the initial conditions and
time of the simulation are set so that the pulse is allowed to coalesce into a shock.

2

ul,0) = up(z) = Le=™A(5) (4.6)

2

The domain is —50 < z < 50 and the solution is run for 0 < ¢ < 200. Like problem
2, a numerical approximation to the exact solution is obtained using the method of

characteristics. The location of the shock is then fitted in the exact solution using

Whitham'’s area rule [50].

4.2 Results

All the one-dimensional calculations were run on an Apple Macintosh Powerbook
G3 computer with a 266MHz PowerPC G3 processor.

The standard scheme was used for all the Runge-Kutta results in this section.

The error of the numerical scheme was measured by the [, norm, which is computed

as follows

1
n 2

I, = Tmaz = Lmin S (ui — Uew, ) (4.7)

n— J‘ =1
For each problem, both numerical schemes were run to determine the maximum

stable time step. Then, each scheme was run at a number of different values of % as

the spatial step was halved.
4.2.1 Problem 1

A sample solution to the linear problem for both numerical schemes is presented in

figure 4.1. The Runge-Kutta scheme shows better agreement with the exact solution
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than the Gottlieb-Turkel scheme. Error from the Gottlieb-Turkel scheme is plotted
versus spatial step and time step (figure 4.2). The terminal slope of the line, p
indicates the order of accuracy of the scheme and is listed in the plot legend. The
slopes in figure 4.2(a) show that the error is of second-order accuracy for the varying
spatial step. Only where the time step is much smaller than the spatial step does the
scheme behave as a fourth-order scheme. Also, the error is dependent on the time
step chosen. This is due to the third term in the truncation error (equation (3.5)).
Clearly, this dissipative error is significant. Figure 4.2(b), shows the error behavior
with the time step. Again, the scheme is only second-order accurate except when the
time step is very small compared to the spatial step. In order to obtain fourth-order
behavior from the Gottlieb-Turkel scheme, the error due to the time step must be
reduced at the same rate as the error due to the spatial step. In order to accomplish
this, the time step must be reduced by a factor of % as the spatial step is reduced by
%. Figure 4.3 verifies that when adjusting the time step in this manner fourth-order
accuracy is obtained.

Results for Runge-Kutta scheme, on the linear problem (figure 4.4), indicate that
the scheme is truly a fourth-order accurate scheme. In addition, except for the highest
value of % where the time error term dominates, the error is independent of time
step.

The efficiency of a numerical scheme can be seen by comparing the [, error against
the time required to obtain that error level [51]. Both schemes are compared at their
maximum stable time step. Figure 4.5 shows that the Runge-Kutta scheme is superior
to the Gottlieb-Turkel scheme. Runge-Kutta achieves an equivalent error level in

about an order of magnitude less time than the Gottlieb-Turkel scheme. This result
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is due to the lower truncation error and larger allowable time step of the Runge-
Kutta scheme. Reducing the time step of the Gottlieb-Turkel scheme to maintain
fourth-order accuracy increases the accuracy but also increases the computational

cost.
4.2.2 Problem 2

Sample solutions to the smooth nonlinear problem for both numerical schemes are
presented in figure 4.6. Because a short simulation time was necessary to maintain a
smooth solution, the differences between the exact solution and numerical solutions
are not discernible on the plot. Error data for the smooth nonlinear problem are shown
in figures 4.7-4.10. The effects of round-off error, the reduction in accuracy/slope at
small At and Az, make it difficult to report a terminal slope, instead the maximum
slope was used. The trends for the nonlinear analysis are similar to the linear case.
However, the benefit for using the Runge-Kutta scheme is somewhat less. But, at

large time steps, for maximum efficiency, the Runge-Kutta scheme is superior.

4.2.3 Problem 3

Solutions to the nonlinear problem with a shock (figure 4.11) show that both
schemes produce high frequency oscillations near the discontinuity. This problem does
not provide useful error information and illustrates the limitations of finite difference
schemes. The presence of the discontinuity reduces the accuracy of all schemes to
first-order (figures 4.12 & 4.13). Results from the Gottlieb-Turkel scheme indicate
that the third term in equation (3.5) provides a damping effect on the numerical
oscillations that occur near the shock. This damping allowed the scheme to obtain a

converged answer. Figure 4.12 shows that larger time steps yielded lower errors for
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this problem. The dissipative term in the truncation error is scaled with the time step
and larger time steps resulted in greater dissipation of the non-physical oscillations.

To obtain useful solutions to this problem, the Runge-Kutta scheme required
some form of artificial dissipation. The solution filtering technique of Kennedy and
Carpenter [48] was used. Filtering adds to the solution an additional dissipative term
that removes high frequency numerical oscillations while leaving the low frequency
physical oscillations untouched.

The order of the filter, 2n in equation (3.17), determines the magnitude of the
dissipation added and the range of frequencies which are damped. If the order of the
filter is larger than the order of the truncation error of the numerical scheme, then
the filter should have a negligible effect on the solution error. Increasing the order of
the filter increases the range of frequencies which are untouched by the filter. Figure
4.13 shows that the filters remove the non-physical oscillations from the solution and
greatly reduce the error of the scheme. The insensitivity of the error to the order of the
filter indicates that the truncation error of the scheme is greater than the dissipative
term of the filter and that the numerical oscillations have frequencies higher than

frequency range of the highest order filter.
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Figure 4.1: Solution to linear convection problem
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Figure 4.2: Error of Gottlieb-Turkel scheme for the linear problem
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Figure 4.7: Error of Gottlieb-Turkel scheme for the smooth nonlinear problem
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Figure 4.9: Error of Runge-Kutta scheme for the smooth nonlinear problem
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NASA/TM—2001-210716

46



Y

W

M

—6— At/Ax = 1.25000
—8— AV/Ax = 0.62500
—o— At/Ax = 0.31250

—>— At/Ax = 0.15625

(a) Spatial error

10°

)%

YA

@

Z

/_

2
=

—d

—6— At/Ax = 1.25000
—&8— At/Ax = 0.62500
—o— At/Ax = 0.31250
—>— At/Ax = 0.15625

10"
s
i
102
10%
102
10°
10"
s
i
102
10%
103

10°

(b) Temporal error

Figure 4.12: Error of Gottlieb-Turkel scheme for the nonlinear problem with shock

NASA/TM—2001-210716

47



10° A,/—Gf”e\a
9//
s /
i 107 E
/ —o— no filter
10% T —8— 4th order filter |—
E / —e— 6th order filter | 3
[ —>— 8th order filter ]
—+— 10th order filter] 1
10° P
107 10" 10° 10’
AX
(a) Spatial error
10' — .
—oe— no filter
—=8— 4th order filter
—o— 6th order filter
—>— 8th order filter | o—6—__
10° : =
| —+— 10th order fllter/e/e/
s /
5 10"

2

10-3 N M N MR N P L
102 107 10° 10'

At

(b) Temporal error

Figure 4.13: Error of Runge-Kutta scheme for the nonlinear problem with shock

NASA/TM—2001-210716 48



CHAPTER 5

LARGE-EDDY SIMULATION

In this chapter the equations for Large-Eddy Simulation are presented. The mod-
eling of the unresolved (sub-grid) terms and implementation into the flow solver is
discussed.

The basis of LES is the separation of the large and small scale turbulent fluctu-
ations. To separate the large (resolved) and small (unresolved) scales the equations

are filtered. A spatial filter G with a filter width A is used.

o0

f= [ Gl - (5.1

— 00

The overbar represents the resolved, filtered, or large-scale portion of the function.
Commonly used filter functions are a box filter, a Gaussian filter, or a spectral cutoff
filter [30]. Typically, it is not necessary to know the exact form of the filter function
G, but only that it exists. In practice, the solution is not explicitly filtered. It is
assumed that the numerically computed solution is a filtered representation of the
exact solution. This assumption is justified based on the Fourier analysis results of
sections 3.3 and 3.4. There, the numerical schemes and solution filtering were shown

to behave as a spectral cutoff filter of the exact solution.
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Several constraints are imposed on the filter function.

G0 = 0
| Glede =1

3) G(E) =0 as [¢ — o0

4) G/(£) is small outside <_é é)

These constraints are necessary to insure that the filter function will commute with

the derivative.

Q
~~
Q
&H |

o
&3
Q
&

- (5.2)

Favre (density) weighting is used in the filtering process. This allows for convenient

recovery of terms corresponding to the unfiltered equations.
=_pf
p
5.1 Filtered Equations

The filtering process is applied to the continuity, momentum, and energy equa-
tions. Details of this process can be found in Appendix A. The resulting equations
are comprised of resolved and unresolved terms. The resolved terms in the filtered
equations directly correspond, in form, to the unfiltered equations. The additional

unresolved or sub-grid terms are modeled as source terms to the equations.
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5.1.1 Continuity Equation

The filtered continuity equation contains only resolved terms. Thus, it corresponds

directly to the unfiltered equation (2.1).

dp  Opu;
a—l_ 6:1;2 N

0 (5.4)
5.1.2 Momentum Equation

The momentum equation contains two unresolved terms (underbraced) that must

be modeled.

dpu;  Opugti; — Jdp 05y - or; o s
ot dx; ox; Ox; O + z; (05j — 74j) (5.5)

S—— —m—m—

7 13

Three stress tensors occur in (5.5). The filtered stress tensor

5'2']‘ == —%/,L(Sijskk + 2/,LS” (56)
The resolved stress tensor
Gij = —2idi;Shi + 2715y, (5.7)
where i = /,L(T), and
~ 1 /0w, Ou;
Sii = = ! ‘ 5.8
J 2<axi+axj> (5:8)

The third is the unresolved or sub-grid scale stress tensor, 7;;. It is this term that

provides the effect of the sub-grid scale turbulence on the larger resolved scales.
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5.1.3 Energy Equation

The Favre filtered energy equation contains five additional unresolved terms (un-

derbraced) that must be modeled.

ot O 0w Ox Ori Ox V1Y T2 g
\_\./_/ 1T W—/
0 80'2'7' ~ 83” 0 _ ~
— = — U; — i — s 5.9
————

X

where the filtered total energy is
€ = ¢+ %m

and the filtered and resolved heat flux vectors are

oT
G = s
4 8332'
~9T
G = k-
4 d’l?l

v

10)

(5.11a)

(5.11D)

where k = k(T). The sub-grid scale heat flux is given by

Qi =p (uiT — alT>

The sub-grid scale turbulent dissipation rate is

—_— A~
du; . du;

= %y Oy
and the sub-grid scale turbulent diffusion is

N —

— _ ] ~
,ODZ =35 (uiukuk — U;ULUE

)

52

12)

(5.13)

(5.14)



The equation of state becomes

p=pRT (5.15)

Since the total energy, equation (5.10), contains the unknown wuuy, pressure must be

obtained using the following expression
p=(y—1)(p& — jpuxtir — §ix) (5.16)

5.2 Sub-Grid Scale Modeling

The unresolved or sub-grid scale contributions to equations (5.9) and (5.5) must
be modeled. The methodology used here is based on the incompressible sub-grid
scale model of Smagorinsky [24]. Additional terms to account for compressibility

were added based on the work of Moin et. al. [28] and Vreman et. al. [52].
5.2.1 Momentum Equation

The Smagorinsky model is a very popular and widely used model for the sub-
grid scale stress tensor. It is an eddy viscosity model where the sub-grid scale stress
tensor is modeled as an eddy viscosity multiplying the resolved stress tensor. It was
developed for incompressible flows and has been frequently extended to compressible

flows. The compressible form of the model, given by Moin et. al., was used here.

T = QC[ﬁA2|§‘25i]‘ — 20ﬁA2‘§| (gu — %gkag”) (517)

— 3
The coefficients C' and C; are user defined constants. The second unresolved term in
the equation results from the nonlinearity of the viscous stresses and is neglected.
The final form of the modeled momentum equation is
dpu;  Opuu; ~ dp 0 Tij

= 9+~ as, 1
ot " o, tow - aa AT %0 (5.18)
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The eddy viscosity is
i = CpA?|S]| (5.19)
and @ is
® = 20pA% S| (5.20)
5.2.2 Energy Equation
There are many different sub-grid models for the energy equation and no one
set of models is as popular as the Smagorinsky model for the momentum equation.
This is because there are many forms of the energy equation that result in different
sub-grid scale terms. It is also because the majority of work in LES has been done
for incompressible flows. The filtered energy equation (5.9) contains five unresolved

terms.

The first term, the sub-grid scale heat flux is modeled based on Moin’s work [28]

Mt 8T
= 5.21
© Pry 0z; (5:21)
The model for the second term comes from Vreman [52] and is given by
Cs
= — 5.22
CT AT (5-22)

The coefficient (5 is a user defined constant. The last three terms are typically
considered to be much smaller than the other terms and are neglected.

The final form of the modeled energy equation is

dpe,  Opuie, . dtup d Pr) YR 1 9T

- —»[mﬁ(ﬁ*”f— =1 Pror,

ol ox; ox; ox Pr, ] t e (5.23)
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5.3 Implementation

The sub-grid scale terms in equations (5.18) and (5.23) and their correspond-
ing models were implemented in both the two-dimensional/axisymmetric and three-
dimensional Navier-Stokes flow solvers. It is important to note that the modified
definition of the pressure (equation (5.16)) must be used.

Because the resolution of scales in a numerical scheme is directly related to the
grid resolution, the filter width A was chosen to be a characteristic length of the
computational grid. Since the grid is not uniform, this length varies widely over the
grid. The filter width at each location was defined as the cubed root of the volume
associated with each grid point.

To maintain a laminar sub-layer in wall bounded regions, the effect of the sub-grid
model must be diminished near the wall. To accomplish this, a Van Driest damping

function [53] was used to scale the effect of the sub-grid terms.

fvp = <1 — e‘(Z—U) (5.24)

where yT is the inner variable distance and the constant A% is set to 26.

The constants for the sub-grid models were chosen based on previous studies.
Erlebacher et. al. [54], Moin [28], and Vreman [52] derived the model constants based
on DNS results. Erlebacher concluded that, ¢’ = 0.012, and Moin gave a range of
values of, 0.008 < ' < 0.014. Moin also provide a range of values for C;, where
0.0025 < C; < 0.009. From these data the coeflicients were chosen to be ' = 0.012,
and C7 = 0.00575. Vreman determined that (5 = 0.6.

Results from LES simulations are obtained in terms of filtered conservation vari-

ables. These variables differ from the exact conservation variables by equation (5.1).
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However, since the form of the filter function, G, is unknown, we cannot recover the
exact conservation variables. We must assume that the difference between the two
forms is small. For convenience, when reporting LES simulation results the overbar

(7 ) and tilde ( 7 ) are dropped in the notation and must be assumed.

NASA/TM—2001-210716 56



CHAPTER 6

FLOW SOLVER

The numerical methods outlined in Chapter 3 are implemented in two computer
codes to solve the unsteady Navier-Stokes equations. Separate three-dimensional and
two-dimensional /axisymmetric codes were created. The codes were written in the
FORTRAN 77 computer language and should run on any computer platform with a
FORTRAN compiler.

While the purpose of the codes is to simulate compressible turbulent jets, they were
written so that they can be easily adapted to a wide range of flows and geometries.

Large-Eddy simulations can be performed by solving the filtered unsteady Navier-
Stokes equations with the sub-grid scale model, or direct solution of the equations
without approximation can be made. By neglecting the viscous terms in the Navier-

Stokes equations the Euler equations can also be solved.

6.1 Generalized Curvilinear Coordinates

To allow easy solution to a wide range of geometries the Navier-Stokes equations
are solved using generalized curvilinear coordinates [55]. This enables the computa-

tional grids to be fitted to complex shapes and allows for grid stretching.
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6.1.1 Coordinate Transformation

Easy and efficient implementation of the numerical scheme is done by working in
a computational domain. This domain is rectangular and consists of equally spaced
grid points. The computational domain (£, 7, () is mapped onto the physical domain

(x, y, z) using the following transformation

5 = f(l',y,Z)
n =n(z,y.2)

§ :g(l’,y,Z) (61)

Derivatives in cartesian coordinates are computed using the chain rule

0 0
fx e +Cx<=

73

(6.2)

The terms &, &, &5 My Nyy N2y Coy Gy, and ¢, are the grid metrics associated with

the transformation. The grid metrics are computed numerically using the following
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method.

& = J(Yynze — yezn)
& = J(aczy — ayzc)
& = J(xaye — cyn)
ne = J(Ycze — vezc)
ny = J(weze — weze)
n. = J(weye — veye)
o = J(Yezy — Yn2e)
G = J(wnze — wezy)
G = J(xeyy — qye) (6.3)

The Jacobian of the transformation, .J, is defined as

1
J= (6.4)
Te(Ynze — Yezn) — Tp(Yeze — Yeze) + 2 (Yezn — Ynze)

The terms x¢, @y, T¢, Ye, Yn, Yco Ze, 2y, and z¢ are computed using fourth-order central
differences in the interior of the grid and one sided differences on the boundaries. The
calculation is easily done in computational space because the grid is evenly spaced in

the £, n, and ( directions.
6.1.2 Chain Rule Form of the Governing Equations

The chain rule form of the governing equations is

00 0 9 9
0 0 0
+§ya—§(F—Fu)+77ya—n(F—Fu)+Cya—C(F—Fu) (6.5)
0 0 0

NASA/TM—2001-210716 59



This form of the equations is a weak conservation form. Most CEFD solvers use a
strong conservation law form of the equations developed by Vinokur [56]. However,
Hixon et. al. [57] recently showed that in practice, the chain rule form of the equa-
tions is more accurate than the strong conservation form when the metric terms are

computed numerically.

6.2 Time Stepping

The time step used to advance the solution is based on the relation

At=CFL (%) (6.6)

where A is the local wave propagation speed and C'FL is the Courant Friedrichs
Lewey number [8], a constant which is based on stability considerations. The term

% is a characteristic time and is computed using the inviscid C'F'L condition [58].

Az (|ul | |w 1 1 T\
Aterpr, = = (— ty T T Azt N t X (6.7)

For time accuracy all points in the domain must be advanced at the same time step.
Therefore, Atcry, is computed at every grid point and the minimum value is used to

compute the time step.

At = CFL- Alorr (6.8)

6.3 Treatment of the Viscous Terms

The computation of the derivatives within the viscous fluxes ( equations (2.4),
(2.8), (2.13), & (2.15a)) is done differently for both numerical methods. The predictor-

corrector schemes require a fairly complex treatment of the viscous terms. Bayliss et.
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al. [36] proposed the following method to maintain the order of accuracy of the Mac-
Cormack type schemes. If the derivative within the viscous flux is being differenced
in the same direction as the flux is differenced, then the derivative in the viscous flux
is computed using a one-sided difference in the direction opposite of direction the
flux is being differenced. If the derivative within the viscous flux is being differenced
in a direction other than the direction the flux is differenced, then the derivative in
the viscous flux is computed using a central difference. Consequently, the derivatives
in the viscous terms are computed twice (one-sided and central differenced) for each
step. The Runge-Kutta based schemes simply use fourth-order central differences for

all viscous derivatives.

6.4 Boundary Conditions

Boundary conditions can be specified on any portion of any grid surface within the
computational grid. This allows for a large range of complex shapes to be modeled
within a single computational domain. Internal portions of the grid that are enclosed
by computational boundaries are specified as "holes”. The conservation variables
within the hole regions are not updated during the solution process. Figure 6.1

illustrates the use of internal boundaries and holes to model a nozzle wall.
6.4.1 Inflow and Outflow Boundaries

The formulation of these boundary conditions is based on the local one-dimensional
propagation properties of the flow [46]. These properties are obtained from the eigen-

values of the Jacobian matrix in the quasi-linear one-dimensional Euler equations.
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The flow is assumed to be one-dimensional in the direction normal to the boundary.
The resulting characteristic variables are w;n;, u;n; + a, and w;n; — a, where n; is the
unit normal vector to the boundary and a is the speed of sound. The variable u;n;
occurs twice in two-dimensional flows and three times in three dimensional flows.
These eigenvalues determine the propagation direction of the characteristic variables

at the boundary.

Subsonic Inflow

For a subsonic inflow boundary u; < a. This results in four (three in two-
dimensions) positive characteristic variables and one negative variable. Therefore
four variables propagate from the boundary into the domain and one variable prop-
agates out of the boundary from the domain. To correctly mimic this behavior in
the computation, so that the problem is mathematically well posed, four of the five
conservation variables are specified at the boundary and one is determined from the
interior.

The flow from the inflow boundary is assumed to be normal to the boundary
so that the transverse velocity components are set to zero. The total pressure, po,
and total temperature, Ty are specified. The velocity normal to the boundary is

extrapolated from the interior. For a constant ¢ surface (constant ¢) with its normal
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vector aligned in the x direction, the conservation variables are are obtained as follows.

2 Ty—1

Q _ Po 14 u(i—i—l,_;,k)

L,k RT, 2RTy _ 42

y—1 (i+1,5,k)
Q%‘,J,k) = Ql(_i,],h)u(i+1,],k)
@3y = 0
Qayy = 0
2

Q5 _ Ql RTO + Y 1 u(i+1,],k) (6 g)

(¢,7,k) (¢,7,k) ,y _ 1 ,7 2 )

Supersonic Inflow

For a supersonic inflow boundary u; > a. This results in five (four in two-
dimensions) positive eigenvalues. Therefore all information propagates along the
characteristics from the boundary to the interior.

All five conservation variables are specified on the inflow boundary and are held

fixed. For a constant ¢ boundary the conservation variables are

Qyid,k) = Ps

Q2,0 = Poclioo

QS(i,g,k) = Pl

Q4(w7k) = PuWy

Q5.0 = PoClu (6.10)

Subsonic Outflow

For a subsonic outflow boundary u; < a. This results in four (three in two-

dimensions) negative eigenvalues and one positive one. Here information from four
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of the characteristics propagates from the interior to the boundary and information
from one characteristic propagates from the boundary to the interior.

The static pressure, p., is specified on the outflow boundary. Density and all three
velocity components are extrapolated from the interior. Total energy is computed

using the specified static pressure and the extrapolated density and velocities.

Ql(imam,j,k) - Ql(imaw—l,j,k)

CgZ(ivna,m,],k) - Qz(‘ivnam—l,_),k)

QS(imam,J7k) - Q3(,‘mam—1,j,k)
Q4(1mar,],k) — Q‘/‘l(tma:c—l,]vk)
2 2 7
Q5 f— pe + QQ(imam,],k) + QS(imam,],k) + Q4(imam7]7k) (6 11)
imaxzx,j,k) |
( 7,k) v = 1 2Q1(imam,j,k)

Supersonic Outflow

For a supersonic outflow boundary u; > a. This results in all five (four in two-
dimensions) eigenvalues being negative. Information from all characteristics propa-
gates from the interior out through the boundary.

All five conservation variables are extrapolated from the interior onto the bound-

ary.

Ql(imawwk) = Ql(im@z—l,],k)
Qimaes ) = Q2(imasrm
Q3(imw,J,k) = Q3(imax_1,J,k)
Qitimansi) = Qi (imani )
Qsimassy = Dimasmiom (6.12)
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Non-Reflecting Exit Zone

Waves that propagate from the interior of the domain to the outflow boundaries
can reflect off the boundary and back into the computational domain. These reflected
waves are non-physical and may contaminate or distort the solution. These reflections
occur because the extrapolation of interior information to the boundary is done along
grid lines and not in the direction of the propagating waves.

Expanding the computational domain so that the boundaries are far away from
the area of interest reduce this problem, but adds significantly to the computational
cost. Several authors have attempted to eliminate these reflections through the use
of characteristic boundaries [59-61]. However, these efforts have met with limited
success for two- and three-dimensional applications.

A relatively simple and more effective method to reduce reflections is the use of
"exit zones” [18,61,62]. In this method a simple outflow boundary condition, such
as those outlined above are used. In the region adjacent to the outflow boundary,
a combination of grid stretching and solution filtering is used to damp the outgoing
and reflected waves. Rapid grid stretching increases Az and therefore increases the
associated dissipation in the truncation error of the numerical scheme (equations
(3.5), (3.8) and (3.10)). Solution filtering (section 3.4) provides additional dissipation

that damps a large range of wavelengths.
6.4.2 Solid Surfaces

Two options exist to model solid surfaces. Surfaces in viscous calculations are
specified with a no-slip wall boundary condition. Surfaces in inviscid calculations

and planes of symmetry are specified using a slip wall boundary condition.
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No-Slip Wall

The no-slip wall boundary imposes no relative motion between the fluid and the
solid surface. Enforcing no-slip at the wall is done by setting all velocity components
on the boundary to zero. The density and total energy are determined using two
additional constraints. The first constraint stems from boundary layer theory. The
pressure gradient normal to the wall is set to zero. The second constraint assumes no
heat transfer through the wall, and consequently the temperature gradient normal to
the wall is set to zero. For an n constant wall (constant j), the conservation variables

are written as

Ql(i,],k) = Ql(i,]+1,k)
Q2 = 0
Qs = 0

Q4<m,k> = 0

2 2 2
s, - = s, . — QQ(”‘H”C) + QS(%HL’“) + Q4(i31+1,k)
a8 GatnH) QQl(i,JH,k)

(6.13)

This formulation assumes that the grid lines are normal to the wall.

Slip Wall

An inviscid wall surface and a symmetry plane share the same constraints and
hence the same boundary condition. The velocity vector of the flow along the surface
must be tangent to the surface. To accomplish this, the velocity vector one point
off the wall is decomposed into components that are normal and tangential to the
surface. The normal component is then removed from the velocity vector and this

vector is imposed on the boundary. The loss in kinetic energy due to the normal
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velocity is compensated for by correcting the total energy on the boundary based on
conservation of total enthalpy. The density gradient at the wall is assumed to be
constant. For an n constant wall (constant j), the conservation variables are written

as
Ql(iwk) = Ql(erl’k)

_ UL
QQ(W,M - Q (4,74 1,k) Ql ,J+1k 77027 n 77_5 + 7]3

_ Ty
QB(,‘,J,k) - Q (4,54 1,k) Ql (4,54 1,k) 773 n 775 i 773

— 772
Q4(i,],k) - Q (i,741,k) Ql (¢,5+1,k) m

—1
< . >QIU+HU2 (6.14)

DO | —

Q5(i,g,k) - Q5(i,y+1,k)_

where the magnitude of the normal velocity, U, is

- 771‘ 77y 772
Un:u. = S0 —_— }+ w,. = —————
(4,5+1,k) /779% + 775 + 773 (1,9+1,k) /77925 + 775 + 773 (t,34+1,k) /77920 + 775 + 773

(6.15)

The metric terms 7, 7y, and 7. are evaluated on the boundary.
6.4.3 Other

The following boundary conditions result from computational necessity, not phys-

ical modeling.

Changes for Fourth-Order Schemes
The fourth-order schemes call for special treatment one grid point away from the
boundaries. Both fourth-order numerical schemes require two points on either side of

a grid point to compute the derivative at that point. One point from a boundary, the

scheme must be modified using a skewed difference stencil to prevent over-running
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the bounds of the storage arrays and to maintain fourth-order accuracy. The "skewed
forward” and ”"skewed backward” fourth-order difference stencils are

Af | _ Jis = 6fip2 +18fips —10fi —3fiy

= 1
0% | frod 12(Ax) (6.162)
of 3fipr +10fi = 18f; 1 + 102 — fi=s \
0T lywa 12(Az) (6.16b)

Pole Boundary

The collapsing of a grid surface to a line or "pole” is often done to model cylindrical
objects in generalized curvilinear coordinates. Figure 6.2 illustrates how a volume in
computational space is transformed to a sector of a right circular cylinder. Values for
the variables on the collapsed surface (ju:, in figure 6.2) are obtained by averaging the
values over the collapsed index, one point off of the collapsed surface. For example,
on a constant n surface where ( lines are collapsed to a point, the values of the
variables at each ¢ point on the 5 surface are obtained by taking the mass average of
the variables over all ¢ at n 4+ 1. This boundary condition is used for the axis in a

three-dimensional cylindrical calculation. The average flowfield values are determined
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Ugug

Vgug

Wayg

Pavg

The conservation variables on the boundary are then

Quijp =
Q2isp =
Qaym =
Qai,p =
Qsim =

Axis of Symmetry

= kiaf Py (kmw ,O_k)
k=1 Jk k=1 “k
-1
_ Fmaz PLU, (kf'max p_k)
k=1 Jk k=1 k
kma.’r kmaT _1
k=1 ]"’ k=1 k
-1
_ ]Cm,a:r pkpk (lﬁnar p_k)
k=1 Jk k=1 k
(6.17)
Pavg
pavguaug
PavgVauvg
Pavg Wavg
Pav 1
. —91 + §pavg (Uzvg + Uzug + wzl,g> (618)

A boundary condition is needed for axisymmetric analyses on the bounding grid

line where r = 0, the axis of symmetry. Since the flow is symmetric about this axis

no flow may cross the grid line. Therefore, the velocity vector must be tangent to the

boundary. This restriction is the same as the restriction for the slip wall boundary

and hence, the same method is used to impose the constraints (equation (6.14)).
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Overlap

The grid topology commonly referred to as an “O”-grid is frequently used to
model round objects and domains, such as cylinders, airfoils and pipes. The do-
main is formed by wrapping the grid around upon itself so that the minimum and
maximum boundaries of a common index are coincident (figure 6.3). The coincident
computational boundaries are in the interior of the physical domain and must be
treated as if they were also on the interior of the computational domain so that they
do not create a non-physical barrier on the interior of the domain. In other words,
the governing equations should be solved on these boundaries as if they are in the
interior of the computational domain and information must be readily passed across
the boundaries. This is done by overlapping the grid so that at every point where a
skewed difference is performed the result can be replaced with a central differenced
value from a coincident point in the overlapped region. Table 6.1 lists the skewed
differenced grid points and the coincident central differenced points necessary for the

overlap boundary condition.

boundary point interior point
(skewed difference) (central difference)
1 ks — 4
2 kmar — 3
kpar — 1 3
ks 4

Table 6.1: Coincident grid points in overlap region
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6.5 Computer Resource Requirements

The memory and CPU time required are reported for both the 2D and 3D codes.
The resource requirements reported are for Silicon Graphics workstations, which were
used for all the large scale calculations in this document.

Memory requirements for the two-dimensional /axisymmetric and three-dimensional
codes are reported in table 6.2. Both single and double precision requirements are

given.

bytes/grid pt.

code single precision double precision
2D /Axi. 244 472
3D 360 700

Table 6.2: Memory required

Table 6.3 contains CPU times for all possible combinations of code (2D, axisym-
metric, or 3D), equations (Euler, Navier-Stokes, or LES) and numerical scheme. The
execution times are presented as time per iteration per grid point in seconds. The
CPU times were obtained using a Silicon Graphics Power Indigo® workstation with
a MIPS R8000 processor running at 75MHz. The code was compiled using double

precision data and the compiler options were chosen for maximum performance.

6.6 Parallel Implementation

Parallel processing is an efficient and inexpensive method to speed the execution

of computer programs [63-65]. UNIX workstations with multiple central processing

NASA/TM—2001-210716 71



code equations scheme time/iter./grid pt. (sec)
2D Euler Gottlieb-Turkel 9.092-107°
Euler Runge-Kutta 1.654-107°
Navier-Stokes  Gottlieb-Turkel 1.218-107°
Navier-Stokes  Runge-Kutta 2.122:107°
LES Gottlieb-Turkel 1.655-107°
LES Runge-Kutta 3.196-107°
Axi. Euler Gottlieb-Turkel 9.415-107°
Euler Runge-Kutta 1.732-107°
Navier-Stokes  Gottlieb-Turkel 1.498-107°
Navier-Stokes  Runge-Kutta 2.808-107°
LES Gottlieb-Turkel 1.982-107°
LES Runge-Kutta 3.945-107°
3D Euler Gottlieb-Turkel 6.898-107°
Euler Runge-Kutta 1.069-10*
Navier-Stokes  Gottlieb-Turkel 1.182-10~*
Navier-Stokes  Runge-Kutta 1.555-10*
LES Gottlieb-Turkel 1.394-10~*
LES Runge-Kutta 2.074-107*

Table 6.3: CPU time required

units (CPU’s) are widely available and cost a fraction of the price of super-computers.
Codes written to take advantage of the parallel architecture of these machines can
execute as fast or faster than on a comparable super-computer. Parallel processing
achieves this performance increase by dividing the work normally done by a single
central processing unit amongst several CPU’s.

There are two primary methods used for the parallel processing of CIF'D solvers.
The first is distributed memory processing. In this method each CPU uses a separate
bank of memory for its calculations. Communication of data between CPU’s is done

explicitly through user implemented interfaces. Often the CPU’s do not reside in the
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same computer, but operate as separate workstations connected through a network. A
typical distributed memory CFD solver divides the computational domain into several
sub-domains which are each solved on separate processors. The interfaces between
sub-domains are treated as boundary conditions and are updated by passing updated
solution values to adjacent sub-domains. This method requires limited communica-
tion between processors, and is therefore suitable for networked workstations, because
data is only passed at the end of each iteration or set of iterations. It works very well
for low order steady-state flow calculations. High order unsteady calculations are ill
suited for this method because it would be necessary to pass large amounts of data
between interfaces at every iteration to maintain both temporal and spatial accuracy.

The second method, shared memory processing, was used in this study. In this
method, a set of CPU’s share access to a common bank of memory. Communication
between processors is implicit and no special interfaces are required. Shared memory
systems consist of multiple processors housed in the same computer with a high
speed high volume bus connecting the processors to the memory bank. Because
the processors are closely coupled through the shared memory, the division of labor
between processors can also be closely coupled. This division of labor is done at the
loop level. The work performed in a FORTRAN ”DO” loop is divided between CPU’s
with each processor working on a fraction of the total loop. For example, a "DO” loop
which is indexed from 1 to 100 could be split between 2 processors with one processor
operating from 1 to 50 and the second operating from 51 to 100. Implementing
this method is done through the insertion of compiler directives into the code. The
directives indicate which loop is to be parallelized and how the variables are shared

in memory. Care must be taken to identify data dependencies so that variables whose
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value depends on the current loop index are not overwritten by processors operating
on another portion of the loop. Explicit CFD methods are well suited for this type
of parallelization because the data dependencies are limited and easily overcome.

The performance of a parallel code is measured by its speedup and efficiency.
Speedup is simply the ratio of the time required for single processor computation to
the time required for a multi-processor computation.

S(n) T

(6.19)

where T, is the time required for an n processor computation. The efficiency of the
job is the ratio of the speedup to the number of processors.

E(n) = Sn) _ T (6.20)

n nT,

Ideally a the speedup of a parallel code would vary linearly with the number of
processors. Two primary factors limit the speedup; processor idle time and commu-
nication time between processors. Processor idle time is the time the code spends
outside the parallelized loops. During this time only one processor is active and the
potential work of the other processors is wasted. Communication time is the de-
lay during which data is passed between processors and the shared memory. It is a
property of the computer and varies greatly between machine types.

The performance of the 2D /axisymmetric code was measured on a Silicon Graphics
36 processor Power Challenge computer. The code was run on a representative jet
calculation using a grid containing 38,829 grid points. A calculation consisting of
1,000 iterations using the Runge-Kutta scheme was repeated 10 times using an even
number of processors from 2 to 20. Results were compared to a baseline calculation

performed on one processor. This procedure was repeated four times. Speedup and
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efficiency are presented in figures 6.4 and 6.5. The variation in results between each set
of data is due to the architecture of the computer that was used. The data (memory)
bus for this machine was insufficiently sized to transfer data for all 36 processors. The
communication delay time varies with the number of jobs being run on the system
and the number of processors for a given parallel job. Each set of parallel runs were
made with the computer under different loads and hence the time required for the
runs differed. Regardless, the data do show that a linear speedup is seen up to about
16 processors. Because the computer’s performance varied with its load, the parallel
efficiency cannot be definitively determined. In fact figure 6.5 shows some efficiencies
exceeding one. This is most likely due to the load on the machine being reduced after
the one processor job was run. Consequently, the baseline one processor run is not

appropriate for computing the efficiency of the current multi-processor run.

6.7 Validation

To insure accurate implementation of the numerical schemes, the codes were val-
idated using three simple test cases in both two and three dimensions. The code’s
results were compared to exact solutions to insure that they produced acceptable
solutions.

The standard Runge-Kutta scheme (section 3.2.1) was unstable with or without
solution filtering and did not provide a converged solution for any of the two- or three-
dimensional calculations. The low dispersion Runge Kutta scheme (section 3.2.2)
did provide stable solutions for all calculations attempted. All Runge-Kutta results

reported hereafter were obtained with the low dispersion scheme (equation (3.9)).
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6.7.1 Laminar Flat Plate

Laminar flow over a flat plate was used to check the accuracy of a viscous solution.
Skin friction along the plate and the self-similar velocity profile are compared to the

exact solution of Blasius, as given by Schlicting [66]. The skin friction is computed

using
du
K 3y
Cr=1—7% (6.21)
2Po0UZ,
and the plate Reynolds number is
oo Unos
Re, = feeet (6.22)
[hoo

The velocity profiles normal to the plate surface can be made self-similar by intro-

ducing a dimensionless coordinate.

— (6.23)

The Reynolds number based on plate length is 10,000 and the freestream Mach
number is 0.2.

Two-dimensional solutions were obtained with both numerical schemes. The sixth-
order filter was used for both calculations. The grid that was used is shown in figure
6.7. The grid dimensions were 157 points in the streamwise direction and 117 points
normal to the plate surface. Subsonic inflow and subsonic outflow boundaries were
specified on the left and right boundaries respectively. A no-slip wall was specified on
the lower boundary and an extrapolation condition (the same as supersonic outflow)
was specified on the upper boundary.

Skin friction results for both the Runge-Kutta and Gottlieb-Turkel scheme are

shown in figure 6.8. The Runge-Kutta scheme slightly over predicts the skin friction
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relative to the Blasius solution. The Gottlieb-Turkel scheme underpredicts the skin
friction and is in greater error than the Runge-Kutta scheme.

The self-similar velocity profiles are shown in figure 6.9. Several streamwise sta-
tions, Re, = 2000, 4000, 6000, and 8000 are plotted to verify the code reproduces
the self-similarity. The Runge-Kutta results are very close to the Blasius solution.
The Gottlieb-Turkel profiles show a thicker boundary layer thickness with a smaller
velocity gradient at the wall. This is consistent with the skin friction data.

To validate the three-dimensional code, a 3D grid was created that consists of
fifteen evenly spaced 2D grid planes. The 3D code was run using both numerical
schemes and the results were compared to those of their 2D counterparts. Skin
friction and velocity profiles at Re, = 4000 are compared for both schemes (figures
6.10 & 6.11). The agreement between between the two- and three-dimensional codes

is excellent for both schemes.
6.7.2 Supersonic Wedge

Supersonic flow over a two-dimensional wedge was used to test the ability of the
code to predict inviscid flows and shock waves. A 15 degree wedge in a Mach 2
freestream flow was simulated (figure 6.12). Pressure coefficient on the wedge surface

was compared to the exact solution.

P — P
(0 — PP 6.24
g %PooUgo ( )

The grid dimensions used were 121 points in the axial direction and 81 points in the
vertical direction. The grid is shown in figure 6.13. Uniform supersonic flow was set
at the inflow boundary. Supersonic outflow conditions (extrapolation) were set on

the right and upper boundaries. A slip wall was specified on the lower boundary.
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Two-dimensional results are shown in figure 6.14. Overall the results are in good
agreement with the exact solution. But, the shock location is smeared over several
grid points and some oscillation in the solution exist both upstream and downstream
of the shock wave. A comparison of numerical schemes using the sixth-order filter
shows very little difference. The presence of the shock wave reduces both schemes to
first-order accuracy (the location of the shock is directly related to the grid spacing)
nullifying any accuracy advantage of the Runge-Kutta scheme. The affect of fourth,
sixth, and eighth order filters on the shock location and oscillations was examined
with the Runge-Kutta scheme (figure 6.14(b)). The lower order filters reduced the
oscillation without significant affect on shock location or strength.

Results of the 2D and 3D codes are shown in figure 6.15. For both numerical

schemes the 2D and 3D pressure distributions compare very well.
6.7.3 Supersonic Cone

To test the axisymmetric terms in the two-dimensional/axisymmetric code and
provide a true three-dimensional flowfield for the three-dimensional code, flow over
a supersonic cone was validated. This test case uses the same flow conditions and
turning angle as the wedge case. But, the body is treated as a body of revolution
rather than a planar object. For the axisymmetric simulation, the grid for the wedge
case was used (figure 6.13) and the axisymmetric source terms in the flow solver were
activated.

The three-dimensional grid represents a 15 degree section of the cone and its
flowfield. It was generated by rotating the 2D /axisymmetric grid about the centerline.

A 2D /axisymmetric grid plane is located every one degree in the physical domain.
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The exact solution for the pressure coefficient on the cone surface was obtained
from the charts in NACA Report 1135, “Equations, Tables, and Charts for Com-
pressible Flow” [67].

Results for both schemes in 2D are very good (figure 6.17). Both schemes smear
the shock location over several grid points. Unlike the wedge calculation the shock
oscillations are weaker and do not over-shoot the pressure behind the shock. The 3D
results from the Gottlieb-Turkel scheme (figure 6.18(a)) differ from the 2D results
due to a more pronounced pressure oscillation about the shock. The 3D results from

the Runge-Kutta scheme (figure 6.18(b)) compare well to its 2D counterpart.
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(a) computational grid

!

(b) internal object in grid (c) grid point specification (filled = ac-
tive, open = hole, both = boundary)

Figure 6.1: Modeling an internal object using hole points
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Figure 6.3: Overlap boundary condition
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Figure 6.6: 2D laminar flat plate

Figure 6.7: 2D grid for laminar flat plate calculations
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Figure 6.8: Skin friction coefficient for laminar flat plate
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Figure 6.9: Velocity profiles for laminar flat plate
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Figure 6.10: Comparison of 2D and 3D Gottlieb-Turkel schemes for laminar flat plate

NASA/TM—2001-210716 87



Figure 6.11:
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Figure 6.12: Mach 2 flow over a 15 degree wedge
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Figure 6.14: Pressure distribution on wedge surface
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Figure 6.15: Comparison of 2D and 3D codes for wedge calculation
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Figure 6.18: Comparison of 2D and 3D codes for cone calculation
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CHAPTER 7

COMPUTATION OF A NOZZLE FLOWFIELD

The flow solver described in the previous chapter is now applied to a round super-
sonic jet. The computational results are compared to high quality detailed data. The
effects of grid resolution and several numerical modeling parameters on the solution

are studied. Finally, a thorough examination of the flowfield is presented.

7.1 Description of the Nozzle

The nozzle geometry and data of Panda and Seasholtz [68-71] were selected for
study. This data set was obtained using the non-intrusive Rayleigh scattering tech-
nique. It is based on the measurement of laser light scattered by the air molecules.
This technique eliminates errors due to probe interference in hot wire and pitot probe
measurements and biasing errors due to seed particles in Laser Doppler Velocimetry
(LDV) and Particle Image Velocimetry (PIV) measurements. The data consists of
time averaged centerline and radial velocity profiles.

The nozzle is a one inch diameter convergent-divergent round nozzle with a de-

signed exit Mach number of 1.4. The nozzle exhausts into quiescent air. The Reynolds
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number based on nozzle diameter is 1.2 million. The nozzle was operated at its min-
imum shock condition which was slightly less than its design Mach number. The

operating conditions are given in table 7.1.

quantity symbol value units
ratio of specific heats vy 1.4

nozzle plenum pressure Po, 6524.9 J%g
nozzle plenum temperature To, 540.0 R
nozzle exit Mach number M; 1.395

nozzle exit diameter D; 0.0833 ft
jet velocity U; 1348.4 L
ambient pressure Poo 2064.8 J%;
ambient temperature T 5346 R
Reynolds number Re; 1.2-10°

Table 7.1: Nozzle operating conditions

7.2 TFlowfield Statistics

Analysis of RANS solutions is both simplified and limited by the Reynolds aver-
aging process. The RANS codes readily provide a time averaged solution for analysis.
However, these solutions lack any unsteady flowfield information. The unsteady solu-
tions obtained here contain much more information. But the amount of information
is overwhelming and must be processed and simplified before it can be successfully

analyzed.
7.2.1 Time Averaging

The instantaneous solutions produced by the analysis code sometimes bear little

resemblance to the time average of the flowfield. To compare the present results
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with experimental data, empirical correlations and exact solutions a time average is

computed as

o) = éfw e 0)dt (7.1)

and the instantaneous value of the function can be written as a sum of the time

averaged and fluctuating quantities

f=r+7f (7.2)

In this notation the traditional over-bar (7) and prime () have been replaced with a
double bar () and double prime (") to avoid confusion with the filtered quantities
in the LES equations.

For the jet calculations a time average of density, pressure, and the three velocity
components were kept. In addition, the time average of the squares of density and

velocity components are kept to compute turbulent statistics.
7.2.2 Turbulent Statistics

Turbulent statistics can readily be computed from the time averaged flow variables

being stored during the calculation.

FP= -7 (7.3)

By substituting the velocity components into equation (7.3) we obtain the normal

components of the Reynolds stress u'?, v

2 2 .
"2 and w"”. The root mean square value is

simply

foe =77 (74)
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The root mean square velocities are typically expressed as turbulent intensities.

=N

<N

gy

urms _ U
Uj UJ
H

Urms . v
Uj Uj
Wrms w

Turbulent kinetic energy is defined as

_l "2
k—Q(u

+F+W)

(7.8)

For the LES calculations the turbulent kinetic energy is comprised of resolved and

sub-grid scale components.

where

k:%(&ﬁ—}-

kegs = —=

~112 ~112

v 4w

T kk

¢

We nondimensionalize k using the jet velocity.

k

k*:—(

U?

1
277

7.2.3 Two Point Correlations

(7.9)

(7.10)

(7.11)

Correlations of velocity signals at two points within the flowfield can lend insight

into the structure of the turbulence [72] & [2]. Chu [73] experimentally applied two

point correlations to jet flows. He obtained a turbulent length scale (eddy size) and

convection velocity from the correlated data. Scott [74] presented preliminary two
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point correlation data, obtained with CFD, for Chu’s jet. While the comparison of
the CFD and experimental correlations was inconclusive, due to insufficient simula-
tion time, this work indicated CFD obtained correlations were were possible. Chu’s
methodology was followed in this study.

The location where the turbulent information is desired is specified by the vector
¢:, whose origin is at the center of the nozzle exit (figure 7.1). A pair of points evenly
spaced on either side of this location is specified by a separation ;. Instantaneous
velocity data at these three points are saved for the correlations.

The general form of the two point space-time correlation coefficient is

R(¢27 7_) _ Uél’/(qbz - ¢2/27 t?/fjél’/(qbi + ¢i/27t + T) (712)

Ué’ (qb“ t)

where Uy is the component of velocity that makes an angle § with the jet axis and 7 is

a delay time. The correlation coefficient is a measure of similarity of the two signals.
A value of R near +1 indicates that the two measurements are highly correlated.
The location about which the two point correlations were taken was located six
jet diameters downstream of the nozzle exit on the jet lip line. Fight separations in
the axial direction of up to one jet diameter were used. Table 7.2 summarizes the

location and separation vectors for the two point correlations.

Turbulent Length Scale

Two point space correlations, where the delay time is zero (7 = 0), can be used to
determine a turbulent length scale. Several sets of correlation coefficients at different
separations are computed. The separation distance over which the velocities are

highly correlated is used as an estimate of the length scale /.

= AOO R(tr, 0)de; (7.13)
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vector coordinates

location o; [6D;,D;/2,0]"
Ist separation ! [D;/8,0,0]7
2nd separation 2 [D;/7,0,0]"
3rd separation ¢!  [D;/6,0,0]7
4th separation ! [D;/5,0,0]"
5th separation ¢  [D;/4,0,0]"
6th separation ¢  [D;/3,0,0]"
Tth separation !  [D;/2,0,0]"

8th separation : [D;,0,0]"

Table 7.2: Two point correlation location information

Convection Velocity

Two point space-time correlations can be used to determine the convection velocity
of a turbulent eddy. For a given separation, 1;, the correlation coefficient is computed
over a range of delay times. The value of 7 where the correlation coefficient is a
maximum indicates the time necessary for a disturbance at the upstream point (¢; —
¥;/2) to reach the downstream point (¢; + ;/2). This time and the separation

distance are then used to compute the convection velocity.

v, = 10l (7.14)

T

Romazx

7.3 Axisymmetric Solutions

Assuming that the flow is symmetric about the jet axis reduces the problem to two
dimensions. Using this assumption would significantly decrease the computational
expense of a solution and allow for a greater number of parametric investigations to

be done. However, turbulence is inherently three-dimensional and it is not expected
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that a solution obtained with the axisymmetric version of the CFD solver will yield
physically realistic results. Here, the axisymmetric analyses are used to investigate
numerical issues, grid resolution, numerical scheme, and boundary conditions, and

the knowledge gained is applied to the three-dimensional simulations.
7.3.1 Grid Generation

The computational grid specifies the nozzle geometry and computational domain
for the calculations. Unlike previous LES analyses of jets, the internal nozzle contour
and nozzle lip were modeled. The internal nozzle boundary layer and vortex shedding
from the nozzle lip may affect the growth and stability of the shear layer. It was felt
that it was important to include these effects in the simulation. Also, by including
the internal nozzle the inflow boundary is moved away from the region of interest,
the jet shear layer, reducing the influence of the artificial boundary condition.

The computational grids used for the analyses were generated using the commer-
cial software package Gridgen [75]. The grid points were clustered near the nozzle
walls using hyperbolic tangent stretching to resolve the boundary layers [76]. The
grid was also clustered near the nozzle exit plane to capture the unsteady vortex
shedding from the nozzle lip and the initial formation of the shear layer. The cell
aspect ratio at the upper and lower corners of the nozzle lip was set to one. Grid
point clustering in the expected region of the shear layer downstream of the nozzle
lip was also implemented. The computational domain extends 20 nozzle diameters
downstream of the nozzle exit in the axial direction and 10 nozzle diameters from the
jet centerline in the radial direction. A representative grid with 301 point in the axial

direction and 129 points in the radial direction is shown in figure 7.2.
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7.3.2 Specification of Boundary Conditions

All the axisymmetric jet computations used the same boundary conditions (figure
7.3). Subsonic inflow using the jet plenum conditions was specified at the inflow of
the internal nozzle section. The no-slip wall condition was used for the internal and
external nozzle surfaces. An axis of symmetry/slip wall condition was used on the jet
centerline.

Simulating the quiescent conditions of the surroundings can cause numerical dif-
ficulties. The boundary conditions are formulated assuming a known flow direction
(inflow or outflow). In the still air small disturbances may cause portions of a bound-
ary to have an inflow and other portions to have an outflow. This leads to over or
under specification of the boundary and numerical errors result. To overcome this
problem a small freestream flow is imparted to ensure a coherent flow direction and
properly specified boundaries. In this case a Mach 0.05 freestream was used. Subsonic
inflow was specified on the upstream external boundary using the freestream total
conditions. Conditions on the upper boundary were extrapolated from the freestream.

The subsonic outflow boundary condition imposes a constant pressure over the
entire boundary. In reality the pressure on the outflow boundary varies in both time
and space. To accommodate this pressure variation while maintaining the correct
freestream flow a combination of subsonic outflow and extrapolation conditions were
used. The subsonic outflow condition was specified on the upper portion of the down-
stream boundary to maintain the correct pressure level in the freestream. Conditions
on the rest of the downstream boundary were extrapolated from the interior to ac-

commodate both temporal and spatial pressure variations near the jet centerline.
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7.3.3 Effect of Grid Resolution

The effect of grid resolution on the solution was investigated. Three grids were
used, where the grid spacing in each direction was halved from the previous grid. All
solutions were obtained with the Runge-Kutta scheme using an eighth-order filter.
The sub-grid scale model was not used. Because the grid spacing is not uniform,
it is difficult to quantify. Here, the spacing was represented by a nondimensional

computational grid size.

Az™ = /AL Any (7.15)
As the grid resolution was increased, the resolution of the unsteady flowfield im-

grid dimensions Azx* ﬁmax an,w |-
coarse 151 x 65 1.0206-1072 0.20006 0.15480 0.047999
medium 301 x 129 5.1031-107% 0.26266 0.20305 0.096392

fine 601 x 257 2.5516-107° 0.32909 0.22788 0.12178

Table 7.3: Effect of grid resolution on axisymmetric solution

proved. The change in entropy of the flowfield can be used to visualize the turbulent
structures in the flowfield. The viscous mixing of the jet and ambient air increases the
entropy of the flow. The vortices alter the shape of the mixing region and this altered
shape can be seen in the gradients of entropy in the mixing layer. Figure 7.4 shows
contours of entropy for the three grids used. The plots show a dramatic increase in the
resolution of vortical structures with grid resolution. A more quantitative measure,
the maximum of the turbulent statistics in the flowfield, are shown in figure 7.5. The

turbulent intensities and kinetic energy increase as the grid spacing decreases (as the
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grid dimensions ~ Az/k

coarse 151 x 65 2081.5

medium 301 x 129 1040.8
fine 601 x 257  520.40

Table 7.4: Comparison of grid spacing to the Kolmogorov scale

grid resolution increases). This result is expected as the intensities and kinetic energy
should increase as the grid is refined and the scheme increasingly captures more of
the smaller energy containing eddies. With even further resolution one could expect
the energy to decrease as the inertial subrange and Kolmogorov scales are reached,
where the energy is dissipated.

To compare the grid spacing to the Kolmogorov scale, an average cell size was

computed as follows

M = Al’*\/ Lgm’d . Hgm’d (716)

where L4 and H,, ;4 are the overall length and height of the grid. The Kolmogorov
scale was estimated using equation (1.1) and assuming the integral length scale is
approximately %D]-. Table 7.4 shows that even for the finest grid the cell size is over

500 times larger than the Kolmogorov scale.
7.3.4 Comparison of Numerical Schemes

A comparison of the two numerical schemes was performed on the medium sized
grid (301 x 129). The solutions were run for two characteristic acoustic times (the
time for an acoustic wave to pass through the solution domain) to establish proper

initial conditions for obtaining turbulent statistics. The solutions were then run for an
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additional two characteristic times and the flowfield was averaged. Both schemes were
run using their maximum stable time step. Figure 7.6 shows the entropy contours for
the two schemes. The Runge-Kutta scheme exhibits more vortical structure and the
initial vortex roll-up of the shear layer occurs earlier. Table 7.5 quantifies the results in
terms of turbulent intensities and kinetic energy. The Runge-Kutta scheme predicts
higher maximum turbulent intensities and kinetic energy than the Gottlieb-Turkel
scheme, indicating better resolution of the flowfield. The simulation time presented
in the table is the ratio of the time required to the time required for the Gottlieb-
Turkel scheme. Consistent with the one-dimensional results, the Runge-Kutta scheme

is more computationally efficient, using 16.5 percent less CPU time.

o~
=

scheme Umaz Umaz K v time

Gottlieb-Turkel 0.26033 0.18561 0.080193 1.00000
Runge-Kutta  0.26266 0.20305 0.096392 0.83523

Table 7.5: Effect of numerical scheme on axisymmetric solution

7.3.5 Evaluation of Exit Zone Boundary Condition

The use of an exit zone outflow boundary has been advocated in the area of
computational aeroacoustics where proper resolution of very low magnitude acoustic
waves is critical. It is not clear that an exit zone is required when the simulation is
not intended to capture acoustic waves. The need for and effectiveness of the exit
zone boundary condition was tested by comparing solutions with and without this

boundary treatment. The computational grid was modified by adding an exit zone,
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a region of highly stretched grid cells downstream of the previous outflow boundary
(figure 7.7). Fifteen additional grid planes were added using a ten percent geometric
stretching factor. The simulations were run using the Runge-Kutta scheme with a
sixth-order filter.

Entropy contours show some differences in the turbulent structures. But, it is not
clear that the differences are due to any reflecting waves. Turbulence levels given in

table 7.6 indicate very little difference between the two solutions.

boundary condition ﬁmx ﬁm(w k..
Exit Zone 0.30181 0.20379 0.096595

No Exit Zone 0.26266 0.20305 0.096392

Table 7.6: Effect of exit zone boundary condition on axisymmetric solution

7.3.6 Effect of the Sub-Grid Scale Model

The solutions obtained thus far have not used the sub-grid scale model. They are
in effect DNS solutions. However, the grids used are not fine enough to resolve all
the turbulent scales. Scales smaller than the grid size are not computed and their
contribution is lost. Since these scales tend to dissipate the larger eddies, the solu-
tions without the sub-grid model should predict larger more energetic eddies than a
corresponding LES solution. The use of the term DNS to describe these solutions is
misleading because DNS implies that all the turbulent scales are computed. There-

fore, these solutions will be referred to as “coarse grid DNS” solutions.
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An LES solution on the medium grid was run and compared to its “coarse grid
DNS” counterpart. Entropy contours are compared in figure 7.9. The additional
dissipation from the sub-grid model serves to damp the large scale structures. This
behavior is evident by observing the initial vortex roll-up in the mixing layer. The first
large eddies occur further downstream in the LES solution due to the eddy viscosity
from the sub-grid model. Overall, the LES solution produces less turbulent mixing,

7 percent less turbulent intensity and 14 percent less turbulent kinetic energy (table

7.7).

small scale modeling U o Vimaxr k*

max

without sub-grid model 0.26266 0.20305 0.096392
with sub-grid model ~ 0.24247 0.18797 0.082770

Table 7.7: Effect of sub-grid scale model on axisymmetric solution

7.3.7 Evaluation of the Axisymmetric LES Solution

To obtain a steady time averaged solution, the LES solution was run for 100,000
iterations, which corresponds to 0.0052 seconds of simulation time. The instantaneous

solution was averaged every 100 iterations.
Analysis of the Flowfield

Contour plots of sample instantaneous and time averaged flowfield quantities are
shown in figures 7.10 through 7.12. The turbulent structures present in the mixing

layer are clearly seen in the instantaneous contour plots. The density contours (figure

7.10) reveal the shock structure in the potential core. The radial velocity contours
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(figure 7.12) provide good visualization of the vortical structures. The time averaged
plots show smoothly varying gradients in the mixing layer and are analogous to a
flowfield obtained from a RANS solution or analytic method.

Plots of ,5, 5, 5, and k, are show in figures 7.13 through 7.16. All the turbulent
quantities exhibit a similar structure. The detail plots of the nozzle exit show a
small concentrated unsteady region at the nozzle lip caused by vortex shedding. This
region is followed by a region dominated by very small scale turbulence. Radial
velocity contours in this region (figure 7.17(a)) show that no large scale structures
exist. But, a plot of the sub-grid scale turbulent kinetic energy. 7, shows that the
energy from the small scales peak in this region (figure 7.17(b)). Downstream of the
small scale region, the mixing layer becomes unstable and large vortical structures

begin to form and grow larger with increasing distance from the nozzle exit.

Comparison to Experimental Data

The time averaged solution is compared to the experimental data in figures 7.18
and 7.19. The experimental data exhibits the behavior of a typical jet [77,78]. A series
of weak shock waves can be seen near the nozzle exit. The end of the potential core,
as indicated by the start of the velocity decay on the centerline, is at approximately
7.5 jet diameters. The predicted velocity on the jet centerline captures the first
few shock waves near the exit. The remaining shocks are not captured due to grid
stretching away from the nozzle exit. The predicted centerline velocity does not decay
within the computational domain indicating that the axisymmetric assumption has
constrained the mixing layer to lie above the jet axis. Radial profiles of axial velocity

at #/D; = 2, 4, 6, 8, 10, and 12 are shown in figure 7.19. The experimental data
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was taken both above and below the jet axis. All these data are plotted to show the
asymmetry in the data. For comparison the LES solution is reflected about the axis.
Agreement between the CFD and experiment is very good up to 6 jet diameters.
Beyond this point the prediction departs from the experiment due to the lack of
decay of the potential core. The peak in the experimental profiles begins to decrease
and the jet spreads at a greater rate than the CFD indicates. The good agreement
upstream of the end of the potential core indicates that the axisymmetric assumption
is valid in this region. In the region where the potential core breaks down, highly

three-dimensional turbulent structures may be the cause.

7.4 Three-Dimensional Solutions

A large-eddy simulation of the full three-dimensional jet flowfield is a large un-
dertaking. The number of grid points and time necessary for a solution severely limit
the size and number of calculations. The results from the axisymmetric solutions,
code validation, and one-dimensional error analysis were used to guide the simulation
process. The Runge-Kutta scheme has been proven superior to the Gottlieb-Turkel
scheme and was used for all 3D computations.

Three computations were performed. The first used the sixth-order filter and
provided time averaged flowfield data. The second calculation used the eighth-order
filter and was used to ascertain the effect of the solution filter and to obtain turbulent
statistics and a series of instantancous velocity distributions. The third used the

sixth-order filter and a modified grid to obtain two point correlation information.
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7.4.1 Grid Generation

The axisymmetric grid study showed an increase in resolution of the turbulent
structures with increasing grid resolution. But, a trade between accuracy and com-
putational cost must be made to keep the simulation time reasonable. The resolution
used in the fine grid would create a prohibitively large 3D grid and the coarse grid
showed no visible turbulent structures. The medium grid (301 x 129) showed reso-
lution of large scale turbulence and provides a basis for a reasonably sized 3D grid.
Also, a reasonable sub-grid model should replace the effect of the unresolved terms.
To form the three-dimensional grid, a grid plane corresponding to the axisymmetric
grid was positioned at every ten degrees around the jet axis resulting in a cylindrical
domain. Four additional grid planes were added overlapping the first four planes
to facilitate use of the overlap boundary condition. The final grid has dimensions
301 x 129 x 40 and contains 1,553,160 points. Figure 7.20 shows streamwise and
cross-stream grid planes.

The grid was modified slightly for the two point correlation work. The grid points
were redistributed locally so that a grid point was located at each correlation location

(table 7.2). The overall grid structure and size remained the same.
7.4.2 Specification of Boundary Conditions

Boundary conditions are specified in the same manner as done in the axisymmetric
case (section 7.3.2). No-slip walls are specilied on the nozzle surfaces. Subsonic inflow
conditions are used for the nozzle plenum and freestream inflow boundaries. The
combination of extrapolation and subsonic outflow are used on the outflow plane to

allow for pressure variation and extrapolation is used on the upper boundary.
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Two additional boundary conditions are necessary for the 3D grid. First the
overlap condition is used to create a continuous domain in the azimuthal direction.
Second, the jet centerline consists of a grid plane that is collapsed to a line. The pole

boundary is used here.
7.4.3 Presentation of the Time Averaged Flowfield

The LES simulation was run until the time averaged centerline velocity profile
remained unchanged for over 5,000 iterations. This required 50,500 iterations using
an average time step of approximately 48 - 107 seconds. Using 16 processors on the
Silicon Graphics Power Challenge machine, the simulation required about two months
of calendar time for completion. The solution was averaged every 100 iterations.

Contours comparing instantaneous and time averaged velocities in both the stream-
wise and cross-stream planes are presented in figures 7.21 - 7.26. The difference be-
tween the instantaneous and time average is striking. The instantaneous velocities
show large turbulent structures that average to zero over time. Large azimuthal ve-
locities and the appearance of turbulent structures that cross the jet axis near the
end of the potential core indicate a highly three-dimensional flowfield.

Radial velocity and sub-grid turbulent kinetic energy near the jet lip are shown
in figure 7.27 and differ from the axisymmetric solution (figure 7.17). In the mixing
layer the vortical structures in the 3D solution appear weaker because of the 3D relief
effect not accounted for in the axisymmetric solution. Also, the 3D solution does not
show any resolved vortices near the jet lip. The sub-grid turbulent kinetic is much
higher, in the 3D solution, indicating that the sub-grid model has dissipated this

motion. The increased effect of the sub-grid model may be caused by the large grid
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spacing in the azimuthal direction. This large grid spacing results in a larger filter

width, which increases the amount of eddy viscosity (equation (5.19)).

du;

Az,

Contours of dilatation, are shown in figure 7.28. By rewriting the continuity
equation (equation 2.1) we can see that dilatation is related to the convection of

density waves, which can be related to the convection of sound waves.

dui 1 (0p '6,0>
Dz p<@t+u23;z:i (7.17)

The dilatation contours show that the sound for this jet would emanate from the
mixing layer near and the end of the potential core.

The time averaged velocities closely resemble both experimental data and RANS
calculations. But, clearly the LES solution is capable of providing much more insight
into the flow physics of the jet through the unsteady information.

The time averaged velocity profiles on the jet centerline are presented in figure
7.29. The LES solution predicts that the potential core is shorter than found experi-
mentally indicating that the turbulent eddies are too energetic. The sub-grid model
may not be providing adequate dissipation of the large scale eddies. Adjusting the
constants to the model may correct this problem. The rate of velocity decay beyond
the potential core is very close to that of the experimental data.

Radial profiles of axial velocity at x/D; = 2, 4, 6, 8, 10, and 12 are shown in
figure 7.4.5. At /D; = 2 and 4 the 3D prediction shows less spreading than either
the experimental data or the axisymmetric prediction. This difference may be caused
by the truncation error due to the large grid spacing in the azimuthal direction.
The spacing in the azimuthal direction is much larger than the spacing in the axial

and radial directions and is the reason for the difference between the axisymmetric
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and 3D solutions. Since the grid resolution is not sufficient to capture the turbulent
structures in this region, the sub-grid model should provide the equivalent effect
through increased eddy viscosity. The fact that the LES solution predicts less jet
spreading than the experiment indicates that the sub-grid model is not adequate.

While the agreement with the experimental data is far from perfect, this calcu-
lation is superior to the other high Reynolds number LES calculations in the litera-
ture [31-33].
7.4.4 Presentation of the Instantaneous Flowfield and Tur-

bulent Statistics

A second nearly identical simulation was run to obtain turbulent statistics and in-
stantaneous flowfield data not saved during the first simulation. The order of the filter
was changed from sixth to eighth to ascertain its effect. The simulation was again run
until the centerline velocity profile did not change over a period of 5,000 iterations.
The time step was fixed at 501079 seconds and 70,200 iterations were required. The
solution was averaged every 80 iterations. The increase in the filter’s order reduced
the amount of numerical dissipation in the solution and increased the resolution of
the high wave number disturbances. This leads to increased turbulent mixing as
shown in the centerline velocity profile (figure 7.31). The increased turbulent struc-
tures are most likely the reason why more simulation time was required to obtain a
suitable average. In theory the sub-grid scale model should adjust to the change in
flowfield resolution and filter and grid independence should be possible. The increase
in resolution of the turbulent eddies, with a corresponding increase in |§\ should be
compensated for by an increase in eddy viscosity (equation 5.19). It is evident that

the current model and the choice of coefficients are not adequate for this problem.
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Instantaneous velocity contours at three times are shown in figures 7.32 - 7.37.
The contours indicate that the jet flowfield is highly three dimensional with very
large scale structures. Significant variation with time is found not only in the mixing
layer, but also in the potential core. Here the core flow "flaps”™ and rotates about
the jet axis. Also, the shock structure varies considerably due to the variation in the
boundary between the core flow and mixing layer caused by the vortical motion in
the mixing layer.

Turbulent intensities and turbulent kinetic energy are presented in figures 7.38
and 7.39. The axial turbulent intensity peaks at 4 = 0.4123 in the mixing layer
near the nozzle lip. Unsteady motion is also found in the potential core, due to
the unsteady shock structure, and in the freestream, due to acoustic waves. The
radial and azimuthal intensity plots are lower in magnitude and peak at a value of
% = 0.2002 at the end of the potential core. They have very similar structures except
for two very low intensity regions. The first is the unsteady radial component of
velocity induced by the shocks in the potential core. The second is a wide region of
unsteadiness in radial velocity at the downstream boundary.

Turbulent kinetic energy is plotted in figure 7.39. The peak values, k* = 0.1760,
occur in the mixing layer just downstream of the nozzle lip. A second lower peak,
k* = 0.1210, occurs near the end of the potential core.

The anisotropy of the turbulence is easily seen in figure 7.40. The ratio of radial
to axial turbulent intensity, ﬁ/@, is shown in three plots with different contour levels
to separate the regions of isotropy and anisotropy. The vast majority of turbulent

structures are anisotropic with a peak ratio of 2.775. The majority of the flowfield
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has a ratio in the range 1.2 < i/ﬁ < 2.0 This result indicates that the isotropic

assumptions of most RANS turbulence models are not applicable for this flow.
7.4.5 Presentation of the Two Point Correlation Data

A simulation on the modified 3D grid was run using the sixth-order filter and axial
and radial velocity data were saved for correlation. These velocity components can

be combined to form the velocity vector making an angle theta with the jet axis.
Us =ucos +vsind (7.18)

A time history of the velocity signals at the points for the fourth separation, 1/2D;,
are shown in figure 7.4.5. Three angles are examined 0, 45, and 90 degrees. There
is very little change in the velocity signal as it convects from the upstream to the
downstream point. The average velocity and turbulent intensity for each angle is

given in table 7.8

0 Uy /U; U /U;
0 0.65417 0.26473
45 0.46029 0.26601
90 -0.0032162 0.17076

Table 7.8: Velocity statistics at the two point correlation location

Two Point Space Correlation

A plot of the two point correlation coefficients versus separation distance is shown

in figure 7.42. The correlation of the velocity signal decreases towards zero with
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increasing separation distance indicating that the average size of the turbulent struc-
tures is less than the maximum separation distance (one jet diameter). The turbulent
length scale was estimated using equation (7.13). To evaluate the integral, the data
was fit with a sixth-order polynomial using the method of least squares [79]. The

polynomial is of the form
y = cex® + e5x® + cuxt + 31 + vt + ez + o (7.19)
The coefficients obtained in the curve fitting are found in table 7.9. The polynomial

coefficient
angle co cl co ca c3 cx cg {» norm
0 1.000 0.04124 -4.230 5.458 -1.940 -1.458 1.105 8.564 .10~ °
45 1.004 -0.01181 -5.249 6.480 -1.736 -2.002 1.305 9.989 .10~ ¢
90 1.003 0.03630 -11.13 16.46 -2.633 -8.769 4.687 4.052 -10~°

Table 7.9: Curve fit coefficients for two point space correlations

was then integrated analytically to obtain the length scale. The results are shown in

table 7.10. The data at 0 degrees indicate that the extent of turbulent structures in

o (D,
0 0.50161
45 0.37032
90 0.10422

Table 7.10: Turbulent length scales

this direction are approximately a half of one jet diameter. The smaller length scales
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obtained from the 45 and 90 degree data are caused by the relatively large region of

negative correlation coefficients for this data. This effect was also noted by Chu [73].

Two Point Space-Time Correlations

Plots of the two point space-time correlations for each separation are shown in
figure 7.4.5. For each separation there is a delay time where the signals are clearly
correlated (a distinct peak in the correlation curve). This delay time increases with
increasing separation distance.

The exact location of the maximum correlation coefficient cannot be determined
from the discrete data obtained in the analysis. To find this location, the correlation
data was again curve fit with a polynomial (equation (7.19)). The maximum in
the curve is found by differentiating the polynomial equation. The location of the
peak in the correlation curves corresponds to the time required for a signal at the
upstream point to convect to the downstream point. The resulting convection speed,
U., (equation (7.14)) is shown in figure 7.44. The convection speed decreases slightly
with increasing separation distance due to viscous effects. An average of the computed

convection speeds is 0.6260U; which is consistent with the results of Chu [73].
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coefficient

sep. Co c1 C2 Cc3 Cq (11 (&3] lg norm
0 degrees
1 09517 05115  -1.585 0.4060 05007  -0.3738  0.07827  9.673 .10 °
2 08214 08444  -1.224  -0.04053 03132  -0.06564 -0.004293 1.296 -10~*
3 06650 0.7884  -0.04775 -1.256 07415  -01015  -0.009149 1.333 -10~*
4 05054 06288  0.7048  -1.583 0.6886  -0.07523 -0.005351 2.419 -10~*
5 0.3478 04978 09339  -1.208 0.2545 006518 -0.01998  2.083 -10~*
6 0.2043 03583  1.027  -09395 01094 006236 -0.01272  6.915 .10~
7 007140 04665 006638 0.6771  -0.8747 03248  -0.03882  1.119 -107*
8 0005264 -0.01440 1.018  -0.3707  -0.1664  0.09207 -0.01089  2.219 -10~°
45 degrees
1 09332 0.6871  -2.083 05811 07198  -05646  0.1216  2.791-10°°
2 0.7569 1.148 1619  -006277 05037  -0.1413 0003079 3.132-107*
3 05481 1097  -0.1815  -1.449 08416  -007731 -0.02293  5.145 .10~
4 03468 0.8275 09012  -1.943 07837  -0.04498 -0.01681  1.168 -10~°
5 01574 05952 1.208  -1.316 004382 02163  -0.04732  5.548 .10~
6 -0.003487 0.3590  1.333  -0.9435  -0.1417 01981  -0.03372  1.312-107°
7 -0.1408  -0.4605  0.1026  1.045  -1271 04671  -0.05632  6.762 -10~*
8  -0.1878 02468  -0.3164  1.754  -1.508 04642  -0.04896  3.617 -10~2
90 degrees
1 03634 1365 -4.007 1197 1654  -1.234 0.2449  1.173-10~7
2 0.5451 1661 -0.3637  -6.358 7044 -2.941 04417  2.954 1074
3 0.2079 1.348 2144  -6.379 4328  -1.09 0.08009  1.018 -10=°
4 005870 06330  3.639  -5.640 2585  -0.3642  -0.007533 3.972 -107°
5 -0.2577 03414 2409  -1.468  -0.9120  0.7960  -0.1435  3.272 -107°
6 -0.3373  -0.2450  2.282  -04172  -1.284 06962  -0.1013  5.808 -10~2
7 -0.3705  -0.07766 -0.1704  3.000  -2.931 09961  -0.1147  6.802 -10~°
8  -0.3132 0.03557  -2.236 5467  -3.921 1129  -0.1155  1.882.1072
Table 7.11: Curve fit coeflicients for two point space-time correlations
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Figure 7.1: Two point correlation schematic

Figure 7.2: Axisymmetric computational grid
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Figure 7.3: Boundary conditions for axisymmetric calculations
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(a) Coarse grid

b) Medium grid
( g

(c) Fine grid

Figure 7.4: Entropy contours for axisymmetric grid study
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Figure 7.5: Turbulent statistics for axisymmetric grid study
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(b) Runge-Kutta

Figure 7.6: Entropy contours for axisymmetric scheme comparison

Figure 7.7: Axisymmetric computational grid with exit zone
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(b) without exit zone

Figure 7.8: Entropy contours for exit zone boundary condition comparison
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(b) with sub-grid model

Figure 7.9: Entropy contours showing effect of the sub-grid model
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(b) time averaged

Figure 7.10: Density contours for the axisymmetric solution

(b) time averaged

Figure 7.11: Axial velocity contours for the axisymmetric solution
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(b) time averaged

Figure 7.12: Radial velocity contours for the axisymmetric solution
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Figure 7.13: Root mean square density contours for the axisymmetric solution

NASA/TM—2001-210716 127



(a) entire domain

(b) detail of nozzle exit

Figure 7.14: Root mean square axial velocity contours for the axisymmetric solution

(a) entire domain

(b) detail of nozzle exit

Figure 7.15: Root mean square radial velocity contours for the axisymmetric solution
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(a) entire domain

(b) detail of nozzle exit

Figure 7.16: Turbulent kinetic energy contours for the axisymmetric solution
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Figure 7.17: Nozzle exit detail for axisymmetric solution
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Figure 7.18: Time averaged centerline velocity profile for the axisymmetric LES so-
lution
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solution
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Figure 7.19: continued
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Figure 7.19: continued
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(a) streamwise, x-y plane
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(b) crossstream, y-z plane at outflow boundary

Figure 7.20: Three-dimensional grid
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(b) time averaged

Figure 7.21: Axial velocity contours for 3D LES solution
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(a) instantaneous

(b) time averaged

Figure 7.22: Radial velocity contours for 3D LES solution
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(b) time averaged

Figure 7.23: Azimuthal velocity contours for 3D LES solution

NASA/TM—2001-210716 138



(a) instantaneous (b) time averaged

Figure 7.24: Total velocity contours at x/D; = 3 for 3D LES solution

(a) instantaneous (b) time averaged

Figure 7.25: Total velocity contours at x/D; = 6 for 3D LES solution
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(a) instantaneous (b) time averaged

Figure 7.26: Total velocity contours at x/D; =9 for 3D LES solution
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(b) sub-grid turbulent kinetic energy

Figure 7.27: Nozzle exit detail for 3D LES solution
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Figure 7.28: Dilatation contours for 3D LES solution
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Figure 7.29: Time averaged centerline velocity profile for the 3D LES solution

NASA/TM—2001-210716 142



o
C
1 ° 6.0
o)
r [« o o Expt.
0.8 5 LES
I o
0.6 -
- [
2
S L
0.4 o Q
0.2 °
L ® °
[o™N
0 -
02 L
2 1 0 1 2
r/D.
]
(a) z/D; =2
1.2
o
L [
1 e ° 58
(o) QZH_)%O
[ d o
08 | 5
I o
0.6 -
- [
2
S L
0.4 o Q
0.2 °
L ® °
D
0 -
_02 " "
2 1 0 1 2
r/D.
]
(b) 2/D; = 4

Figure 7.30: Time averaged radial profiles of axial velocity for the 3D LES solution
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Figure 7.30: continued
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Figure 7.30: continued
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Figure 7.31: Comparison of sixth- and eighth- order filters on 3D LES solution
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(a) T = 0.0000
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(c) T = 32.297

Figure 7.32: Instantaneous axial velocity contours for the 3D LES solution
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tD; _

Figure 7.33: Instantaneous radial velocity contours for the 3D LES solution
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tD;
(c) 22 = 32.207

Figure 7.34: Instantaneous azimuthal velocity contours for the 3D LES solution
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(b) T = 16.149 (c) T = 32.207

Figure 7.35: Instantaneous total velocity contours at «/D; = 3 for the 3D LES
solution
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tD; _
(b) 24 = 16.149

Figure 7.36: Instantaneous total velocity contours at «/D; = 6 for the 3D LES
solution
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(b) T+ = 16.149 (c) T = 32.2970

Figure 7.37: Instantaneous total velocity contours at «/D; = 9 for the 3D LES
solution
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(a) axial turbulent intensity

™

(b) radial turbulent intensity

(c) azimuthal turbulent intensity

Figure 7.38: Turbulent intensity contours for the 3D LES solution
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Figure 7.39: Turbulent kinetic energy contours for the 3D LES solution
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Figure 7.40: Ratio of axial to radial turbulent intensity for the 3D LES solution
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Figure 7.41: Velocity history for two point correlations
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Figure 7.41: continued
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(b) 45 degrees

Figure 7.43: Two point space-time correlation coefficient
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Figure 7.43: continued
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Figure 7.44: Convection velocity
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

A numerical method to simulate high Reynolds number jet flows was formulated
and applied to gain a better understanding of the flow physics. Close attention is
paid to the sources of error in such calculations and efforts were made to minimize
them whenever possible.

Large-eddy simulation is chosen as the most promising approach to model the
turbulent structures due to its compromise between accuracy and computational ex-
pense. The filtered Navier-Stokes equations are developed including a total energy
form of the energy equation. Sub-grid scale models are adapted from compressible
forms of Smagorinsky’s original model.

The effect of using disparate temporal and spatial accuracy in a numerical scheme
was discovered through one-dimensional model problems. The lower order time step-
ping found in many schemes, such as the Gottlieb-Turkel scheme examined here,
causes the scheme to revert to the lowest order accuracy. A new uniformly fourth-
order accurate numerical method was developed based on this work. The scheme
consists of a low-dispersion Runge-Kutta time stepping scheme with a central differ-
ence spatial operator. Solution filtering is used to maintain stability. Results in both

one- and two-dimensions showed this new scheme clearly superior to the second-order
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in time and fourth-order in space Gottlieb-Turkel scheme. The measure used to judge
the schemes was the computational efficiency, the time required to reach a given level
of error.

The resulting flow solver was configured to run on a shared memory parallel com-
puter. Poor computer architecture prohibited conclusive results, but the evidence
indicates that the code scales well up to 16 processors. Results from validation ex-
ercises show that the code accurately reproduces both viscous (laminar flat plate)
and inviscid (supersonic wedge and cone flows) flows. The validation exercises also
confirmed the increased accuracy of the new numerical scheme.

Numerous axisymmetric simulations were performed to investigate the effect of
grid resolution, numerical scheme, exit boundary conditions and sub-grid scale model
on the solution. While the axisymmetric assumption was not accurate for the jet
flowfield, valuable information was gained for use in the three-dimensional calcula-
tions.

The three-dimensional calculations showed that this LES simulation accurately
captures the physics of the turbulent jet. The agreement with experimental data
relatively is good and is much better than results in the current literature. However,
there is still much room for improvement. The improved agreement over previous
work can be attributed to the new numerical scheme and the modeling of the nozzle
lip. A subsequent run using a higher-order solution filter indicated that the modeling
of the unresolved scales needs improvement.

Several techniques were used to gain a better understanding of the underlying
physics. A plot of dilatation was used to provide insight into the sound field by indi-

cating the location of acoustic sources in the jet mixing layer. Turbulent intensities
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indicate that the turbulent structures at this level of modeling are not isotropic and
this information could lend itself to the development of improved sub-grid scale mod-
els for LES and turbulence models for RANS simulations. A two point correlation
technique was used to quantify the turbulent structures. Two point space correla-

tions were used to obtain a measure of the integral length scale, which proved to

1

be approximately 5

D;. Two point space-time correlations were used to obtain the
convection velocity for the turbulent structures. This velocity ranged from 0.57 to
0.71 U;.

There are several recommendations for further work.

The accuracy of the simulations is highly dependent on grid resolution. Accurate
resolution of the shock structure in the potential core was found with the axisymmetric
calculation. However, the large grid spacing in the azimuthal direction in the 3D
calculations diminished this. Further resolution in this direction may improve the
prediction of both the shock structure prediction and the mixing layer. A more
systematic study of grid resolution in all three directions is desirable, but may be
computationally prohibitive.

A change in the order of the solution filter drastically changed the centerline ve-
locity decay. The change in turbulent mixing with an increase in resolution of scales
indicates that the sub-grid scale model is not accurately mimicking the effects of the
unresolved scales. Further research into improving the sub-grid scale models is neces-
sary. A promising approach is the dynamic sub-grid model [26] which automatically
adjusts the coefficients based on the filter width.

The time required to run a simulation on this relatively simple geometry severely

limits the usefulness of LES. This limit may be eased if a more efficient numerical
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method was found. As shown, the time stepping scheme is typically the factor that
limits the computational efficiency. A high-order accuracy efficient time stepping
scheme would allow faster turn-around of solutions and more accurate answers on
finer grids.

While there is room for improvement in accuracy, this research has shown that
large-eddy simulation can be used, as is, to provide new insight and information about
high Reynolds number jet flows. The characterization of the turbulent structures, size,
convection speed, and degree of anisotropy, can be used to develop improved tools

for predicting the fluid mechanics and acoustics of jets.
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APPENDIX A

DERIVATION OF THE FILTERED EQUATIONS

A complete derivation of the Favre filtered Navier-Stokes equations used in Chap-

ter b is presented.

A.1 The Filter

A filtering function (7, is used to separate large and small scale components. The

filtering operation applied to a function f is

=[Gl - (A1)

The function can then be decomposed into its resolved /filtered, f, and unresolved, f’

parts

f=i+f (A2)

For most applications, the function is not specified. But, several constraints are

placed on the the function to ensure that the filter commutes with the derivative.

af _of
To= (A.3)
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The constraints are

1) G- =)
2 [ ads =1
3) G =0 as [{ -

4) G/(£)  is small outside <_é é)

where A is a characteristic width of the filter function. Where it has been necessary
to know the form of the filter function, researchers have typically used either a box,
Gaussian, or spectral cutoff filter.

Favre (density) weighting is used in the filtering process. This allows for convenient

recovery of terms corresponding to the unfiltered equations.

J= (A4)

~[3)

A.2 Continuity Equation

Filtering the continuity equation is a straight forward process. The spatial filter
is first applied to the continuity equation (2.1).

dp  dpu;
a—}_ aCL’,’

=0 (A.5)

Since the filter commutes with the derivative equation (A.5) is rewritten as

dp | Ipy;

=0 (A.6)

Then Favre weighting is used to recover an equation of the same form as the unfiltered
equation (2.1).

dp  Opuy

=0 (A7)
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A.3 Momentum Equation

The filtering of the momentum equation and definition of the sub-grid scale stress
tensor is presented below. The filtering operation is applied to the momentum equa-

tion (2.2).

dpu;  Opuju;  Op oy

= A8
6t 817 a”CZ 8:@ ( )
Using the the property in (A.3) the equation is rewritten
I, |, 9P, | Op _ 0%y (A.9)
ot dx, d”LL ()177
Favre weighting is then applied
dpu;  Opuju; — dp  Joy
p s - 57 }\10
ot * Ox; * dx;  Oduy ( )
where the filtered stress tensor is
05 = —%MCSZ‘J'SM + 2,LLSij (/\.11)

The filtered stress tensor and the term ﬂfuj are not in useable forms because they are

the filter of a product of two variables. We define a new resolved stress tensor as

Gij = — 21655 Sk + 20 Sk (A.12)
where i = (7' and
~ 1 (0ou; Ou;
S5 = 5\ 7m0 T 70 A3
We can then write (A.11) as
Gi; = 04 + (0i; — 0ij) (A.14)
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Similarly, we write

lt7jUj — ﬂﬂjﬁ (A15)

7 = p (wu; — Uil ) (A.16)
and rewrite (A.15) as
ﬁuiulj = ﬁﬂﬂj] + Tijz (Al?)

Finally, we substitute (A.14) and (A.17) into (A.10) and obtain the final form of the

filtered momentum equation

opu; Opugi; Op 9oy om0
N A 7 T Al
ot d; " dz;  Ox; Oz T Oz, (i; — 0i5) (A.18)

A.4 Energy Equation

The filtering the energy equation is the most involved process. Because the total
energy form of the energy equation is used, several additional manipulations of the
resulting terms are required in order to recover terms for which there are sub-grid
scale models. Most work in compressible large-eddy simulations have used either
static or total enthalpy forms of the energy equation. First the filtering operation is

applied to the energy equation (2.6)

Opey  Opuier  uip Oujoy;  0g

= — A19
Commuting the filter operation with the derivative we obtain
ope, , Opwie, | Jup _ IT0y;  Og (A.20)

ot Oz, dx; Oz Ox;
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where
pe, = pe + ypurty, (A.21)

Favre weighting equation (A.20) yields

dpé, n dpuie, — Jup _ ;o 9

(A.22)
where
e, =€+ %m% (A.23)

As was done with the momentum equation we rewrite the filter of the product of two

variables to obtain useable forms.

pet; = perti; + p(ert; — €¢l;) (A.24)
PU; = pui + (PU; — pui) (A.25)
U0, = Ui0i; + (uy_'% — U;04) (A.26)
G =G+ (% —a) (A.27)
where
oT
g = —k- A28
4 oz, ( )
~oT
g = —k= (A.29)
d:Ci
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and k = k(T). Substituting equations (A.24) — (A.27) into (A.22) we obtain the

following form of the filtered energy equation.

dpe,  Opue,  dup Oy 96 9
ot Ox; + ox; o Oz, - x; - O [:0 (etuz - etuz)]

o . o, . 0
- 8—:1;2 (pu; — pii;) + Dz (uj% - uy‘%’) I

7 7

(@ —q:) (A.30)

The underbraced terms can be further manipulated to obtain terms for which sub-grid
scale models have been previously developed.

The argument of the derivative in term (7) is transformed as follows.

N

——

p(eu; — &) = p [u2 (e + %ukuk) — U (E—i— %mk)]
=p [Uie + %Mk — u;e + %ﬁzm& (A.31)
= p(we —u;e) + p (lZ{Mk - 171@760
The first term in (A.31) can be written as the sub-grid scale heat flux.
(e —:2) = p (wie, T — ie, T

= p (wT — @T) (A.32)

R
ﬁ@i

The second term in (A.31) is the sub-grid scale turbulent diffusion and is denoted as

i <Mk — Uupuy) = pD; (A.33)

Finally the argument of the derivative of term (7) in (A.30) is simplified to

S R
peu; — &) = ﬁ@l +pD; (A.34)
Using the filtered equation of state
p=pRT (A.35)
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the argument of the derivative in term (7¢) in (A.30) can be rewritten as the sub-grid
scale heat flux as was done in equation (A.32).
P, — pii; = pRTu, — pRTT,
= pR (uil — ;T (A.36)
= 7Q.

Term (i7¢) in (A.30) is transformed as follows.

a I oG, 0oy
U, 0, —U;j0;) = ——— — —
6:1;Z< Y I ‘7> ()l‘i dxz-
B auj'dij 817]'5'2']‘
T Oz, Ow
_ Z . . (A.37)
00'”' 4 8uj ~ ()O’i]' ~ Uy
= U;— 04 —Uj— — Oy ——
" 0w, T O, T O, T 0x;
—|— 80'2']‘ ~ 632]
=€ Uj—= — U,
/ 6:1;1 / 6:1;2
where ¢ is the sub-grid scale turbulent dissipation rate
Ju; . U
! d (A.38)

¢ = U”a—wl — 02]%
Substituting (A.34) (A.36) and (A.37) into (A.30) and rearranging terms gives us

the final form of the filtered energy equation.

_Jd _ 0pD;
8t (r)l‘i dvbl 8:@ (r):[Z' dJZZ (’)xi

+ i( i _g aaij) 0 (¢ —a;) (A.39)

Opé; | dpue,  Oup  duoy;  0g ’
dpetJr U €y dup: uoy; 04 J (ﬁQz)‘i"

v—1

u. s _
Ox; \ 7 Ox; ! Ox; dx;
A.5 Determination of Pressure

Pressure is normally obtained from the total energy as follows

p=py—1) (et - %WW) (A.40)

NASA/TM—2001-210716 171



Applying the spatial filter and Favre weighting we obtain

p=(y—1) (pe, - spum)
(A.41)
=(v—1) (,557: - %ﬁmk>
The above equation for pressure contains the filter of a product of variables, uguy.
This undetermined quantity is eliminated by using the sub-grid scale kinetic energy
p=(y—1)(p& — 3puruy)

=(y-1) [ﬁgt — %pukuk — %p_ (upuy, — ﬂkﬁk)] (A.42)

= (v—1) (p&: — Sptixiiy — L)
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