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Impact of Functionally Graded Cylinders: Theory

Jacob Aboudi
Tel-Aviv University, Ramat-Aviv 69978, ISRAEL

Marek-Jerzy Pindera
University of Virginia, Charlottesville, VA 22903, USA

Abstract. This final report summarizes the work funded under the Grant NAG3-2411 during
the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the
theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical
functionally graded materials/structural components employed in advanced aircraft engines devel-
oped under past NASA-Glenn funding. The completed generalization significantly broadens the
theory’s range of applicability through the incorporation of dynamic impact loading capability into
its framework. Thus it makes possible the assessment of the effect of damage due to fuel impurities,
or the presence of submicron-level debris, on the life of functionally graded structural components.
Applications involving advanced turbine blades and structural components for the reusable-launch
vehicle (RLV) currently under development will benefit from the completed work. The theory’s
predictive capability is demonstrated through a numerical simulation of a one-dimensional wave
propagation set up by an impulse load in a layered half-plane. Full benefit of the completed gener-

alization of the higher-order theory described in this report will be realized upon the development
of a related computer code.

1. INTRODUCTION

Functionally graded materials (FGMs) are a new generation of composites wherein the microstruc-
tural details are spatially varied through nonuniform distribution of the reinforcement phase(s), by
using reinforcement with different properties, sizes and shapes, as well as by interchanging the roles
of reinforcement and matrix phases in a continuous manner. The result is a microstructure that
produces continuously changing thermal and mechanical properties at the macroscopic or contin-
uum level. This new concept of engineering the material’s microstructure allows, for the first time,
to fully integrate both the material and structural considerations into the final design of structural
components.

Most computational strategies for the response of FGMs do not explicitly couple the material’s
heterogeneous microstructure with the structural global analysis. Rather, local effective or macro-
scopic properties are first obtained through homogenization based on a chosen micromechanics
scheme, and then used in a global thermomechanical analysis. This often leads to erroneous results
when the temperature gradient is large with respect to the dimension of the inclusion phase, the
characteristic dimension of the inclusion phase is large relative to the global dimensions of the com-
posite, and the number of uniformly or nonuniformly distributed inclusions is relatively small (Ref.
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(1]). As a result of the limitations of the uncoupled approach, a new higher-order micromechanical
theory for FGMs (HOTFGM), that explicitly couples the local and global effects, has been devel-
oped in the Cartesian coordinate system for applications involving rectangular plate-like structural
components under NASA funding (Refs. [2-19]). The development of the theory has been justified
by comparison with the results obtained using the standard micromechanics approach which ne-
glects the micro-macrostructural coupling effects (Refs. [4,7]). Summaries of significant results and
accomplishments generated using this theory, and the utility of functionally graded microstructures
in enhancing the performance of plate-like structural components subjected to through-thickness
thermal gradients have been outlined in Refs. [9,18,19,20].

In order to exploit the already-proven predictive capabilities of HOTFGM to the fullest in meet-
ing the challenges and needs of the aerospace and aircraft engine industries for a greater number
of stronger, lighter and more durable structural components, new versions of HOTFGM have been
recently developed for applications involving cylindrical bodies of revolution. The generalization of
HOTFGM to problems involving cylindrical geometries makes possible the analysis, optimization
and design of functionally graded structural components, such as rotor disks, combustor linings and
blisk blades, for use in advanced aircraft engines. Thus far, two versions of the cylindrical higher-
order theory have been developed. The quasi one-dimensional version enables analysis, design and
optimization of cylindrical bodies of revolution subjected to axisymmetric thermomechanical load-
ing that are reinforced by either continuous or discontinuous fibers with variable spacing in the
radial direction (Ref. [21}). The recently completed development of the two-dimensional version,
which also admits the presence of cooling channels, enables analysis, design and optimization of
cylindrical bodies of revolution with functionally graded microstructures in the radial and circum-
ferential directions (Ref. [22]). The thermomechanical loading involves arbitrary distribution of
surface tractions and temperatures applied to the boundaries of fully or partially enclosed cylin-
drical bodies of revolution in the plane that contains the functionally graded microstructure. This
significant generalization provides analysis and design capabilities for a wider range of structural
components employed in advanced aircraft engines.

The utility of the developed Cartesian and cylindrical versions of the higher-order theory has
been demonstrated through applications to the following technologically important problems:

Investigation of the effect of microstructure on thermal and stress fields in MMC plates and
cylinders

o Investigation of the use of functionally graded architectures in reducing edge effects in MMC
plates

e Optimization of functionally graded microstructures in MMC plates and cylinders

e Development of guidelines for the design of special coatings in exhaust nozzle applications
under NASA /Pratt & Whitney Space Act Agreement

e Investigation of the microstructural effects in functionally graded TBCs

o Effect of bond coat interfacial roughness amd oxide film thickness on the inelastic response
of plasma-sprayed TBCs

e Effect of graded bond coats on the inelastic response of plasma-sprayed TBCs
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While the recently completed cylindrical higher-order theory contains transient thermal loading
capability, the mechanical loading capability does not include dynamic effects appearing in the
governing force equilibrium differential equations. This, in turn, excludes the possibility of gaging
the effect of impact loading (by fuel impurities or submicron debris, for instance) on damage evo-
lution in such applications as advanced, functionally graded thermal barrier coatings, for instance.
The objective of the work summarized in this report, therefore, was to extend the two-dimensional
higher-order theory for cylindrical functionally graded structural components by incorporating dy-
namic impact loading capability. This extension funded under the Grant NAG3-2411 during the
04/05/2000-04/04/2001 period makes possible the assessment of the effect of foreign object impact
on the potential for damage evolution in advanced turbine blade coatings. It complements current
nation-wide efforts by a number of government agencies to develop a new generation of turbine
blade coatings capable of operating longer in low-cost fuel environments containing different types
of impurities. As the impact problem also plays an important role in a number of other techno-
logically important applications that are important to the nation’s security interests (graded body
armour, for instance), the completed work significantly broadens the range of technologically im-
portant applications of the cylindrical higher-order theory. However, the completed work is limited
to the development of the theoretical framework that enables modeling of impact-induced wave
propagation in the radial and circumferential directions of functionally graded cylindrical struc-
tural components. Therefore, the description of this theoretical development forms the major part
of this report. Full utilization of the impact-loading capability requires the development of the
related computer code and its validation. These tasks remain to be completed under future fund-
ing. To demonstrate the potential of the developed theoretical framework, a small computer code
was developed to simulate one-dimensional wave propagation due to impulse loading in a layered
half-plane as a special case of the general two-dimensional theory, and the numerical predictions
were validated through comparison with an exact analytical solution. These results are described
at the end of the report.

2. MODEL DESCRIPTION

The present FGM theory is based on the geometric model of a heterogeneous composite occupying
the region Rg <r < R;,0<0 <0, | z|< oo, where r, 8,z are cylindrical coordinates, see Fig. 1.
The composite is reinforced in the r — 8 plane by an arbitrary distribution of infinitely long fibers
oriented along the axial z-axis, or by finite-length inclusions that are arranged in a periodic manner
in the axial direction. The microstructure of the heterogeneous composite is discretized into Np
and Ny cells in the intervals Ry <7 < Ry and 0 < 8 < ©, respectively. As in the Cartesian version
of the higher-order theory (see Ref. [19], for instance), the generic cell (p,q,s) used to construct
the composite consists of eight subcells designated by the triplet (af7), where each index o, 5,7
takes on the value 1 or 2 to indicate the relative position of the given subcell along the r—, §—, and
z— axis, respectively. The indices p and ¢, whose ranges are p = 1,2,..., Ny and ¢ = 1,2, ..., IV,
identify the generic cell in the r — 8 plane and thus remain constant along the axial z axis. For the
axial direction, the corresponding index s having an infinite range is introduced. The dimensions
of the generic cell along the periodic axial direction, Iy,ly, are fixed for the given configuration;

whereas the dimensions along the r— and 6— axes or the FG directions, dgp ) , dgp ), and ng) , ng), can
vary in an arbitrary fashion such that D = zfgl(dgp ) +dP)) and © = sz;l(eg‘l) + 6%y,

Given the applied thermomechanical loading in the (r — 6)-plane, an approximate solution for
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the temperature and the time-dependent displacement fields is constructed based on the volumetric
averaging of the field equations together with the imposition of boundary and continuity conditions
in the average sense between the subvolumes used to characterize the material’s microstructure.
This is accomplished by approximating the temperature field in each subcell of the generic cell
using a quadratic expansion in the local coordinates (F("‘) , @ ), 2(") centered at the subcell’s center.
Similarly, the time-dependent displacement field in the FG direction in each subcell is approximated
using a quadratic expansion in local coordinates within the subcell. The displacement field in
the periodic axial direction, on the other hand, is approximated using linear expansion in local
coordinates to reflect the periodic character of the composite’s microstructure along the z— axis. A
higher order representation of the temperature and displacement fields is necessary to capture the
local effects created by the thermomechanical field gradients, the microstructure of the composite,
and the finite dimensions in the FG direction.

The unknown coefficients associated with each term in the temperature field expansion are then
obtained by constructing a system of equations that satisfies the requirements that the steady state
heat equation is satisfied in a volumetric sense, and the thermal and heat flux continuity conditions
within a given cell, as well as between a given cell and adjacent cells, are imposed in an average
sense, together with the applied boundary conditions.

Due to the presence of the inertia effects in the governing mechanical equations, on the other
hand, the second time derivatives of the unknown time-dependent coeflicients associated with each
term in the displacement field expansion are obtained in this case by constructing a system of equa-
tions that satisfies the requirements that the elastodynamic equations are satisfied in a volumetric
sense, and the displacement and traction vectors continuity conditions within a given cell, as well as
between a given cell and adjacent cells, are imposed in an average sense, together with the applied
time-dependent boundary conditions. This system of second order ordinary differential equations
is solved in a stepwise manner in time by employing an approximate explicit scheme. Once these
coefficients have been determined at the current time ¢, all field variables can be readily established.
This procedure is continued until the specified final time is reached.

3. THERMAL ANALYSIS

Let the composite be subjected to the steady-state temperature distributions Tr(6) on the top
surface (r = R;), TB(6) on the bottom surface (r = Rp), Tr(r) on the left surface (6 = 0), and
Tr(r) on the right surface (6 = ©). Under these circumstances, the heat flux field in the material
occupying the subcell (afy) of the (p,q,s)th cell must satisfy the steady state heat equation in
cylindrical coordinates (r, 6, z). This equation is given by

(afv) (ap) (aB)
% L e 9 % (1)
o7(a) RaBy) 4 pla) 7 o8 9z(7)
Y

where R{(®PY) is the distance of the (af37) subcell’s center from the origin, §® = ReBgP ), and

ql(aﬂ ) (7 =r,0,z2) are the components of the heat flux vector in the subcell. These components
are derived from the temperature T(*#7) in the subcell according to the Fourier law:

aT(eh)
(afy) — _plefy)Zt
dr = —ky (@) (2)
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(@) _ _(apm) 0T
% ko 5@ (3)

()
(@B7) — _plapn 0L
where kz(aﬁ ) denote the thermal conductivities of the material in the subcell.

As in the analysis of the steady-state heat equation in Cartesian coordinates, the temperature
field in the subcell is expanded quadratically in terms of the local coordinates (7(®, 78 (1) as
follows

o _ mplaB (@) (aBy) | = (ap
Tlefy) Teo 031)_{_,,,( )T( ;7 + (ﬂ)T(Ow;)

L an(e2 d” (oB) =(8)2 (q)2 (aBy) 4 Liasmz _ l ()
+ 5(37" - )CF(QOO + = (3 )T(OZO) -2“(32 v 4 )T(OO2) (5)
where h(q) = R(QM)G(Q) The microvariables T, ((00%)), which is the volume-averaged temperature
within the subcell, and T((lojg) ({,m,n = 0,1, or 2 with [ + m + n < 2) are unknown coefficients

that are determined in the manner descrlbed below. It should be noted that the temperature
expansion given in eqn (5) does not contain a linear term in the local coordinates (. This follows
directly from the assumed periodicity in the axial z-direction and symmetry with respect to the
lines 2" = 0 for y = 1 and 2.

Given the six unknown quantities associated with each subcell (i.e. (&)%; , - ,T((Dog’)) and
eight subcells within each generic cell, 48N, N, unknown quantities must &)e determlned for a
composite with with N, and N, subcells containing arbitrary specified materials. These quantities
are determined by ﬁrst satisfying the heat conduction equation, as well as the first and second
moment of this equation in each subcell, in a volumetric sense in view of the above temperature
field approximation. Subsequently, continuity of heat flux and temperature is imposed in an average
sense at the interfaces separating adjacent subcells as well as neighboring cells. Fulfillment of these
field equations and continuity conditions together with the imposed thermal boundary conditions at
the top, bottom, left and right surfaces of the composite provides the necessary 48N, N, equations
for the 48 Np N, unknown coeflicients in the temperature field expansion. We begin the outline of
steps to generate the required 48 N,N, equations by first considering an arbitrary (p,q,s)th cell
in the interior of the composite (i.e., p = 2,..,N, — 1 and ¢ = 2,...,N; — 1). This produces
48(Np — 2)(Ng — 2) equations. The additional equations are obtained by considering the boundary
cells (ie.,, p = 1,N, and ¢ = 1,N,). For these cells, most of the preceding relations also hold,
with the exception of some of the interfacial continuity conditions between adjacent cells that are
replaced by the specified boundary conditions.

In the course of satisfying the steady-state heat equation in a volumetric sense, it is convenient
to define the following flux quantities:

(@BY) 1(pa.s) — a2 P L2 (Y (0 ym (500 Y9 (@B (@) g5 68) G500
@ q,8) — n '(1 —(cx _ —
[Qitt,mym)] (p,q,s) ey / W92 / i ) @) (EY) g dr Y dg Y dz (6)

where it = r,8,2; Lm,n=0,1,or 2 withl+m+n <2 and ”EZ’[{}Z%)) = d(p)h(q)l being the volume

of the subcell. For l =m =n =0, Qg?oﬂ g )0) is the average value of the heat flux component q( h7)
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in the subcell, whereas for other values of (I,m,n) this equation defines higher order heat fluxes.

These flux quantities can be evaluated explicitly in terms of the coefficients T( op J) by performing
the required volume integration. This yields the following nonvanishing zeroth- and first-order heat
fluxes in terms of the unknown coefficients in the temperature field expansion

Qﬁ?(?g ) = — (B T((fé%;) (7)
Qg?oﬂg = k(aﬁv) T(((«)ll%;r) (8)
Qg = Koo iy ©
SRRl &7 2
Aty = - T ™

Satisfaction of the zeroth, first, and second moment of the steady-state heat equation (1) results
into the following eight relationships among the first-order heat fluxes Qgg’ﬁ%’)n) in the different
(afy) subcells of the (p,q,s)th cell, after some involved algebraic manipulations (see Ref. [12] for
a complete derivation in Cartesian coordinates)

(af) (aB) (aBy) (eB7) 1(pa,s) —
[ Qr(l 0,0) h2 Qo(o 1,0) l2 Qz(O 01) T R(aﬁ‘/) —a5y @roon] P47 =0 (12)
where the triplet (aFvy) assumes all permutations of the integers 1 and 2.
The continuity of the heat fluxes at the subcell interfaces and between individual cells in the
radial direction, imposed in an average sense, is ensured by

16 0,8 12 28 8 12 267 ((p=1..8
[ Qﬁ(l“é)o](pq ) = —zy = 2@5(1%0)](1711 ) _ 2[_%627*(1,’(),),0)](1) 1,g,5)

28 (26 1058
+ Z[Q5000 R(%)QT(lgo)]<pq>

(Zﬂ (Qﬂ —17 yS
- [Qr(o% 0~ R(Qﬁy QT‘(].BO | (Pt (13)
(187) (18v) &8) (267) (26) 12>S
[Q'I‘(O’SO R(lﬁ'y Qr(l’();O ](pq ) = [QT(O’SO R(2ﬁ7 Qr(l,’z;,o)](pq )

(287) L @6 1p-1as
+ Zs [Qrm%m R(2,a~,)Qr(1700)](p <)

B 2 — ]
2l QI + Bl @R ()

The coefficients Z;, © = 1,...8, in eqns (13)-(14) are defined as follows

(p7Q7s) ,U(p—lyqys)
27 27
n=—CUs B= oy B=g L= (15)
V(1) U(187) 2 2
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W, Wz, Wz W7
dgp) 2 2 2

Z5 = (16)

The continuity of the heat fluxes at the subcell interfaces and between individual cells in the
f-direction, imposed in an average sense, is ensured by

ol s a2 s o2v) 1
[ 2Qg(03,0)](p’q’ ) = -l5 QQE)(OZ ](p o) Y ZQg(()vl 0)](p’q L)
+ Ys,[@é?éz [ n[Qg?§33o)]<p»q L) (an

Q000 = Y5[Q5io0)* + YelQ4o 5
a2 s a2 s
[hQQé(Ovl)O [(Pias) Yé[h—%%m? (Pia=L:s) (18)

The coefficients V;, ¢ = 1,...8, in eqns (17)-(18) are defined as follows

(p.g,5) o(Pa—18)
R ) SR ) B PR U VR £ (19)
gp®as) 2T o e 2T @ T D)
Y(aly) Ylaly) 2 2
h(q)Y h(q)Y h(q)Y h(‘l)y
Gi=Sg %= Y=o Y= (20)
2

Finally, the continuity of the heat fluxes at the subcell interfaces in the z-direction, imposed in
an average sense, is ensured by

O + O =0 ”

The above equations (13)-(14), (17)-(18) and (21), provide us with 20 additional relations
among the zeroth- and first-order heat fluxes. These 28 relations can be expressed in terms of the
unknown coefficients T((l nf ;Y)) by making use of the expressions for heat fluxes given in terms of these
coefficients in eqns (7)-(11).

An additional set of 20 equations that are necessary to determine the unknown coefficients in
the temperature field expansion is subsequently generated by the thermal continuity conditions
imposed on an average basis at each subcell and cell interface. Imposing the thermal continuity at
each subcell interface and between individual cells in the r-direction we obtain

18 | Gy | B8y @, 92287 (281(p,a,5
[T((oooz) + T((IOO’)), 1 T(2007) T(oooﬁg T T(1007) T(200A; [P =0 (22)
28v) | 92..(28v) (281 (pra, 187) _ G (18y) o A p() o1,
[T((OOOA; T((100’))l T(QOO’;)](p @) = [ ((OOOA; T((100’§ 4 T(ZOO’;’ ](p—l-l e ) (23)

In the #-direction we have

aly) h1 (a1 hl al (a2 ) ha (ce27) h2 (a27) ,8)
[T((ooov) 5 T((owv)) ) T((OQO’;) T(ooov) 5 T(0107) - T(ogov) [@ee) =0 (24)
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(a2v) ho (a2v) h% (e2v)1(p,q,8) _ aly) hy (aly) hi aly)(p,g+1,s
[T(OOOﬂ)/ Jr?T(OIOA; + _4_T(0207) ) = [T((ooov) Y (0107) + ZIT((OQOW) jpatle) (25)

The thermal continuity conditions in the periodic z-direction, imposed in the average sense,
provide

2 2
@B1) | T (ap)) 62) 13 (0B2)(p,grs) _
[T((‘))E)o) + ZT(OOQ) - T((gf)o) - ZT((OOE)Q) [P22) = g (26)

These temperature continuity conditions, eqns (22)-(26), comprise the required additional 20 rela-
tions.

The steady-state heat equations (12) together with the heat flux, (13)-(14), (17)-(18), and
thermal continuity, (22)-(26), equations form altogether 48 linear algebraic equations that govern
the 48 field variables T((lorf%) in the eight subcells (af37) of the interior cell (p,q,s),p = 2,..Np—1,9 =
2,...,Ny—1. For the boundary cells p = 1, N, and g = 1, N, a different treatment must be applied.
For p = 1, the flux continuity conditions (13)-(14) between a given cell and the preceding one are
not applicable. They are replaced by the condition that the heat flux at the interface between
subcells (187v) and (207) of cell (1,q,s) is continuous as well as the applied temperature relation
at the surface r = Rg. For the cell p = N,, the previous equations are applicable except for
those which express continuity between this cell and the next one, eqn (23). These equations are
replaced by the boundary conditions that are applied at the surface » = R;. In the case in which
the temperature is prescribed, the boundary conditions at the bottom and top surfaces are

T8 (Ged=Tp(0) 7O = —d{M/2 (27)
T(267) I(Np,q,s): Tr(6) 72 = dng)/Q (28)

where ¢ = 1,..., N,.

Similarly, continuity conditions (17)-(18) that are not applicable at 8 = 0 at cell (p,1,s) are
replaced by the continuity of heat flux at the interfaces between the subcells of this cell, and by
the applied loading at the surface # = 0. The temperature continuity conditions between a cell and
the next one in the #-direction, eqn (25), which are not applicable at cell (p, Ny, s) are replaced by
the applied loading conditions at # = ©. In the case in which the temperature is prescribed, the
boundary conditions at the left and right surfaces are

T(al'y) |(p,1,s): TL(T) g(l) — __hgl)/2 (29)

T2 PN = Tp(r) - g = b5 /2 (30)

where p = 1,..., N,
The governing equations at the interior and boundary cells form a system of 48N, N, linear
algebraic equations in the unknowns T((lff%). Their solution determines the temperature distribution

within the FG composite that is subjected to the specified boundary conditions. The final form of
this system of equations is symbolically expressed as

KT =t (31)

where the structural thermal conductivity matrix & contains information on the geometry and ther-
mal conductivities of the individual subcells (af7) in the N, N, cells spanning the r and ¢ directions;
the thermal coefficient vector T contains the unknown coefficients that describe the thermal field in
each subcell, i.e., T = [Tglln), ...,ngzi; | where Tg;ﬁ ") = [T(OOO),T(XOO),T(OlO),T(‘ZOO),T(OQO),T(OOZ)lgzﬁ 7);
and the thermal force vector t contains information on the thermal boundary conditions.
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4. MECHANICAL ANALYSIS

4.1. Basic Mechanical Equations. The mechanical dynamic equations of motion in cylin-

drical coordinates (r,6, z) must be fulfilled within each (fy) subcell of the (p, g, s)th cell. These
equations are given by

(@Bv) (eB) (aB) 2, (cfB7)
O™ 00g T B0 L asn sy e T T gy
o) o7b) 8z R(eBy) ()t =" ot?
3053/@7) aagzﬁv) . (%goazﬂv) . 9 o) _ (aﬁy) 82 (ef) (39
or(a) ag® 93(7) R(@B7) 1 (o) Tro 8152
80,(40;'67) 5O§oztﬂv) N aagczvﬂv) N 1 (aﬁw) e azugaﬁv) 34)
pre) PN ) 9200 T R@B 1@ TP 12 (

where u(aﬁv) (aﬁv) 7ugaﬂ7)

are the subcell displacement components, cr( ah) (4,5 =r,0,2) are the
stress components, p(o‘ﬂV) is the mass density and ¢ is time.

The components of the stress tensor, assuming that the material occupying the subcell (afy)
of the (p, q, s)th cell is either elastic orthotropic or inelastic isotropic, are given by

'LJ ZJ

o681 _ (B (a) _ L] _ et (oy)
[ ki ) ] rzy T (35)

where ¢,7,k,l =7,0, 2, cgj ,57) are the elements of the elastic stiffness tensor, e(] *A) and eI(aﬁ ") are

the total strain and the inelastic strain components, T(®#7) is the temperature, and I‘(aﬂ 7) are the
elements of the thermal stress tensor which is the product of stiffness and the thermal expansion
coefficients tensors. In this report, we consider either elastic orthotropic materials or inelastic
materials which are isotropic in both elastic and inelastic domains. Hence, the above constitutive
relations (35) reduce to

E;xﬂ”r) _ Ejaﬂv) (?ﬂv) _9 M(aﬂ'y) EZ{ ](aﬁv) _ UiTj(aﬁv) (36)

where p(@#7) is the elastic shear modulus of the material filling the given subcell (afy), and the
term € T(@PY) gtands for the thermal contribution ngﬂ V) (epy),

4.2. Traction continuity conditions. The continuity of tractions between adjacent subcells
within the generic cell (p,q, s) is fulfilled by requiring

(1ﬂ)(,,s) 2P ((p.a;8)
! [ fl‘)l d(P)/z 'I"L K |TI(72()]___d(p)/2 (37)
(e17) \(p.g.s) (Oc2 ) (P29
091 ! |;Zl(§ h(Q)/2 K ! Z()gti__}rl(q)/2 (38)
1 b2 2 14y
ol (B = ol S (39)

where i = 7,0, 2.
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In addition to the above continuity conditions within the generic cell, the traction continuity
at the interfaces between neighboring cells are fulfilled by satisfying
oA

(p+1,4,8) (2[37) (X))

T ’ (1)___d(P+1)/2 Opi l'r‘(2)=dép)/2 (40)
(e17) \(pgt+1,s) (a27 (9,9,5)

To; \—(1):_h(q+1)/2 1 @)= h(q)/2 (41>
0031 ,g,5++1) £2) )

o |t = P NTES (42)

4.3. Displacement Continuity Conditions. Similar to the traction continuity conditions
described above, the following displacement continuity conditions must be satisfied at the interfaces
within a generic cell (p,q, s) and its neighboring cells.

187) |(Pg, 267) |(p.g;
u(187) |1()1<)1 O u(267) lfz‘iu_d@)/g (43)
al (p,9,s) a2 (p.a,5)
w7 | Z()13 —n{® /2 w2 | z()2l§j~h(‘1)/2 (44)
w00 = G0 (45)

where u(®8) = (ug‘”ﬂﬂ,ugaﬁ TS 7)) denotes the displacement vector in subcell (afy), and

1 (p+1,9,5) 2 (p,9,5)
u187) | A dp+1>/2_ u(267) | a1 (46)

al (p,g+1,s a2 (v,a,
( ’Y) ! }Z]j——h(q-'—l)/Z— u( 7) [ 1(72? =h ‘1)/2 (47)

afil ( s 75+1) e 2 ( H
ulefl) ;S:_ll/z ule#?) ‘zz()2l§~12/2 (48)

4.4, Boundary Conditions. The final set of conditions that the solution for the displacement
field must satisfy are the boundary conditions at the top and bottom, and left and right surfaces.
For example, the tractions in cells (1,q,s) at the bottom surface » = Ry must be equal to the
applied time-dependent surface loads,

oG8V 1857 = Te(6:1) (49)

o o = F50(0,0) (50)

where ¢ = 1,..., Ny, and fBr(0,t), fpe(0,t) specify the form of these time-dependent loading func-
tions. At the top surface r = Ry

267) |(Np,a,) —
o2 | o 1= Fre(0,t) (51)
a%ﬁv) I(N”’q’s) = fro(0,t) (52)

#=d{"P /2
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where ¢ = 1, ..., Ng.

Similarly, the tractions in cells (p,1,s) at the left surface 8 = 0 must be equal to the applied
time-dependent surface loads,

al 1,8
o N = T () (53)

al ,1,8)
( ) |(1?1) = fro(r,t) (54)

where p = 1,..., N,. Similar boundary conditions hold at the right surface § = ©. In the case of
prescribed time-dependent displacements (say), they are:

(2 ( 7N S

u( 1v) |1:2)qh()Nq)/2 fre(r,t) (55)
(alv) |(p,Ng,s) —

up |;()2)ihéNq)/2— fro(r,t) (56)

where the time-dependent loading functions are denoted by fgr,(r,t) and fre(r,?).

4.5. Mechanical Field Expansion. The time-dependent displacement components is repre-
sented in each subcell by a quadratic expansion in the local coordinates 7@ 5Bz as follows:

o — (aB ) a (aB) ap
uleB) = Wl(oog) 7 )W T 7) + (B)W((Olg;

d(P) ()2

o hy N 1. 2.
T )W((Q%gg 4 2(3 (ﬁ)2 )W( ﬂ’Y) 5(32(')')2 )W( £) (57)

L s )2
+ '2'(3”( ) 1(020) 1(002)

(afy)  _ af o (ap — af
uy = Wz((oogg+ ()W( 7)§+y(mW(<o£§

1 ()2 A2 () (8)2 2;1)2 @8 | Liasim2 _ B (ap)
(o o Q _ o — o
ugaﬁV) — W?S?é%g; + z(ﬁ’)W(&‘)%’B (59)
where the unknown coefficients W(gﬁ 71) (t) (i = 1,2,3), which depend on time, are determined

from the fulfillment of the governing equatlons the 1nterfac:1al traction and displacement continuity
conditions, and the applied loading conditions. Note that there are 112 unknowns in eqns (57)-(59)
which necessitates the establishment of 112 relations for the determination of these unknowns.

It should be noted that the z- component of the displacement field, eqn (59), does not contain
linear terms in the local coordinates 7@ and 7. This follows from the assumed periodicity in
the axial direction and symmetry with respect to zM =0 (v = 1,2). Further, the presence of the

constant term Wé(of)%g; in eqn (59), which represents subcell center axial displacement, produces
uniform composite strain €., upon application of a partial homogenization scheme in the periodic
direction described in Ref. [5]. This partial homogenization, which couples the present higher order
theory and an RVE-based theory, leads to an overall behavior of a composite, functionally graded

in the r and @ directions, which can be described as a generalized plane strain in the periodic axial
direction.
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In the perfectly elastic case, the above quadratic displacement expansions (57)-(59) produce
linear variations in strains and stresses at each point within a given subcell. In the presence of
inelastic effects, however, a linear strain field generated by the above expansion does not imply
the linearity of the stress field due to the path-dependent deformation. Thus the displacement
field microvariables must depend implicitly on the plastic strain distributions, giving rise to a
higher-order stress field than the linear strain field generated from the assumed displacement field
representation. In the presence of inelastic effects, this higher-order stress field is represented by
a higher order Legendre polynomial expansion in the local coordinates. Therefore, the strain field
generated from the assumed displacement field, and the resulting mechanical and thermal stress
fields, must be expressed in terms of Legendre polynomials as

5 =2 30 0 Ml R Pl P C7) (60)
757 =3 30 3 By RO PG o) (61)
Tl oo [eo) e o] o o
7™ =3 30 3 M UG Pl PCE) (62

where 1,7 = 7,0,2, Apynn, = /(2L +1)(2m + 1)(2n + 1), and the nondimensionalized variables ¢,’s
defined in the interval —1 < ¢; < 1, are given in terms of the local subcell coordinates as Q(P‘) =
7@ /(da/2), ¢ = 7O [(hg/2), ¢ = 2D /L, /2).

For the given displacement field representation the upper limits on the summation in the strain
expansion (60) becomes 1; while for a quadratic temperature distribution, the upper limits in the
thermal stress expansion (62) become 2. Alternatively, the upper limits on the summations in the
stress expansion (61) are chosen so that an accurate representation of the stress fields is obtained

within each subcell, which depends on the amount of plastic flow. The coeflicients ez(;‘([; 771 n) TE;‘([; ZY)L )

TZ;((‘;‘ﬁ? 31) in the above expansions are determined as described below.
The strain coefficients ez(.jo.‘(? Z))m n) 2re explicitly determined in terms of the displacement field mi-
crovariables using orthogonal properties of Legendre polynomials. For example b yylebn

- . rr(0,0,0) — 77 1(100)"
The complete set of nonzero strain coeflicients is given in the Appendix.

Similarly, the thermal stress coeflicients 778 - can be expressed in terms of the temperature

2§ (lm,n)
field microvariables T((ﬁf%). For example TZ;((O&%%) = plos 7)1”(((%%;’). The complete set of nonzero

thermal stress coefficients is also given in the Appendix.
The stress coefficients TE?(’?ZBL n) are expressed in terms of strain coefficients, the thermal stress
coefficients, and the unknown inelastic strain distributions by first substituting the Legendre poly-

nomial representations for el(»;xﬁ 7), Ugj?‘ﬂ 7), and Uf(aﬁ ") into the constitutive equations (36) and then

utilizing the orthogonality of Legendre polynomials. This yields

T(aﬁv) _ (aBy) _(afy) T{afy) R(aﬂv) (63)

ij(t,mm) — Cijko Cko(lmymn) ~ Tij(lmm) T Yij(lm,n)

The RE;)(?ZEL ny terms depend on the inelastic strain distributions calculated in the following

manner:
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Amn « fa% «
RSy = e [ [ [ o RN @) Bal P (o)

4.6. Stress Moments. Let us define the following stress quantities in subcell (af7y) of cell
®,9,9)

d(P) /2 h(‘l) /2 /2
(@) 1(pas) = ? (7® (M5B gi(e) 475 (B) g5(7)
[Sij(l,m,n)] (p,q, d(p)/Q/h(q)/2/l /2 3/ )"(Z7) T35 dr® dyg'> dz (65)

where ¢, j = r,0, z. Note that, in particular, the zero-order quantities S (o (0 0 0) represent the average
stresses in the subcell.

Explicit evaluation of eqn (65) yields the following expressions for the normal stress quantities
(superscripts (p, g, s) have been omitted)

@By)  _  (aBY)pp(ap of of 1 (e (67) 7 (aBy)
7"7"(070,0) = o7 W1(1og; ( " [W((mgg R(aﬁﬂ (oog)] +eig Ws(gm;y)
- TETE ~ BSho) (66)
with similar expressions for Séz(%’g 0) an nd Si:(%v()) 0)°
() _ o (esryyesy)  _ da o yy a6
rr(1,0,0) T 4 €11 W(200) 12R(aﬁ7) W 1(100)
A (apy)p(eBr) _ o (apy)
- zrgrm)Tuoo; —573 rr(l’?0,0) (67)

with similar expressions for .S’( @B7) and SP)

66(1,0,0) zz(1,0,0)"
geon)  _ B apiyyern | M (esnppas)
rr(0,1,0) 4 2(020) T 1T2R(BY) 12 1(010)
_ ﬂ (@By)(eBy) 8 plapy)
12F K T(OlO) 2\/—3-R7‘7‘(0,1,0) (68)
with similar expressions for 56(?3}(607%,0) and Si:(fé)v,i,oy
(aB) (o) dz ng " (aBy) (aBy) (eB) R(aﬁv) 69
rr(2,0,0) T [57‘1‘(000) 10 R(aﬂfy)W 1(200) = T T g0y ) - \/’5 7‘7‘(2,0,0)] (69)
h% 2
{@By) _ (o:B) ‘312 wiesn) o (cB7) (aB)
5(072 0) — [Smﬂ(ovo 0) ( 0\ R(aB) 1(02?)) ( M)T(02o; ) - %Rrr(oﬂ,/z,oﬂ (70)
l l2 clab) 9
(efy) (o) L2 y(aBy) o (afy) (apBv)
TT(070,2) [ Tr(OVO 0) LT 10 R(eBy) Wl(oog) ( M)T(om’)y )= _\/———RTT((;Y 0, 2] (71)

with similar expressions for the other components.
Similarly, the explicit expressions for the shear stress quantities are
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g(@B7) (o) pyeB) | yrlefn __L_yylefn)  plesy (72)

76(0,0,0) = 44 2(100) 1(010) ~ R(aBy) Wi000)] — Br0(0,0,0)
(@) _ da @prplapy) 1 ptepyy o plapy) 73
r8(1,00) T 4 C4q [ 2(200) ~ 3 R(eBr) 2(100)] - Q_ﬁ +6(1,0,0) (73)

(0pr) 1B (e pp (e 1 ey _ 1 piasy) (74)

r(0,1,0) T 4 C44 1(020) ~ 3R(eBy) " 2010) 2—\/§RT9(0,1,0)

58 = 2[5 Tomi e W) — RS )
S5y = SE1slet ) - b el RG] (76)
AT, T S, - R )

12 Ly
(apy) afy)yr-(af aBy)
'rz(O’,yO,l) Z Z(14 ! Wl(OOgg 2\/“R7("z(070 1) (78)

(B) (@B yr(eBn) _ by pepy)
62:(070 1)~ 2704 W2(oog) 9 \/‘Rez(O’yOl (79)

4.7. Zero-Moments of the Equations of Motion. By integrating the three equations of
motion (32)-(34) over the subcell (af7y) we obtain, in conjunction with the above displacement
expansions (57)-(59),

(aB) (aBy) () (ep) (@Bv) 1_ (e (af)
I a(ovo 0t Jer(ovo o) T K, (070 0t R(aﬁV) [STT(O’YO 0) 899(070 0l = ol ﬂv)Wuoog) (80)
(ap) () (aB) 2 lapy) By 17 (eB7)
Lgoo.0) + Jo0000) T K000 T R(aB7) Sr0(00,0) = = plePIW, 2(000) (81)
o) apy) (ap) L (epy)
I7(‘z(0’YO ot JG(z(O’YO 0+ Koa000) T T Srz(OVO oy =0 (82)
where the following interfacial traction integrals have been defined:
hg/2  ply/2
(afy) /5 /7 (aﬁ'y) n+1 (04,37) =(B) 15(7)
00 ~ oo o2 -y 2™
1 h da /2 ly/2 h
J(aﬂ’)’) _ ﬂ / / (aﬂ'y) 4+ (=1 'n.+10(c¥13’7) ﬂ d,r(a)dz('y) 84
one =5 G [ [ e+ e =) (54)
da/2  hp/2
(@fy) _7 (aﬁv _’7 n+1 (aﬁv) 47 q(®) 35
Kom = 5= [ o L ST+ D (~arag® ()

where 7 = 7r,0,2;, n = 0 or 1, and aff}‘ﬁv)(idaﬁ), aé?ﬁv)(:thg/Q), Ug?ﬁq)(il,y/Q), stand for the
interfacial stresses at +d,/2, +hg/2, *l,/2, respectively.
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4.8. First-Moments of the Equations of Motion. By multiplying the three equations of
motion (32)-(34) by #®), and integrating over the subcell volume by parts, we obtain:

(o () 1 aBy) (eBy) 7 _ A (o)
Irr(170 0 STT(O’YO 0) + R(aBv) [87(“7‘(170,0) 599(170 0)] - p(aﬁv) W (103) (86)
(aB) (aB) (aB) afy) Ga 75 ()
Ir9(170 0) '5’7'0(070 0) + R(aﬁV) STQ(I’YO 0) = ( P e Wz(mg) (87)
(aB7) (aB) (@Br)  _
Irz(lfyo 0) Srz(O’YO 0) + R(aﬂy) STz(lf,yO,O) =0 (88)

By multiplying the three equations of motion (32)-(34) by §#, and integrating over the subcell
volume by parts, we obtain:

K3
(o (aB) op @By 1 _ (a (@B)
Jer(o,71,0) S 0(070 0) + S R(aﬁ’y [SST(071,0) 599(071 0)] = ,0( ) 12W (013) (89)
(o) (aB) 2 aBy) hj s (aBy)
Y 03(071,0) - 893(07,0,0) + RBY) Sr9(071 0y = (aﬂv) 19 W2(01g) (90)
(eBv) (aBv) 1 aBy)  _
JGZ(O’,Yl,O) B SQz(O’TO,O) + R(aﬁry) S’r(‘z(O’,yl,O) 0 (91)

By multiplying the three equations of motion (32)-(34) by z), and integrating over the subcell
volume by parts, we obtain:

) (aB) 1 (aB7) (@By) 1 _
K o0 ~ Sraooo =iy Sre0,01) ~ Seao0,) = 0 (92)
(@Bv) (eB) 2 By
Kza(o’yo 1) Sez(ow,o,()) + R@h) STG(O’YO =0 (93)
(aB) (aB) (aB) a (afy)
Kzz(Ovo ) Szz(OA/O 0) + R(aﬂ7) Srz(o’yo 1) — P( ) 12W (00}) (94)

4.9. Second-Moments of the Equations of Motion. By multiplying the three equations of
motion (32)-(34) by 7?2 and integrating over the subcell volume by parts, we obtain:

2 (ep 84) (ap ()
Zlﬁr(oig,o) + [Je(f(070 0) + Kzr(O’YO) 0) - 257"7"(170 0)
1 op of o (afy) |, v (apy)
b s lSEEN o — S 1 = e oo 1 Javiein (o)
dz, (ap da [ 1(ap) (o) gl
——I,fe((;’g o T [J09(070 o T K20000)] ~ 250010,0)
2 (op o) Ya i (0 ) 4 day i (0B)
+ R(aBY) S£9(2ﬂ,{()),0) = plefn 2 [Wz(oog) 1OW (20?))] (96)
o 7(af7) (eB) () (@B) b oy
‘4_152«(0700 [ T5200,00) + Kaao0,0) = 2802100 T @A) i Srez00) =0 (97)
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By multiplying the three equations of motion (32)-(34) by )2, and integrating over the subcell
volume by parts, we obtain:

h2
B 1{afy) {aBv) (aBv) (aBv)
Zjag(oj/o,o) T [Irr(ovo 0) Kz'r‘(O’YO o)) =28 9(071,0)
1 oapy) () a (af) I s (e
+ R(aBY) [STT(O?IZO) 500(072 0)] - '0( ﬁ’)‘ [Wl(OOE 10 W (02’5;] (98)

h? h
B 1(apB) af af af
ZJ99(070,0) + [159(073 o TE o) — 2S5aon

26(0,0,0) 66(0,1,0)
2 opy) i) B (e | B (asy)
T R Staton = P35 [W%og) + 75 Wa(ozo)) (99)
() (aBv) (aBv) (aB) ()
JGz(O’YO 0) [I'r'z(O’YO 0) Kzz(O’yO 0)] 2SQz(O’yl 0) + R(aﬂ'y) S’I‘Z(O’YQ 0) — =0 (100)

By multiplying the three equations of motion (32)-(34) by zM2_ and integrating over the subcell
volume by parts, we obtain:

afy) 5) 2 af
K ( (070 0o T [ 5:[(0700 Jéf(0780 -2 7('z(07()),1)

b (5B gl

l
a (o) (aB)
R@py) Prr(0,02) ~ 286(0,0,2) @A L W00 + W Gom]  (101)

P 12 [ 1(000) 1(002)

12

(apv) (a@B) (aBv) (aBv)
WKzo(ovo o T '1'75[ 200000 T 7, 99(070 o)~ ZSGZ(OTO,l)
2 apy) o) B by L B e
t R S§9(070,2) = plof 172 [W((Oog) - 170W2(003)] (102)
{(afy) (aB) af) (aB) (aBy) _
zz(O’T0,0) + 5 12 [ITZ(O’YO 0) + JB(z(O’YO 0)] B 2Szz(070 1) + R(aﬁ7) Sfrz(()?l(),2) =0 (103)

4.10. Interfacial Traction Integrals. From the above 21 relations (80)-(82) and (86)-(103) it

is possible to establish expressions for the interfacial traction integrals Ir(;‘(%vg 0y J é;‘g’g 0 Ki;l(?g 0y
j=r,0,z, as follows.

Substitution of eqn (80) into eqn (95) yields the following expression for I (@)

rr(0,0,0)"
@py)  _ 12 (apy) g(@B) (aB)
IT?(O’,YO,O) - % r'r(lﬂ,YO,O) + QR(aﬁry)[ rr(O’YO 0) 899(000)]
6 glepy (apv) afiy) Ba 17 (aB)
Tz R(aﬁ'y)[ rr(270 0) 599(27,0,0)] + pf '87) W (Oéog) (104)

Similarly, substitution of eqn (81) into eqn (96) yields
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(@Br)  _ (aB) L apy
Lo = S r0(1.0,0) T e Sro(0.0,0)
12 (@p7) | ap 1 da 5 (af)
- d2 R(aﬁv) Sre(zoo) K 20W2(200) (105)

Substitution of eqn (82) into eqn (97) yields

e, =0 (106)
Substitution of eqn (80) into eqn (98) yields the following expression for Je(f('?g 0"
g 12 ey geBy) _ glapy)
67(0,0,0) jlg 79(0,1,0) " o R(agy) [ rr(0,0,0) 99(0,0,0)]
6 oy (a) (oo 11 v ()
- h%R(aﬂ'y)[ rr(0,2,0) 569(020)] + 50 W1(020) (107)
Similarly, substitution of eqn (81) into eqn (99) yields
(aBy)  _ (aBv) (aBv)
To0000) = 509(071,0) + R(agy) Sr0(00,0)
_ 12 S(aﬁﬁ’) (a,B'y) ﬁw(aﬁ’)') (108)
h% 12 R(aB7) ©r6(0,2 ot 20 " 2(020)
Substitution of eqn (82) into eqn (100) yields
J(S?(% 0 =0 (109)
Substitution of eqn (80) into eqn (101) yields the following expression for Kig(ﬁov% 0y’
@) _ 12 ey LS (aB)
Kzr(O’YO 0 - —[’2; rz(O?O,l) + 9 R(e:B) [STT(O’,YO,O) - 599(070 0)]
6 (aB) (aB) (aB9) 1y (@B)
Tz R(aﬁ'y)[ rr(0,0.2) ~ S60(0,0.2)) TP ZOW(ooz) (110)
Similarly, substitution of eqn (81) into eqn (102) yields
(aBy)  _ (aB) (aB7)
KzB(O’YO 0 l2 S z(O’YO 1) + R(a'B7) S'rg(O’yO,O)
12 (apy (o) 1y 1 (@)
B 12R(@B7) Sro(0,02) F P 20W 2(002) (111)
Substitution of eqn (82) into eqn (103) yields
By)
Kg:(o% 0 =0 (112)
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( gt) should be noted that the remaining nine expressions for the interfacial traction integrals
Ir?(l?lo,p)’ Jg(?([g)?l)’o),Kggg&l) (j =r,0,2) have already been given by eqns (86)-(94).

It is convenient to define the following quantities

(aBy) _ lap o) Yo vy (o
byo(0.00) = frr((f&m -t ﬁ"”%Wuzo@ (113)

2
(aBy)  _ (eBv) aBy) Yo i (@B)
ZTC;(OV,O,O) = Ir9(070,0) -l 'BW)Z—O 2((203) (114)

2
(@By)  _ apy) aBy) Y vir(@By)
Zrr(17,0,0) = Irr(lj/o,o) ~ ﬂV)ﬁWmog) (115)

2
(afBy) - I(aﬁ’)’) o p(aﬁ'y) da W(aﬂ’Y)

br6(1,0,0) = “r6(1,0,0 T2 Va(100) (116)

h2
(apy) _ lefy) a B i (af
Jor(00,0) = Jar(00,0) o ﬁ”)—W&ozE% (117)

20
() (@B (ap) B (ap)
T86(0,0.0) = T000000) =P 50 V2(020) (118)
hg .
(aBy) _ plaBy) o B vir(cfv)
Jer(oﬂ,yl,o) = JOT(O’,YLO) —pl ﬁ7)§ 1(018) (119)
B
.(aﬂ ) _ (aﬂ ) «Q, B8 B
309(071,0) = 09(071,0) - pf ﬁv)‘ﬁwz((oéng; (120)
2
@)  _ plaBy) aBy) 1 vir(aBy)
kzr(OA,/O,O) - Kzr(070,0) - P( '67)576 1(00’;) (121)
2
(aBy) _ gAap o of
k2000,0,0) = Kz@(O’:/()),O) — ot M)Q_B 2((0033 (122)
2
©BY)  _ glepy) By b irlaBy)
kzz(O’TO,l) - Kzz(O’:/O,l) - p( ﬁv)i% 3(00}’) (123)

It should be noted that the above eleven new quantities (113)-(123) are given solely in terms of
the stresses Sz(;ﬁ Zr)b n)» €ans (66)-(79), and therefore involve no time derivatives of the unknown

displacement coefficients Wi((?izl)).

4.11. Volume Averages of the Equations of Motion. Once the interfacial traction integrals
(83)-(85) have been established, we can readily express the volume averages of the three equations
of motion, given by eqns (80)-(82), over the (af37) subcell of the (p,q, s)th cell. As it can be readily
observed, eqn (82) is trivially satisfied, while eqns (80)-(81) are, respectively, given as follows:

2 2
p(aﬂv) [W(aﬂ“/) __ di 57(aB7) hﬁ i (aBy) lv W(aﬂv)]

1(000) ~ 50 1(200) T 50 "V1(020) T 50"V 1(002)
() (af) o) 1 oo (af)
Zg'r(O’TO,O) + Jon(0.00) T kgr(OT0,0) + 2 [STT(O’B,O) - 99(070,0)] (124)
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p(aﬁw) [W (afy) a W(aﬂ’Y )

h l
ﬂ afy afBy

2(200) ~ 3 2(020) 20 (002)

_ ey (afy) (B7) 2 (ap)

= a0 T 399(070,0) + k00,0 T R@h S0(00,0) (125)
These two equations form 16 out of the 112 relations needed for the determination of the second

time derivatives of the unknown displacement coefficients Wz((l il))

4.12. Imposition of the Traction Continuity Conditions. The traction continuity condi-
tions are imposed on an average basis at the subcell and cell interfaces. These conditions imply

existence of certain relationships between the aforementioned interfacial traction integrals as de-
scribed next.

Interfacial continuity of tractions in the radial direction. Let us define the following
two new quantities:

aﬂ ) 1148 Otﬁ 1k ¢l Oéﬁ 1
F( M P:29) = ( ) |(_1(J£ D s 53 ) [ix(ﬁaq)_ s (126)

(af) ((p.a)8) = o (aﬂv (p.9:5) (efv) ((pass
Grj lpq | () = d /2 +0 'r'] ’ (a)_ d(P)/2 (127)
with j =7,0, 2.
Substituting the interfacial traction continuity conditions (37) and (40) between cells and sub-
cells in the r-direction, we obtain, respectively,

(1:6 ) ,q,8 (2ﬂ ) ( ) ,S) (213 ( - ,q,S)
Fy; Y ‘(pq ) y |:()2(§=—dg”)/2 o Y \1(’2) S (128)

]-ﬂ IE-J p— 2/8 1q,S 2ﬂ ) ( 1, S)
ng ) I(pqs) 0_( Y |(IZ£ )dg")/z ( gl |I‘(72) Z“’ b g (129)

By addition and subtraction of equal quantities to and from the last two equations it can be easily
verified that

2F£;’67) |(p,q,s): [_Fgﬁv) + Ggﬂv)](p,q,s) . [Fr(?ﬁv) + Ggﬁv)](pﬂ,q,s) (130)
2Ggﬂ’¥) |(p,q,s): [_F(?ﬂv) + Gg?ﬂ’)’)](p,q,s) + [Fr(?ﬁv) + Gg_ﬂv)](p—l,q,s) (131)

Then employing the definition for Iﬁj(i 7()) 0)» €dn (83), we obtain the corresponding relations:

1 S 2 8 2 - »S
Iﬁj?OT()),O) |pes) = —Z Iﬁjﬁoﬂ |(pas) _ 7, [( ?’Y) |(P—1.2:9)
2 S 2 1q,8
+ 21l g 109 ~ZIGE ) (079 (132)
1g , _ (28 ,8 (26 l,,
IT](1’YOO l(pq = ZsI, (100 lpq )+Z6.IW(1700) l(p q,5)
24 \&,S (28 -1,g9,
_ Z7I7(‘]((;Y% 0 |(Pra:5) +Z81T](0700 |(P-L.a:5) (133)

where j = r, 8, since for j = z all quantities vanish.
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The above equations (132)-(133) are applicable for internal cells where p = 2,3, ..., Np. For the
1st cell p = 1 the continuity of tractions at the interfaces between the subcells of this cell can be
easily shown to yield the single relation:

[Ggﬂ’Y) _|_F7€;5’Y)](1,q,s) — [Ggﬂ’Y) _ F}fj?ﬁ’)’)](l,q,s) (134)

This single relation replaces the above corresponding two relations (132)-(133) at interior cells.
This relation provides

1 1 8 2 2 S
[159(607()) o T I( ?17()) 0)](1’(1’ )= 2[_Z1[£g?(7% o Z3I(](ﬁlvé 0)](1’% ) (135)

where j = 7,0, since for j = z th1s equation is identically satisfied. Again, this relation replaces the
above two equations that are applicable at interior cells.

Substituting the established expressions for the interfacial traction integrals into relations (132)-
(133), we obtain the following equations for internal cells when j =17

3 . s d3 - (2 s d% . los
[p(lﬂv) 2(1)W((57))](p,q, I o (267) 2(2)W1((2%))](p,q, ) _ Zz[p(ZﬂV)Q_(Q)Wl((Z%’B))](P 1,4,5)

dz .
+ 74 [p(Zﬁv)_QW(?ﬁV))](P,q,S) - Z4[p(2ﬁ7)_2W(?ﬁ‘6))](19—1,q,s)

— Sﬂg% ](pq ) 47, Z(Zﬂv) l(pq ) 47, Z(2[(’7 0 ‘(p—l,q,s)

2 ] 2 s
- Z31’£7"[(?00 |4 47, Zirl(?oo Phee) (136)

d 1 d 2 s d 2 s
— AV 1§W1((1ﬂ0“(7)))](p G8) [ p2) 1;W( A7) ](p,q, )+ Zg[p2P) Swl((lﬂo%))](p L,g,9)

d3 s 2 s
—  Z;[p%) Q(Q)W(Qﬂ"f [P5) 4 Zg[ 2P SW((ﬂV))](p 1,4,5)

— 18 N8 (26 14,5 (2p 1,q,s
gr(;OO) |P92) —Zgi rr(;YOO |P2e) 7 er(1700) |(p=29)

2 2 —1,q,8
2o 17 —Zai G 177 (187)

For j = 6, the two relations (132)-(133) become:

&2 &2 B 380 (01 0s
—[pP) 1W2((1§070))](p,q, )~ 7 (%) QéW(?ﬂv))](p @) _ Zz[p(2ﬂ7)——%W( (%70))](? 1,4,9)

43 2 2 -
+ Zs[p®h 1§W2( 1670)]”’3) Zylp (28m %2 W((lﬂgo))](p 1L,g,8)

_ (1ﬂ s (287) s (287) —1,g,8
Te(goo |P02) 1244 e(goo | () +Z?Z 76(0,0,0) |t

- Z3’L(2ﬂ7) |(p 58) 47, Z(Qeﬁ(?)o 0 |(P—L:2:9) (138)

d? 1 d3 2 s d3 (28 —1,q,s
—[pAM 1;W2((1%))](” 9 4 Zlp (2ﬂv)_2W((Bv))](p,q, )+ Zglp (2ﬁ7)_2W( 0“6))](19 1,4,9)

— Zq[p¥ Zw(2ﬁ7)](19 @) 4 Zglp (28v) %2 W@ﬁv)](p L,,s)

20" 2(200) 2(200)
_ 187 Qs (287) 0,5 (2,3 ) —1,q,s
= Zie(foo |P2e) Z57’r9(1700 |P2*) (1700 I(p 7°)
+ Zﬂ%f?goo |(P.a:5) ZZ%'?%O |(pﬂ17q78) (139)
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Consequently, these four equations (136)-(139) provide additional 16 relations for the second time
derivatives of the unknown displacement coefficients Wi((?ﬁl)).

The two relations (132)-(133) are applicable at internal cells p = 2,..., Vp. For the boundary
cell p =1 we use the corresponding relations (135). For j = r we obtain

2 2
PN Iy s oy e6y) %Wl(?f&))) L e G087

20" 1(200) 6 1(100)

d2 .. (o . ,
_ ZBP(2BV)_6ZWJE(5)?)](1,q, ) = [—iBY)

rr(0,0,0)
(267) 2 .(py) (287) (L.
B 2Zl/b'm"((’)):O,O) B d_lq’rr(zo,ﬂ) + 2Z37"r7‘(;y,0,0)](1 +°) (140)

while for j = 6:

[ p(lﬂ'y) ﬁ W(lﬁ’Y) + 27 p(2ﬁ'y) ;_% WQ(QéBO’Y) + p(my) @ = (167)
6

20" 2(200) (200) 2(100)
d2 .
2 21528 1(1,q,5) _ 1 (1B
— Z3pl ﬁv)_é_W;(lo’é)](l 0,8) — [_259(&0’0)
(26 2 .(1pv) (28Y)  1(Las
— 2211500 ~ i)  2Zha0) (141)

These are 8 relations that are applicable for the boundary cell p = 1. For this cell however there
are another 8 relations that express the applied boundary conditions at the surface » = Ry. These
latter relations will be presented in Section 4.14. Consequently, we have altogether 16 relations for
the second time derivatives of the unknown displacement coefficients Wz((?ri’zz)) in this boundary cell,
p =1, (just like any inner cell p # 1).

Interfacial continuity of tractions in the angular direction. A similar analysis for the
traction continuity conditions in the 6-direction yields for internal cells ¢ = 2,3, ..., IV,

(Oll ,q,8 . (Ol2 ) 14,8 (a2 ) N —1,5
Taoney @99 = —Y1Iih o) [P0 —Yadgli ) ()
(a2y) ,q,S (a2y) ,g—1,s
+ Yalgong P4 Yagighg (P (142)

(al ) 4,8 — (052 ) 4,8 (a2 ) q—1,
Tison P9 = Yl o) P99 + Yoy 147

Yelisono |24 +%aT5000 1707 (143)

where j = r, 0, since for j = z all quantities vanish. The above equations (142)-(143) are applicable
for internal cells where ¢ = 2,3, ..., Ng.

For the 1st cell ¢ = 1, the continuity of tractions at the interfaces between the subcells of this
cell yields the single relation:

a 2 (e (e (e 8
55000 +h—1‘]0(j(107,%,0)](p’1’8) = 2~YiJy5500 + Yslion0) ™" (144)

5(0,0,0 7(0,1,0

where 7 = 7,0, since for j = z this equation is trivially satisfied.
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Substituting in (142)-143) the established expressions for the interfacial traction integrals we
readily obtain for internal cells the following expressions when j = 7r:

[ (aly) 1 hl W(ah’) ](p,q,s)

1(020)

— p(alv)

h% 1 (aly) s
ﬁwl(oﬁ))](p’q’ )

h2 .. (o s
Vi [ple27) 2W(( 2’7))](10 8) _

20 20

h yrla [} —
+ Yi[p (a27)_2W(( 27))](17,11,3) — Ya[p (a2v)ﬁ2_w(( 27))](1741 1,5)

12

(ecly) l(p,q 3) 1Y, j(a%f)

Y—Q[ (a2v) 2 h2 W(a2’7)

1(020)

l(p q)S) +Y j(o‘z"/)

= Jor(0,0,0) 6r(0,0,0) 6r(0,0,0)
-V jé?(QO“/l (Pa9) Ly, ](a(27 |(Pa—Ls)

Ys (a2) h’2 (@27)1(p,a,5) (a2vy) b2 h’Q W(O‘QW’)
+ [p 12W ] + Yslp 12"/ 1(010)

— Yy[ple2n 2 h3 W((a%))](p,q, NI AP h3 W((O‘27)](p,q 1,5)

20 20

20)

. (aly) A ( 27) (a27)

= j@r(OTl,O |Pe) , 7 , 9 Yjer((71 0)
[P a2 )8

+ y”ém;% l(p,q, “ij(ar((;loo |(Pa—L9)

For j = 0 the two relations (142)-(143) yield,

Yot

_[laly
lp 50

. (al ) q,s
W2(0270)](pq )

—[pletm 2L hi W) | (pas)

12" 2(010)

woy 3 (o
Y [ple2) _%Wé(oé%))](p,q,s)

N h% .. (oo 1
— Y3 27)_81/[/(( V>)](p,q 1,s)

+ Y3lp (a2y) 2 h2 W(a27)](p,q,s) Yl (02) hQW((aQ'y))

2(010) 12
(aly) ., (a2y)
= 90(070 0) |(pq +Y100(00,0)

_ }/3](0‘2'7) I(p \q,8) +)/4J(042'7

|(p q—1,8)
00(0,1,0 60(0,1,0)

+ Ys[ple?n 2 n3 W(D‘QV)](p 29) 4 Yg[ple2)

192 2(010) 12

- y[mwh%wfgw%@+y[mmnzww%qmru>

20 20

, (e27)
|P2e) +Y2300(0.0,0)

thv‘QQ”)

2(010)

66(0,1,0)

ol 14,8 o2 ,S (a2 )
- 59(07)10 I(pq )—Yjég 07)10 I(Pq ) ~Ysigo
a2 s o2
TV | B el - (pasie)

](pq L,s)

](pq L)

](pq 1,s)

](p,q Ls)

(145)

(146)

(147)

(148)

Consequently, the conditions that the tractions are continuous at the interfaces in the 6 direction

provide 16 additional relations which are valid for internal cells ¢ = 2,3, ...,

N,

q-

For the boundary cells ¢ = 1, we obtain from eqn (144) the following expression when j = r:

h?
(advy) 1 i (
[P S Wy
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aly)
1(020)

9y, p(e27 a2y aty) M 5 (a1y)

+ 1902 2”1((020))‘% (1) = ”1((010)
Va (02 h3 s (a2v) pl,s (aly)

3p(e2n) 2 6 W ( )]( 1) = =[- Jer(ooo)

2) (al )
- 2% ((9(:((?00) )

22

(a27)
h Jor(0,1,0) T 2Y339r(3 1,0)

}(p,l,S)

(149)



while for j = 6:

[ (aly) lw(al’Y) + 2}/1p(a27)l2

a2y) @ hi al
20 2(020) 20W2( Y +p (o7 = W( g

(020) 2(010)

N h2 . a s o
a2 al 2 s
2Y13é9(07 2) 0~ Jée(g )1 o T 2Y3-7¢‘()3((7 >1 0)] (®:1.2) (150)

Thus for the boundary cells ¢ = 1 we have 8 relations which together with the 8 imposed boundary
conditions at the surface of this cell § = 0 (which will be discussed in Section 4.14) form the required
16 relations (just like any internal cell g # 1).

Interfacial continuity of tractions in the axial direction. Let us consider the traction
continuity conditions in the periodic axial z-direction. Here we define the two quantities

F(aﬂ'y) |(Pss) — U(aﬁv) l(p;qL  a it;ﬂv Iizg;g,_ oy (151)
Gg;ﬁv \(p,q,S) ("‘ﬂ ”) \8(’13’ . /2 (aﬂw |(;’7q)’:).l7 /2 (152)

with j = 7,8, z. It can be readily established that due to perlodlcity of the stresses between repeating

cells in the axial direction, the continuity of tractions at the interfaces between the subcells of the
cell yields

Fz(j?lﬁl) |(Pas) = _Fz(;?‘ﬂm |(Pa.s) (153)
ch;ﬁl) |(P,9) = Gg‘]’fﬁQ) |(P.a:5) (154)
The above first equation (153) gives the following nontrivial relations
(Olﬂl) (aﬂ2) 4hS) —
K50 0.0y F 12K o00,0] P =0 (155)
for j = r and 6, while for j = z we obtain from eqn (154)
(ef1) (eB2) 38)
[Kzz(O 0,1) Kzz(O 0 1)](? > = 0 (156)

Consequently, the following relations can be readily established in the cell (p, g, $)

apt) B ir@py) | (ap2) B yir(ap2) (oB1) (p2)
PP 2'6W1(002) +plo?? 2 W1(002) llkn(o,o,O) - Zkar(OOO) (157)
for j =7, and
ap1) & 70 o62) B yir(ep2) _ ;1 (apY) (aB2)
pleP QBW(( 02)) +plefD 2 W2(002) —likg00,0,0) ~ L2k 0(0.0,0) (158)
for j = 8. In addition we obtain for j =z
o 11 ety (ap2) B 5 (ap2) (aB1) (ap2)
( = ((001) o ( 2z W3(001) = _kzz(0,0,l) + kzz(OO 1) (159)
These relations provide 12 additional equations in the 2nd derivatives W]((li ’Q)

In summary, the imposition of traction continuity between neighboring cells and between the
subcells of the cell in the radial, angular and axial directions provides a total of 44 equations in the

(afv)
2nd time derivatives I/VJ (Imn)*
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4.13. Imposition of the Displacement Continuity Conditions.

Continuity of displacements in the radial direction. The continuity conditions, imposed
in the average sense, on the displacement vector at the inner surfaces as well as between neighboring
cells in the r-direction, eqns (43) and (46), yield

sy b8y | B sy @) | a8y 93289 1(mas) _
W, 000y T 2 W1(1070) W1(2070) W1(oovo) 5 W1(107())) W1(2070)}(pq =0 (160)
@) | D2.5,0287) | B 28y (pa, 18 18v) | B 5,(167) (i Lg,
[W1(0070) + W1(1070)) + 4 W1(2070 ](p ¥ = 1((00% Wf(m?) 1VV1((20A6)](pH @) (161)
sy |, Dy | B sy ey |, 928 (2B) 1 (prays
[W2(0(;B) ) Wz((u%)) 1Wz(m?m Wé(ooz)) + D) Wz((lovo)) W (2(;6)](” ) =0 (162)

@p7) | %25,(26) (2B7)1(p,ays (16v) (187) | 815 (167) o108

W, (007)) +3 W2(1(;(/)) +7 Wz(zo%)](pq = [W2(0073) WQ(l&)) VV2(20A6)](Z)+ ) (163)
Obviously, eqns (161) and (163), are not applicable at the boundary cell p = N,. These relations
are replaced by the boundary conditions that are prescribed at the surface r = R; of this cell as
will be discussed in Section 4.14.

Continuity of displacements in the angular direction. The continuity conditions, im-
posed in the average sense, on the displacement vector, at the inner surfaces as well as between
neighboring cells in the f-direction, eqns (44) and (47), yield

= (al hi 5,(a1 A s (ol a2 ha o (a2 @27)1(p.q.s
[W1((00¥))) W((ofo)) 1I/Vl(((n’{))) Wl((oowo)) + W((mvo)) W1((02¥))](p’q’ =0 (164)
a2 ha a2 h% (a2 , al (aly) hl 1v) .8
W00 + SR + W = 0 - Wl(m%) = Wil 7 (165)
aly) ha al al a2y) a2 (027)1(p,q,8) __
[W((ogo) + 5 W2((0170)) + Wz((ozz))) Wz((ooz)) + Wéml%)) Wg(oz?) |5 =0 (166)
h2 hl

[W(aQ'y) ha W2(a2'y) + 22

@) 1(p.a. (aly)
2000) T (010) W @) = [,

(al ) hl (1) 1(p,g+1,s
2(020) 2(000) ~ W H W ooy Pt L) (167)

2(010) T 2(020)

Equations (165) and (167) are not applicable at the boundary cell ¢ = N,. These relations are
replaced by the boundary conditions that are prescribed at the surface 8 = © of this cell as will be
discussed in Section 4.14.

Continuity of displacements in the axial direction. The continuity conditions, imposed
in the average sense, on the displacement vector in the periodic z-direction, eqns (45), provide

(@BY) (@BY) _ yi/aB2) _ B (ap2)
Wy 1(000) + W1(002) W1(ooo) Wﬁ)f)o )](pq =0 (168)
(@1 , 5 (ap1) @) _ 13(ah2) (pas) _
[W2(000) W 2(002) ~ W2(000) W (002)](pq '=0 (169)
Furthermore,
[e% a2 s o
L Wiioor) + 2Wian] 99 = (b + ) s (170)
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where €, is the global axial strain that will be discussed in Section 4.15. This last relation follows
from a homogenization procedure in the periodic direction that has been presented in Ref. [19].
These displacement continuity conditions provide altogether 44 relations in the 2nd time deriv-

4.14. Imposition of the Boundary Conditions. The tractions at the bottom (r = Rp) and
top (r = Ry) surfaces are imposed by employing the relations:

1 5 1 S 1 Ex- 4]
Gijﬂv) l(l,q, ) _FT(jﬂv) l(l,q, ) ( B) l(ill)l—__d(l)/g (171)
Ggﬂv) |(Vp.:5) +FT(]?ﬂ7) |(Vpr9:5) = 26 (2ﬂ'y) l(Np:q, (172)

F2=d"P) 2

where j = r,0. By averaging these relations over the surfaces upon which these tractions are
imposed we obtain, respectively,

1 di 1 s

[Iﬁjﬁ”% 0"y 7%7 ) ol = f5;(6,1) (173)
2, dg 267) R

5000 + 5 Lo o) 70 = fr;(60,1) (174)

It follows, by employing the established expressions for the interfacial traction integrals Ir(jg’Zr)L n)

that the following equations are obtained in terms of the unknown 2nd time derivatives of the
coefficients W (A7),

F{lmn)"
[ (167y) %1 dl W(lﬁ’Y) _ (lﬂv)ﬁv'['/(lﬁ‘)’)](l,q,s) — [ (1,37) + ﬁ (18) ](1,q,s) +f (9 t) (175)
12 1(100) P 40 1(200) - rr(l 0,0) 9 rr(0,0,0) BriY>

d? . 1 43 1 1 di . s
[P(mﬂ’iwz((fowo)) A 4(1)W2((§()7()))](1’q’ Y = [~ 59?17 } 0 T jzf«efg,)o,o)](l’q’ )+ fe(0,1)  (176)

d? 9 2 2 d2 2
(o7 ;W((lﬁo%))+p(2m)4(2)W1((2ﬁ(7c)))](N”’q’)=[ i&0ho — 5 imono) 0 + fre(0,8)  (177)

d? ds . s 2 da (2 s
[p(267) 2W2<(21ﬁovo>) _|_p(2ﬂ7)4_(2)W2((22ﬁ070))](NM’) (i 0~ 2%1{9‘(’&2),0)]<NP’%>+f:re(9,t) (178)

Similar analysis provides the following relations for the tractions imposed in the average sense
at the left (8 = 0) and right (8 = ©) boundaries:

(o h1 (a1 1)

[Jej<07,i,0> - 3*]93'(07,3),0)](2’ b = fri(r,t) (179)
o h .

[Jéjé?i 0) 2J6(?(2()7()) )](p’N"’ V= fry(r,t) (180)

These relations readily imply the following equations:

o h’ [o% o h’ s o h " s
[p1) 1W((0117))) — pli 4(1)W(a17)](p’1’) ~domono) 5 oroool Y + furrit) - (181)
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o h’ [ o h o 8 oy h a 8
[pe1) 1W((olﬁ))) — plet) 4(1)W(( B%)ﬂ“"l’ J=1[- 359(107)1 0 T 21 ée(l(;% o) &0+ fra(rit)  (182)

a2 B o (a2 a2 B3 5 (a2 o ha (a2 s
[pl>27) 2W((mvo)) + e 4(2)W(( 7))](p Nest) = [~ jér(Q(;):i,O) ggﬂé‘f(c?,%,oﬂ(””q’ )4 fre(r,t)  (183)

[ (e27) 2w(a2'7)

hf (o (a hy (a
il + pla2) QW((Q’)'))](p,Nq,S) [~ (a2y) 112 (a2v) [PNas) o fro(r,t)  (184)

J60(0,1,0) ~ 5 706(0,0,0)

If, on the other hand, time-dependent displacement is imposed at the boundary, the same
averaging procedure is employed to establish the required expressions. For example, if the radial
displacement u, is imposed at the right boundary 0 = ©, the following expression is obtained:

@ h2 a h3 a s
W00 + 5 Wiiowt) + 4 Wiosm) ) = fae(r,) (185)

4.15. Imposition of Plane Strain or Generalized Plane Strain Conditions . So far, we

have established 104 relations in every cell for the determination of the 112 unknowns W((lﬁjn))
this cell. The final set of 8 relations is determined from the imposition of either a plane strain or
generalized plane strain condition in the periodic direction.

By applying a homogenization procedure in the periodic z-direction, it can be shown that the

following relation holds
_ oW
By = ———=~t 186
€z 0z (186)
for all a, 8,7 = 1,2 in all the cells, where €,, is the far field average normal strain in the z-
direction. Utilizing this relation, we can reduce the number of unknowns in each cell from 112

to 104 by replacing the 8 unknowns W3( O%g) with the single new unknown €,,. Consequently, the

number of unknowns in each cell is 104, and the number of unknowns in the entire FGM composite
comprised of NpNg cells is also 104NN, + 1.

The global axial strain is related to the local strain 2P = 3((%%3 as follows
Np Ny 2 @ )
q [
ezz_v§:§: ST dPng el (187)

p=1 ¢=1a,B,7=1

where V' = D(Ry + R1)O(l; + l3)/2 is the total volume of the composite.
Under plane strain condition this far field axial strain vanishes, namely,

£z =0 (188)

For a generalized plane strain situation, on the other hand, the average normal stress in the
z-direction vanishes:

NP Ng 2

_ (2); g(eBv)

0o = 2; S > dPRPLS S =0 (189)
p=1 ¢=la,By=1

and the 2nd time derivative of this equation forms the required additional relation.
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4.16. Summary of the Governing Equations. In summary, we have altogether 104N, N,+1
equations for the determination of the 2nd time derivatives of the 104N,N, + 1 displacement
coefficients, W((li ZL)), and the 2nd time derivative of the unknown global axial strain €,,. This
system of equations can be represented in the following compact form

AU(t) = £(t) + g(t) (190)

where the structural stiffness matrix A contains information on the geometry and thermomechanical
properties of the individual subcells (af7y) within the cells comprising the functionally graded

material. The displacement coefficient vector U(t) contains the 104N,N, + 1 2nd time derivatives
of the unknowns:

@) = 057 @), 0G50 (1), .. (1) (191)
where
LA () = (WGET (), Wigor) (), Wagon (D)lpg L, = 0,1,2, (192)

The mechanical force vector f(t) contains information on the mechanical boundary conditions
and the thermal loading effects generated by the applied temperature. In addition, the inelastic
force vector g(t) appearing on the right-hand side of eqn (190) contains inelastic effects given in

terms of the integrals of inelastic strain distributions that are represented by RZ(J (? :r)L )

The field variables that are expressed by the vector U(t) can be determined by integrating the
above equation explicitly in a step-by-step timewise manner. To this end, let us introduce a time
increment At. The time integration at time ¢ yields

U(t + At) = (A A7) + g(t)] + 2U(t) — Ut — At) (193)

This difference expression which approximates the above 2nd order differential equation provides
the displacement coefficients at the next time step t + At from the already known quantities at the
current time ¢ and the previous time step ¢ — At (assuming that at time ¢ = 0 the thermoelastic
field distribution in the composite is known). Note that for time-independent material properties

the matrix A has to be inverted just one time. This procedure is continued until the desired final
time is reached.

5. APPLICATION

To demonstrate the potential of the outlined theoretical framework of the two-dimensional higher-
order theory for cylindrical functionally graded materials with dynamic loading capability, a small
computer code was developed to simulate one-dimensional wave propagation due to impulse loading
in a layered half-plane as a special case. The half-plane consists of alternating layers of steel and
polymeric material (PMMA) 0.025 and 0.0784 cm thick, respectively. Both materials are assumed
to be linearly elastic with the relevant material parameters given in Table 1.

Young’s modulus, E (dyne/cm?) | Mass density, p (gm/cm?)
Stainless steel '1.258 x 10'? 7.9
PMMA 0.089 x 10 1.15

Table 1. Material constants of a half-plane consisting of alternating steel and PMMA layers.
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For an impacted linearly elastic composite by a spatially uniform loading applied normal to the
layering, an exact solution by ray theory can be constructed, Ref. [23]. Figures 2 and 3 illustrate
the predictions by the ray theory taken from this reference for the case when the half-plane is
impacted by a unit impulsive normal stress applied at the center of the first layer (steel) at time
t = 0 sec. The normal stress response with time is detected at the centers of the 1ith, Fig. 2,
and 12th layers, Fig. 3. The corresponding results generated by the computer code developed for
this particular one-dimensional wave propagation case are included in the bottom portions of these
figures. Excellent agreement between the exact ray-theory solution and the higher-order theory
predictions is observed.

6. PLANS FOR FUTURE WORK

The completed generalization of the higher-order theory for cylindrical functionally graded materials
with dynamic impact loading capability completely fulfills the objectives of the Grant NAG3-2411.
As demonstrated in the above section, full benefit of the developed theoretical framework will be
realized upon development of a general computer code enabling simulation of two-dimensional wave
propagation in bi-directionally graded cylindrical structural components in the » — 6 plane.
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8. APPENDIX

5]('(; 2 ) in the Legendre polynomial expansion of the strain field in

subcell (afy) of cell (p,q,s) are given in terms of the displacement field microvariables by

The nongero strain coefficients e
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The nonzero thermal stress coefficients Tz;((?'gz ZL) in the Legendre polynomials expansion of the

thermal stress in subcell (aBy) of cell (p,q,s) are given in terms of of the temperature field mi-

crovariables T((l(ﬁ?g) by

T(aBy) __ Gv)
Trr((o,g,O) = Tﬁ?ﬁ”)’f((&m?

T(afy) _ plapy) Go m(abv)
TTTOEO)_P&TM) a_pleBy

2\/5 (100)
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T(ap) hp o)

afy o ofy
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with similar expressions for To0(Lm,n) and T oe(lmin)”
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Figure 1. A geometric model for the higher-order theory for cylindrical functionally graded mate-
rials/structures (HOTCFGM-2D).
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Figure 2. Stress at the center of the 11th layer due to a unit step stress applied at the center of
the first (top) layer: exact ray theory predictions from Ref. [23] (top figure); higher-order theory
predcitions (bottom figure). The subscript 1 in oy indicates steel layer (layer 1) in the repeating
unit cell sequence of the layered half-plane.
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Figure 3. Stress at the center of the 12th layer due to a unit step stress applied at the center of
the first (top) layer: exact ray theory predictions from Ref. [23] (top figure); higher-order theory
predcitions (bottom figure). The subscript 1 in oy indicates PMMA layer (layer 2) in the repeating
unit cell sequence of the layered half-plane.
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