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Abstract 
 
  
A new approach for design, generation, and computerized simulation of meshing and contact of face-
milled, formate cut spiral bevel gears is presented. The purpose is to develop a low noise, stabilized bearing 
contact for this type of  gear drives. The approach proposed is based on application of three procedures that 
permit in sequence, to provide a longitudinally directed bearing contact, a predesigned parabolic function 
of transmission errors and limit the shift of bearing contact caused by errors of alignment. The theory 
developed  is illustrated with an example of design and computation.  

 
 

Nomenclature 
 

αg                      Profile angle of parabolic blade for gear head cutter at mean point M  
αp                      Blade angle for straight blade of pinion head cutter  
δ       Elastic approach of contacting surfaces 
γ i  (i=1,2) Pitch cone angles of pinion (i=1) and gear (i=2), respectively 

1mγ  (i=1,2) Machine root angles for pinion (i=1) and gear (i=2), respectively 

ir
γ  (i=1,2) Root cone angles for pinion (i=1) and gear (i=2), respectively 

γ Shaft angle 
η i  (i=1,2) Tangent to the path of contact on the pinion (i=1) and gear (i=2), respectively  
θ p  , θ g   Surface parameters of the pinion and gear head cutters, respectively  
λ f  , λ w   Surface parameters of the pinion and the gear fillet parts of the head cutter  
σ(ij) Angle formed between principal directions (i, j,= 1, 2, p, g) 
φ i (i=1,2)      Angles of rotation of pinion (i=1) and gear (i=2) in the process of meshing   

1cψ  Angle of rotation of the cradle in the process for generation of the pinion 

ψ1                Angle of rotation of the pinion in the process for generation 
ρ f  , ρ w   Fillet radii for the pinion and gear  

)(1
&  Angular velocity of the pinion (in meshing and generation) 

Σ i (i=1,2)       Pinion (i=1) or gear (i=2) tooth surface 
Σ k (k=p,g)       Pinion (k=p) or gear (k=g) generating surface 
∆H, ∆D Pinion and gear axial displacements, respectively  

1mE  Blank offset for pinion  

1BX  Sliding base for pinion  

1DX  Machine center to back for pinion  

XG Machine center to back for gear  
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∆E, ∆γ Errors of the offset and shaft angle, respectively  
∆φ 2 (φ 1) Function of transmission errors 
ac Parabola coefficient of gear head cutter blade 

1da  Dedendum of pinion  

Am , Fw Mean cone distance and face width 
bi Coefficients of modified roll for pinion generation, (i=1, 2, 3) 
ef , eh , es , eq  Unit vectors of principal directions of pinion and gear tooth surfaces, respectively 
et , ep , eg , eu  Unit vectors of principal directions of cutter surfaces for pinion and gear, respectively 

)(i

nk  Normal curvature of surface Σi 

)(r

nk  Relative normal curvature 

kf , kh , ks , kq Principal curvatures of pinion and gear tooth surfaces, respectively 
kt , kp , kg , ku Principal curvatures of cutter surfaces for pinion and gear, respectively 
LA , RA Cylindrical coordinates for contact point A on gear tooth surface  

,

12m  Second derivative of transmission function φ 2 (φ 1) 

m12 gear ratio 
M Mean contact point  
Mji , Lji Matrix of coordinate transformation from system Si to system Sj 
ni

(k) , Ni
(k) Unit normal and normal to the surface Σ k represented in coordinate system Si 

Ni    (i=1,2) Tooth number of pinion (i=1) or gear (i=2)             
q1 Installment angle for pinion head cutter  
Rp , Rg Radii of the head-cutter at mean point for the pinion and gear  
Ru Gear cutter radii  
ri        Position vector in system Si  (i =1, 2, b1 , b2 , h, l, m1 , m2 , p, g) 
sp Surface parameters of the pinion 

iS  Coordinate system (i =1, 2, b1 , b2 , h, l, m1 , m2 , p, g) 

1r
S  Radial setting of the head cutter of the pinion  

ug Gear tooth surface parameter 
)(k

rv (k=p, g) Velocity of contact point in its motion over surface Σk      

)(i

trv  Transfer velocity of contact point in its motion with  surface Σi      

)(ij
v  Relative velocity of contact point (i , j =1, 2, c1 , p)     

)(i

sv , )(i

qv  Components of the velocity of the contact point in its motion over surface Σi      

Xf , Xg Center distances of fillet circular arcs of pinion and gear, respectively 
2a Length of major axis of contact ellipse  
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•  
  
1. Introduction 
 
Design and generation of spiral bevel gears is a subject of intensive research of scientists, designers and 
manufacturers [1 - 7]. High quality equipment such as CNC (computer numerically controlled) machines 
and tools are produced by the Gleason Works (USA) and the Klingelnber-Orlikon (Germany and 
Switzerland) that manufacture these gears. However, the quality of spiral bevel gears depends substantially 
on the choice of machine-tool settings that have to be determined for the generation of the gears. The 
machine-tool settings are not standardized and their determination is the subject of a skilled design. The 
freedom of choosing various machine-tool settings provide an opportunity for generation of low-noise, 
stable bearing contact spiral bevel gears. 
  
The subject of this paper is the enhanced design of face-milled formate cut spiral bevel gears. The term 
“formate cut” means that the gear is held at rest where it is cut by the tool (head-cutter). Thus, the gear 
tooth surface is a copy of the tool surface that is a surface of revolution. The pinion tooth surface is 
generated by a head-cutter while the tool and the pinion performed related rotations. The pinion tooth 
surface is generated as the envelope to the family of the tool (head-cutter) surfaces. The advantage of 
formate-cut method is the high productivity of gear generation. The main problem of the design of formate-
cut spiral bevel gears is the conjugation of tooth surfaces of the gear and the pinion. 
  
The contents of this paper cover the following topics: 
(1) Computational procedures of proposed design that provides a longitudinal bearing contact and a 
predesigned parabolic function of transmission errors, and the ability to investigate the influence of 
misalignment. 
  
(2) Computer programs and algorithms developed for synthesis and analysis of meshing and contact of gear 
drives. 
  
The theory developed is illustrated with an example of computerized design of a formate cut gear drive. 
 
 
 
  
2. Basic Ideas of Proposed Approach 
  
Localization of Contact [1, 8]. The contact of pinion-gear tooth surfaces is localized due to the mismatch 
of generating surfaces (surfaces of the head-cutters) that is achieved by application of different dimensions 
of the gear-pinion head-cutters. 
  
The generated pinion-gear tooth surfaces are in point contact at every instant, instead of in line contact. The 
tooth contact under the load is spread over an elliptical area and the bearing contact is formed as a set of 
contact ellipses. The magnitude and orientation of instantaneous contact ellipse requires  information 
regarding the elastic deformation of tooth surfaces and the principal curvatures and the directions of tooth 
surfaces at each instantaneous point of their tangency. 
  
It will be shown later that the path of contact on gear tooth surface is oriented longitudinally. Such a path of 
contact is favorable for the increase of contact ratio (the average number of teeth that are in contact 
simultaneously), and avoids edge contact and improves the conditions of transfer of meshing where one 
pair of teeth is changed for the neighboring one. 
  
The TCA (Tooth Contact Analysis) computer program developed by the authors permits simulation of  
meshing surfaces and the shift of bearing contact caused by errors of alignment [8, 9]. In some cases of 
design, it may become necessary to adjust the bearing contact - to deviate it from the longitudinal direction 
- to reduce the shift of bearing contact caused by misalignment. 
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Application of Parabolic Profiles of Blades of Gear Head-Cutter. We have mentioned above that the 
gear tooth surface is generated as a copy of the surface of the gear head-cutter. Usually, straight profile 
blades are applied for the gear head-cutter. Such blades form the head-cutter generating surface as a cone. 
  
Application of parabolic profiles of the blades instead of straight line profiles permits modification of the 
gear tooth surface in favor of conjugation of pinion-gear tooth surfaces. 
  
Simulation of Meshing. The algorithm of computerized simulation of meshing [8, 9] provides continuous 

tangency of contacting gear tooth surfaces 1Σ  and 2Σ  as equality of position vectors 
)2()1(

hh rr = and unit 

normals  
)2()1(

hh nn = . Instead of equality of unit normals to contacting surfaces, collinearity of surface 

normals may be considered. Position vectors 
)(i

hr  (i=1,2) and unit normals 
)(i

hn  (i=1,2) are considered in 

fixed coordinate system hS (Fig. 1). 

  
Application of TCA determines the path of contact on the pinion-gear tooth surfaces, dimensions and 
orientation of instantaneous contact ellipse at each point of contact, the transmission function )( 12 φφ that 

relates the angles of rotation of the gear and the pinion, and function )( 12 φφ∆  of transmission errors is 

determined as 
 

1
2

1
1212 )()( φφφφφ

N

N−=∆                                                         (1) 

 
where 1N  and 2N are the numbers of teeth of the pinion and the gear. 

 
Predesign of Parabolic Function of Transmission Errors [8]. The output of TCA for a misaligned gear 
drive shows that the transmission function )( 12 φφ  is a piecewise discontinuous almost linear function (Fig. 

2(a)). The transfer of meshing with the transmission function )( 12 φφ  (Fig. 2(a)) and function )( 12 φφ∆  of 

transmission errors (Fig. 2(b)) is accompanied with the jump of the angular velocity and therefore noise and 
vibration are inevitable. 
  
The purpose of synthesis of a low-noise gear drive is to transform the transmission function )( 12 φφ  as 

shown in Fig. 3(a) and obtain a parabolic function of transmission errors shown in Fig. 3(b). The modified 
function )( 12 φφ∆  (Fig. 3(b)) is a continuous one and is determined as 

 

 
2

11

)1(

2 )( φφφ a−=∆  (2) 

 
where a  is the parabola coefficient. 
 
It is important to recognize that the function of transmission errors must be negative and therefore the gear 
will lag with respect to the pinion. Therefore, the transfer of meshing is accompanied with elastic 
deformations, and as a result, the gear ratio is increased. 
  
The desired parabolic function of transmission errors is provided by the respective synthesis of the gear 
drive. The idea of such  synthesis is based on the predesign of a parabolic function obtained by application 
of modified roll during the process of generation. Modified roll is provided by application of nonlinear 
relations between the angles of rotation of the cradle of the generation machine and the pinion during the 
process of pinion generation. 
  
The advantage of the predesign of a parabolic function of transmission errors is that such a function is able 
to absorb the linear discontinuous function of transmission errors caused by misalignment. This is 
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illustrated by drawings of Fig. 4(a) that shows a linear function 11

)2(

2 )( φφφ b=∆  (Fig. 4(a)). Function 

)( 1

)1(

2 φφ∆  is predesigned and function )( 1

)2(

2 φφ∆  is caused by misalignment. The sum of functions 

)( 1

)1(

2 φφ∆  and )( 1

)2(

2 φφ∆  is represented in Fig. 4(a) as 
2

112 )( ψψψ a−=∆ . The parabola coefficient a is the 

same in functions )( 1

)1(

2 φφ∆ and )( 12 ψψ∆ . 
  

The figure confirms that: (i) the predesigned parabolic function absorbs indeed linear function )( 1

)2(

2 φφ∆ , 

and (ii) the resulting function )( 12 ψψ∆  is slightly dislocated with respect to origin of )( 1

)1(

2 φφ∆ , function 

)( 12 ψψ∆  is an unsymmetrical one. Parameters c and d of the origin of )( 12 ψψ∆  are determined as 

abd 4/
2=  and abc 2/= . In the process of meshing, whereas several cycles of meshing are considered 

(Fig. 4(b)), the resulting function )( 12 ψψ∆ of transmission errors becomes a symmetric parabolic function. 

  
The authors have developed computerized synthesis of formate-cut spiral bevel gears that is based on 
simultaneous application of local synthesis and simulation of meshing and contact of gear tooth surfaces. 
 
The purpose of local synthesis is to determine the pinion machine-tool settings considering as given: (i) the 
gear machine-tool settings, and (ii) the conditions of meshing and contact at the mean contact point M such 
as the tangent to the path of contact at M, the major axis of the contact ellipse at M, and the derivative of 
the function of transmission errors. 
  
The purpose of simulation of meshing and contact is the determination of the bearing contact and function 
of transmission errors knowing the pinion and gear machine-tool settings. 
  
The applied computational procedures are iterative processes with the goals to obtain: (i) a longitudinally 
directed bearing contact, (ii) a parabolic function of transmission errors with limited value of maximal 
errors, and (iii) reduced sensitivity of the gear drive to errors of alignment. 
 
 
3. Derivation of Gear Tooth Surface [7, 9]  
  
Applied Coordinate Systems: Coordinate system 

2mS  is the fixed one and it is rigidly connected to the 

cutting machine (Fig. 5). Fig. 5(a) and 5(b) show two sets of coordinate systems applied for generations of 
left and right hand gears, respectively. Coordinate system 2S is rigidly connected to the gear. Coordinate 

system gS  is rigidly connected to the gear head-cutter. It is considered that the gear head-cutter is a surface 

of revolution, and the rotation of the head cutter about the gX – axis does not affect the process of 

generation. 
  
The installment of the tool on the machine is determined by parameters 2H  and 2V , that are called 

horizontal and vertical settings. Parameters GX  and 
2mγ  represent the settings of the gear. 

  
Head Cutter Surface: The blades of the gear head-cutter of a parabolic profiles are shown in Fig. 6(a). 
Each side of the blade generates two sub-surfaces. The segment a of the parabolic profile generates the 
working part of the gear tooth surface. The circular arc of radius wρ generates the fillet of the gear tooth 

surface. The generating surfaces of the head-cutter are formed by rotation of the blade about the gX – axis 

of the head-cutter (Figs. 6(b) and 6(c)); the rotation angle is gθ . Therefore, the generating surfaces are: (i) 

surface of revolution formed by rotation of the blade of parabolic profile, and (ii) the surface of the torus 
formed by rotation of the circular arc profiles. A point on the generating surface is determined by 
parameters gu and gθ for the working surface, and by wλ  and gθ  for the fillet surface. Angle gα  is formed 



NASA/CR—2001-210894 6 

between the tangent line of the blade at point M and the vertical center line of the blade. Parameter 

gu measured from point M in the chosen direction is considered as a positive one, and angles gα  and wλ  as 

the acute ones. The apex of the parabola is located at point M determined by parameter 
0gs . 

  
The surface of revolution and the torus surface of the head-cutter are designated as parts (a) and (b) of the 

head-cutter generating surface. Surface 
)(a

gΣ  of the head-cutter is represented by vector function 

),(
)(

ggu θa

gr  as follows 

 

 



















±±±

±±±

−+−

=

gggcggggg

gggcggggg

ggggcgg

gg

uausR

uausR

suau

u

θααα
θααα

ααα

θ
cos)cossinsin(

sin)cossinsin(

cossincos

),(
2

2

2

)(

0

0

0

a

gr  (3) 

 
where gu and gθ  are the surface coordinates, gα  is the blade angle at point M, gR  is the cutter point 

radius (Fig. 6) and given by  
 

 
2

2w
ug

P
RR ±=  (4) 

 
The upper and lower signs in equations (3) and (4) correspond to the concave and convex sides of the gear 
tooth, respectively. 
  

The unit normal to the gear generating surface 
)(a

gΣ  is represented by the equations 

 

 ,),(
)(

)(
)(

a

g

a

g
ggu

N

N
n

a

g =θ   
gg

a

g u θ∂
∂

×
∂
∂

=
)()(

)(
a

g

a

g rr
N  (5) 

 
Equations (3) and (5) yield 
 

 
22)(

41

cos)sin2(cos

sin)sin2(cos

)cos2(sin

),( gc

gggcg

gggcg

ggcg

gg ua

ua

ua

ua

u +÷
















−
−

+±
=

θαα
θαα

αα
θa

gn  (6) 

  

Surface 
)(b

gΣ is represented in gS  as 

 

 
















±
±

−−
=

gwwg

gwwg

ww

gw

b

X

X

θλρ
θλρ

λρ
θλ

cos)sin(

sin)sin(

)cos1(

),(
)(

gr  (7) 

  
where 
 
 ggwgg RX ααρ cos/)sin1( −= #    

 
Here, wρ  is the fillet radius of the gear generating surface. 
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The unit normal to the gear generating surface 
)(b

gΣ  is represented by the equations 

 

 ,),(
)(

)(
)(

b

g

b

g
gw

b

N

N
ng =θλ   

g

b

w

b
b

g θλ ∂
∂

×
∂
∂

=
)()(

)( gg rr
N  (8) 

  
 
Equations (8) yield 
 

 














 ±
=

gw

gw

w

gw

b

θλ
θλ

λ
θλ

cossin

sinsin

cos

),(
)(

gn  (9) 

  
Equations of Head-Cutter Surfaces in 2S :  Applying coordinate transformation from gS  to 2S , the gear 

tooth surfaces can be represented in 2S  by the equations 

 

 ),(),(
)()(

gggg

a
uu θθ a

g2g2 rMr =  (10) 

 

 ),(),(
)()(

gw

b

gw

b θλθλ g2g2 rMr =  (11) 

  
Here 
 
 gmmg 2222 MMM =   (12) 

 

 


















±

=

1000

100

010

0001

2

2

2 H

V
gmM  

 

 



















−

−

=

1000

cos0sin

0010

0sin0cos

22

22

22
Gmm

mm

m Xγγ

γγ

M   

 
Here,: 2V , 2H and GX  are the gear machine tool settings. The upper and lower signs in front of 2V  

correspond to right hand and left hand gears respectively. The whole set of gear machine tool settings is 
represented in Table 1. Remember that the generated gear tooth surface is a copy of the surface of the head-
cutter, that is a surface of revolution. The rotation of the head-cutter about the gX – axis that is necessary 

for the cutting or grinding process does not affect the shape of gear tooth surfaces. 
  
The geometric model of gear tooth surfaces is shown in Fig. 7. 
  

Table 1: Gear Machine Tool Settings 
 

Blade angle gα (Fig. 6) 

Blade parabola coefficient cα  
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Cutter  radius uR  (mm) (Fig. 6) 

Point width 
2wP (mm) (Fig. 6) 

Cutter point radius gR (mm) (Fig. 6) 

Horizontal settings 2H mm) (Fig. 5) 

Vertical settings 2V  (Fig. 5) 

Machine center to back GX  (mm) (Fig. 5) 

Machine root angle 
2mγ (Fig. 5) 

Fillet radius wρ  (mm) (Fig. 6) 

 
 
4.  Derivation of Pinion Tooth Surface [7, 9, 10] 
  
Applied Coordinate Systems: Coordinate systems applied for generation of pinion are shown in Fig. 8 
and 9. Fig. 9(a) and (b) correspond to generation of right and left hand pinions, respectively. Coordinate 
systems 

1mS , 
1aS  and 

1bS  are the fixed ones and they are rigidly connected to the cutting machine. The 

movable coordinate systems 1S  and 
1cS  are rigidly connected to the pinion and the cradle, respectively. 

They are rotated about the 
1mZ – axis and 

1bZ – axis, respectively, and their rotations are related with a 

polynomial function )(
11 cψψ , if modified roll is applied (see below). The ratio of instantaneous angular 

velocities of the pinion and the cradle is defined as 
)()1(

11 /)())((
11

c

cccm ωψωψψ = . The magnitude of 

)( 11 ψcm at 01 =cψ  is called ratio of roll. Parameters 
1DX , 

1BX , 
1mE , and 

1mγ  are the basic machine tool 

settings for pinion generation. 
  

Head Cutter Surfaces: The pinion generating surfaces are formed by surface 
)(a

pΣ  and 
)(b

pΣ  generated by 

straight-line and circular arc parts of the blades (Fig. 10). Surface  
)(a

pΣ  is represented as 

 

 
















−
=

pp

pppp

pppp

pp

a

p

s

sR

sR

s

α
θα
θα

θ
cos

sin)sin(

cos)sin(

),(
)(

#

#

r  (13) 

 
  
where ps  and pθ  are the surface coordinates; pα  is the blade angle; pR  is the cutter point radius (Fig. 10). 

The upper and lower signs in equations (13) correspond to the convex and concave sides of the pinion tooth 
respectively. 
  

The unit normal to the pinion generating surface 
)(a

pΣ  is represented by the equations 

 

 ,)(
)(

)(
)(

a
p

a
p

p
a
p

N

N
n =θ   

p

p

p

pa
p s θ∂

∂
×

∂
∂

=
)()(

)(
aa rr

N  (14) 

 
Equations (13) and (14) yield 

 















=

p

pp

pp

pp

α
θα
θα

θ
sin

sincos

coscos

)(
)(

#

a
n  (15) 
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For the fillet surface 
)(b

pΣ  we obtain 

 

 
















−−
=

)cos1(

sin)sin(

cos)sin(

),(
)(

ff

pfff

pfff

pf

b

p X

X

λρ
θλρ
θλρ

θλ #

#

r  (16) 

 
where 
 
 ppfpf RX ααρ cos/)sin1( #±=  

 
and fρ  is the radius of the tool fillet. 

 

The unit normal to the pinion generating surface 
)(b

pΣ  is represented by the equations 

 

  ,),(
)(

)(
)(

b
p

b
p

pf
b
p

N

N
n =θλ   

p

b
p

f

b
pb

p θλ ∂
∂

×
∂
∂

=
)()(

)( rr
N  (17) 

 
Equations (17) yield 
 

  









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




=

f

pf
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b

p
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sinsin

cossin

),(
)(

#

n  (18) 

 
The head-cutter is mounted on coordinate system 

1cS called the cradle of the cutting machine and its 

installment is determined by settings 
1r

S and 1q  (Fig. 9). In the process of pinion generation coordinate 

systems 
1cS  and 1S  performed related rotations with respect to 

1mS . Then, in coordinate system 1S , a 

family of pinion head-cutter surfaces is generated and determined as: 
 

  ),()(),,(
)(

111

)(

1 pp

a

pppp

a
ss θψψθ rMr =  (19) 

 

  ),()(),,(
)(

111

)(

1 pf

b

pppf

b θλψψθλ rMr =  (20) 

 
where 1ψ  is the generalized parameter of motion, and  

 
  pccmmaabbp 1111111111 MMMMMM =  

 

  


















±

=

1000

0100

sin010

cos001

1

1

1

1

1

qS

qS

r

r

pcM  
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The upper and lower signs of 1sin

1
qSr  in matrix pc1

M correspond to generation of right and left hand 

pinions, respectively. Where the modified roll is applied in the process of generation, the rotation angles 

1ψ  and 
1cψ  of the pinion and cradle are related as 

 

  
3

3

2

211 111 cccc bbm ψψψψ ++=  (21) 

 
where 2b  and 3b  are the modified roll coefficients. 

  
The derivative of function )(

11 cψψ  taken at 0
1

=cψ  determines the so-called ratio of roll represented in 

equation (21) by cm1 . 

  
Equation of Meshing: The pinion tooth surface 1Σ  is the envelope to the family of head-cutter surfaces. 

Surface 1Σ  consists of two surfaces 
)(

1

a
Σ and 

)(

1

b
Σ which correspond to the cutter surfaces 

)(a

pΣ and 
)(b

pΣ , 

respectively. Modified roll is applied in the process of generation. For generation of surface 
)(

1

a
Σ , the 

equation of meshing is represented as 
 

  0),,( 1

)(

1

)1()(

11
==⋅ ψθ pp

a

p

p

m

a

m sfvn  (22) 

 

where 
)(

1

a

mn  the unit normal to the surface, and 
)1(

1

p

mv  is the velocity in relative motion. These vectors are 

represented in the fixed coordinate system 
1mS as follows: 

 

  )(
)()(

1111 p

a

ppccm

a

m θnLLn =  (23) 
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  )()[(
)1()1()()1(

1111111 mammm

p

m
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m &OOr&&v ×−×−=  (24) 

 
Here  
 

  ),(
)(

1111 pp

a

ppccmm s θrMMr =   

 

  [ ] T
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mmm 111
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c
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)(

1
ψ=&  

 
The ratio 1cm  is not constant since modified roll is applied and can be represented as 

 

  2

13121

1

1
c1

32

1
11

ψψ
ψψ

ω
ω

bbmdt

d

dt

d
m

c

cc

++
===  (25) 

 
where 2b  and  3b  are modified roll coefficients. 

  
Finally, we obtained the equations for pinion tooth surface part (a) as 
 

  ),()(),,(
)(

111

)(

1 pp

a

pppp

a
ss θψψθ rMr =  (26) 

  0),,( 1

)(

1 =ψθ pp

a

p sf  (27) 

 

Similarly, the fillet surface of pinion tooth surface 
)(

1

bΣ  may be represented as 

 

  ),()(),,(
)(

111

)(

1 pf

b

pppf

b θλψψθλ rMr =  (28) 

 

  0),,( 1

)(

1 =ψθλ pf

b

pf  (29) 

 
The geometric model of pinion tooth surfaces is shown in Fig. 11. 
 
 
5. Procedures of Proposed Design 
  
The authors have developed an approach for the design of formate cut spiral bevel gears that provides a 
stabilized bearing contact and reduced level of noise. The bearing contact is of a longitudinal direction that 
enables to increase the contact ratio, avoid edge contact and reduce the shift of the bearing contact caused 
by misalignment. The reduction of noise is achieved by application of a predesigned parabolic function of 
transmission errors and limitation of maximal transmission errors caused by misalignment. The approach is 
based on three procedures that require simultaneous execution of computer programs developed for the 
local synthesis and simulation of meshing and contact of the gear drive. 
  
The purpose of the local synthesis is to determine the pinion machine-tool settings for the following 
conditions of meshing and contact of pinion-gear tooth surfaces 1Σ  and 2Σ : 
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(i) The gear machine-tool settings are considered as given (they may be adapted, for instance, from a 
Gleason summary for gear generation); 
  
(ii) The pinion-gear tooth surfaces 1Σ  and 2Σ  are in tangency at a chosen mean contact point M (Fig. 12); 

  

(iii) Parameters 2a, 2η , and 
,

12m are assigned ahead and determine the conditions of meshing and contact of 

1Σ  and 2Σ  at point M and in the neighborhood of M. Here, 2a is the major axis of the instantaneous contact 

ellipse, 2η determines the tangent to the path of contact on the gear tooth surface at M, and 
,

12m is the 

derivative ))(( 1

,

12
1

φ
φ

m
∂
∂

 at point M, where )( 112 φm  is the gear ratio. 

Note: It will be shown in section 6 that the location of point 2M on the gear tooth surface as the candidate 

for the mean contact point of 1Σ  and 2Σ may be chosen. Then, the procedure of the local synthesis permits 

the determination of  point 1M  on pinion tooth surface 1Σ  that will be in tangency with 2Σ  at the chosen 

point 2M of 2Σ . 

  
The simulation of meshing and contact of pinion-gear tooth surfaces is accomplished by application of the 
TCA (Tooth Contact Analysis) computer program developed. The input for TCA are the equations of 
pinion-gear tooth surfaces, parameters of motion and assembly. The output is the bearing contact and the 
function of transmission errors. 
  
The design is based on simultaneous execution of computer programs developed for local synthesis and 
TCA, it is an iterative process and requires application of following three procedures. 
  
Procedure 1: 
  
The path of contact on gear tooth surface is a spatial curve L. Projection of L on tangent plane T (Fig. 13) is 
designated by TL . The purpose of procedure 1 is to obtain that TL is a straight line directed longitudinally. 

Fig. 13 shows projections 
)1(

TL and 
)2(

TL  that deviate from the desired line TL . 

  
Fig. 14 shows the flow chart that describes the steps of procedure 1. The procedure of computation is an 

iterative process and requires variation of parameter 
,

12m . The steps of the procedure are as follows: 

  
Step 1: Input the gear machine-tool settings into the program of local synthesis. 

Step 2: Input parameters  2a, 2η , and 
,

12m into the program of local synthesis. 

Step 3: Execute the program of local synthesis.  
Step 4: Determine from the program of local synthesis the pinion machine-tool settings. 
Step 5: Using the machine-tool settings obtained, compute the pinion and gear tooth surfaces 1Σ  and 2Σ . 

Step 6: Execute TCA computer program and obtain projection  TL of path of contact L on tangent plane T 

(Fig. 13). 
Step 7: Execute the iterative process and obtain projection of path of contact TL as a straight line by 

variation of 
,

12m . 

Step 8: Output the final machine-tool settings for the pinion. 
 
The iterative process is based on the following considerations: 
(1) The TCA computer program applied determines projection TL  of path of contact numerically. 

(2) Consider TL in coordinate system tS  (Fig. 13) which origin coincides with M and axes ),( tt yx are 

located in plane T . Axis tx is the tangent to TL at point M . 
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(3) Represent projection TL  as a parabolic regression equation by using a subroutine of regression [11] 

 

  
2,

122

,

121

,

120

,

12 )()()(),( tttt xmxmmmxy βββ ++=  (30) 

 
 

where 
,

12m is the input parameter that is varied in the process of iteration 

  

(4) The goal is to represent TL  as a straight line that might be obtained by such a magnitude of  
,

12m  

whereas coefficient 0)(
,

122 =mβ  (see equation (30)). The iterations for determination of 0)(
,

122 =mβ  are 

executed by applying the secant method [12] and illustrated by Fig. 15. Equation (30) with 0)(
,

122 =mβ   

provides the projection of path of contact as a straight line. 
  
 
Procedure 2: 
  
Procedure 1 discussed above provides the desired longitudinal path of contact and bearing contact. 
However, the shape of the obtained function of transmission errors and the magnitude of maximal 
transmission errors do not satisfy the requirements of low-noise gear drive. The goal of procedure 2 is to 
obtain a parabolic function of negative transmission errors and of limited value of maximal errors. 
  
The sequence of steps applied for procedure 2 is represented by the flow chart shown in Fig. 16. 
  
At the start, we use the pinion and gear machine tool settings obtained in procedure 1, but consider that the 
pinion is generated by application of modified roll. Then, we compute the gear and pinion tooth surfaces  

1Σ  and 2Σ , and use them for the TCA computer program. The intermediate output of TCA is a function of 

transmission errors. We compare it with the sought-for parabolic function of transmission errors and 
determine the necessary corrections using modified roll. Repeating the procedure discussed above, we can 
obtain the sought-for parabolic function of transmission errors. 
  
Analytically, the algorithm of procedure 2 is represented as follows. 
  
Step 1: Function of transmission errors )( 12 φφ∆  obtained from TCA is numerically represented as a 

polynomial function up to third order to be included [11] 
 

  
3

13

2

121101

)1(

2 )( φφφφφ aaaa +++=∆  (31) 

 

The shape and magnitude of maximal errors of function )( 1

)1(

2 φφ∆  do not satisfy the requirements of a low-

noise gear drive. Function (31) has to be transformed into a parabolic function with limited magnitude of 
transmission errors by application of procedure 2. 
 

Step 2: We apply for transformation of function )( 1

)1(

2 φφ∆  the modified roll for generation of the pinion 

that is represented as 
 

  
3

3

2

211 1111
)( ccccc bbm ψψψψψ ++=  (32) 

 
Here, 1ψ and 2ψ are the angles of rotation of the pinion and the cradle performed during the process for 

generation, cm1  is the first derivative of )(
11 cψψ  taken at 0

1
=cψ  and obtained by the procedure of local 
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synthesis (see section 6). Coefficients 2b  and 3b  have to be determined by using an iterative process (see 

below). 
  
Step 3: Assigning coefficients 2b and 3b  of modified roll and using pinion machine-tool settings obtained 

in procedure 1, we may determine the pinion tooth surface 1Σ . The gear tooth surface 2Σ  is considered as 

given. 
  
Step 4: Applying TCA for simulation of meshing of  1Σ  and 2Σ  we may obtain numerically the modified 

function of transmission errors and then represent it again by polynomial function (31) with new 
magnitudes of coefficients 0a , 1a , 2a  and 3a . 

 
Procedure 2 with steps 1 to 4 has to be repeated until  a parabolic function of transmission errors )( 12 φφ∆   

with limited magnitude of maximal transmission errors is obtained. 
  
The computation is an iterative process based on application of secant method of numerical computations 

[12]. The goal is to transform the shape of obtained function )( 1

)1(

2 φφ∆  of transmission errors into a 

parabolic function 
 

  
2

1212 )( φφφ a−=∆  ,  
1

1
1 NN

πφπ ≤≤−  (33) 

 
where 
 

  ∆Φ=





=∆

2

1
2max12 )(

N
a

πφφ  (34) 

 
This goal is accomplished by variation of coefficients 2b  and 3b  of function (32) provided by modified 

roll. The variation of  2b  and 3b  is performed independently and is illustrated by drawings of Fig. 17. 

  
Fig. 17(a) illustrates variation of coefficient 3b  of modified roll for obtaining of coefficient 03 =a  of 

function (31). Function )( 22 ba  is determined as the output of TCA by variation of modified roll. 

  
Fig. 17(b) illustrates variation of coefficient 2b  of modified roll for obtaining of ∆Φ=∆

max12 )(φφ . 

  
Function )( 12 φφ∆  is determined as the output of TCA by variation of 2b . 

  
 
Procedure 3: 
  
Procedures 1 and 2 are performed by simultaneous application of computer programs of local synthesis and 
TCA, but the errors of alignment of the gear drive are not considered. 
  
The purpose of procedure 3 is to adjust the gear drive for the existence of errors of alignment. This is 
achieved by adjusting the previously designed path of contact to the assigned or expected errors of 
alignment. The procedure is based on the flow chart shown in Fig. 18. 
  
The adjustment of the gear drive to the errors of alignment is performed by correction of parameter 2η (Fig. 

12) that determines the orientation of the path of contact on the gear tooth surface. 
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The prescribed procedure yields that in some cases of design it becomes necessary to deviate the path of 
contact from the longitudinal direction to reduce the shift of bearing contact by errors of alignment. The 
procedure has to be applied for separate simulation of each error of alignment for obtaining the required 
correction of  2η . The permissible tolerance of each alignment error is obtained by procedure 3. 

  
 
 
Local Synthesis and Determination of Pinion Machine Tool Settings [7, 8, 9]  
  
Remembering that the local synthesis is accomplished simultaneously with the TCA, and the computation 
is an iterative process. The computer program developed permits the determination at each iteration the 
pinion machine-tool settings. 
  
The input parameters for the local synthesis are the gear machine-tool settings and parameters 2η  , a   and 

,

12m  (see Flow chart, Fig. 14). 

  
The procedure of the local synthesis is as follows. 
  
Stage 1: Determination of the mean contact point on the gear tooth surface 
  
Step 1:  Mean point A  on surface 2Σ  is chosen by designation of parameters AL  and AR  (Fig. 19), where 

A is the candidate for the mean contact point M of surfaces 2Σ  and 1Σ . Then we obtain the following 

system of two equations in two unknowns 
 

  










=+

=

2**2

2

**2

2
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2
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LuZ

θθ

θ
 (35) 

 

where 2X , 2Y  and 2Z  are the projections of position vector ),(
**

2 ggu θr . 

  

Step 2: Equations (35) considered simultaneously permits the surface parameters ),(
**

ggu θ  to be determined 

for point A. Vector functions ),( ggg u θr  and  )( gg θn  determine the position vector and surface unit normal 

for a current point of gear tooth surface gΣ . Taking in these vector functions 
*

gg uu =  and 
*

gg θθ = , we can 

determine the position vector  
)( A

gr  of  point A and the surface unit normal 
)( A

gn at  A. 

  

Step 3: Parameters 
*

gu  and 
*

gθ  and the unit vectors ge  and ue  of principal directions on surface gΣ  are 

considered as known. Here:  
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The gear generating surface is a surface of revolution, and the principal curvatures gk  and uk  of  gΣ  are 

determined by the following equations: 
 

  











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+−
=

+

=
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 (38) 

 
 
The upper and lower signs correspond to the concave and convex sides of gear tooth, respectively. 
  
The unit vectors se  and qe  of principal directions on surface 2Σ  are obtained by using matrix 

transformation from gS  to 2S . The gear principal curvatures sk  and qk  of  2Σ  are the same as the 

principal curvatures gk  and uk , respectively, of the gear head-cutter. 

  
Stage 2: Tangency of Surfaces 2Σ  ( gΣ ) and 1Σ at Mean Contact Point M. 

  

Step 1: The derivations accomplished at stage 1 permits the position vector 
)(

2

A
r  to be determined and the 

surface unit normal 
)(

2

A
n of point A of tangency of surfaces 2Σ  ( gΣ ). The goal now is to determine such a 

point M  in the fixed coordinate system lS  (Fig. 20) where two surfaces  2Σ  ( gΣ ) and 1Σ  are in tangency 

with each other. 
  
Surfaces 2Σ  and gΣ  are the same ones, because there is no relative motion between the cradle and 

workpiece (between coordinate system 2S  to gS  whereas the gear is generated. Using coordinate 

transformation from 2S  to lS  (Fig. 20), we may obtain 
)( A

lr  and  
)( A

ln . The new position of point A in lS  

will become point M of tangency of 2Σ  and 1Σ , if the following equation of meshing between 2Σ  and 1Σ  

is observed 
  

  0)()(
)0(

2

),21()0(

2

)(
=⋅ φφ A

l

A

l vn  (39) 

 

Here, 
)()( M

l

A

l nn ≡  and 
),12(),12( M

l

A

l vv ≡  ;  
),12( A

lv  is the relative velocity at point A determined with the ideal 

gear ratio 
 

  )1(

)2(
)0(

21
ω
ω=m  (40) 

 

The solution of equation (39) for 
)0(

2φ  provides the value of the initial turning angle for 2φ . It is evident 

that two surfaces  2Σ  and 1Σ  are now in tangency with each other at point M. 
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Step 2: We consider as known at point M the principal curvatures sk  and qk  of surface 2Σ , and the unit 

vectors se  and qe  of principal directions on 2Σ . The unit vectors se  and qe  are represented in lS . The 

goal now is to determine at point M the principal curvatures  and fk  and hk   of surface 1Σ , and the unit 

vectors fe  and he   of principal directions on 1Σ . This goal can be achieved by application of the 

procedure described in Appendix 1. It is shown in Appendix 1 that the determination of   fk  , hk , fe  and 

he   becomes possible if parameters 
,

21m , 2η  (or 1η ), and δ/a  are assumed to be known or are used as 

input data. 
  
Stage 3: Tangency of Surfaces  2Σ ( gΣ ) , 1Σ  and pΣ at Mean Contact Point M. 

  
Basic Equations:  Tangency of  2Σ ( gΣ )  and 1Σ  at mean contact point M  has been already provided at 

the previous stages. The position vector 
)( M

lr  of point M and the surface unit normal 
)( M

ln  at point M were 

determined in coordinate system lS . Let us imagine now that coordinate system 1S  that coincides with   lS  

and surface 1Σ   are installed in coordinate system 
1mS  (Fig. 8). Let angle 

)0(

1ψ  be the installment angle of 

the pinion (it is the initial value of  1ψ ). Using coordinate transformation from 1S  to 
1mS , we may 

determine in 
1mS  position vector 

)(

1

M

mr  of point M and the surface unit normal 
)(

1

M

mn . In Appendix 1 the 

conditions of improved meshing and contact of pinion and gear tooth surfaces 1Σ  and 2Σ  are considered 

and then the relationships between the principal curvatures and directions of surfaces for such conditions of 
meshing and contact are determined (see equations (93)). The point of tangency of surfaces 1Σ  and pΣ  is 

designated in Appendix 1 as point B. The pinion generating surface pΣ  is installed in  
1mS  taking the 

cradle angle 
1cψ  equal to zero. The position vector of point B of surface pΣ  and the surface unit normal at 

B are represented in 
1mS  as 

)(

1

B

mr  and 
)(

1

B

mn . The tangency of  1Σ  and pΣ  at the mean contact point M is 

satisfied, if the following vector equations are observed 
 

  
)()(

11

B

m

M

m nn =  (41) 

 

  
)()(

11

B

m

M

m rr =  (42) 

 

  0
)1()(

11
=⋅

p

m

M

m vn  (43) 

 
where equation (43) is the equation of meshing. Observation of equations (41)-(43) means that all of the 
three surfaces  ( 2Σ ( gΣ ) , 1Σ  and pΣ ) are in contact at point M. 

  
Using equations (41)-(43) and (93) from Appendix 1, it becomes possible to obtain the settings of the 
pinion and the head-cutter that guarantee the improved conditions of meshing and contact at point M. The 
machine tool settings to be determined are as follows: 
  

(i) BX , 
1mE , 

1DX  and 
)()1(

1 /
p

pm ωω= . Settings 
1BX  and  

1DX  are related by the following equation (Fig. 

21) 
 

  
111

sin)( 1 mRDB OOXX γ−−=  (44) 

 
where 
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]cossin)2/[(
11
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1 γγ
γ

γγ
dwm
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R aFA

aFA
OO −+−

−+
=  

 
 
Equation (44) is derived for the case of design of a spiral bevel gear with different apexes of the pitch and 
root cones. 
  
(ii) Design parameter pR  of the head-cutter (Fig. 10). 

  
(iii) Parameters 

1r
S  and 1q  that determine the installment of the head-cutter on the cradle (Fig. 9). 

  

(iv) Parameter 
)0(

1ψ  is the initial angle 1ψ  for installment of coordinate system 1S  with respect to 
1bS  

(Fig. 8), and parameter pθ  of the head-cutter surface pΣ . 

  
Computation of Pinion Machine-Tool Settings. The procedure for computation is as follows: 
  

Step 1:  Determine the values of pθ  and 
)0(

1ψ  that are the sought-for two unknowns. Equation (41) is used 

for determination of  pθ  and 
)0(

1ψ , taking into account that 
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where 
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M
nn ≡  since 1S coincides with lS  (Fig. 20). Here, 
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Equations (41) and (45)-(48) yield the following expressions for determination of  pθ  and 
)0(

1ψ  
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ψαθ
ψ

−
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where pα  is the given value of the profile angle of the head-cutter, and lxn , lyn  and lzn  are the three 

components of vector 
)( M

ln . The great advantage of the approach developed is that the requirement of the 

coincidence of the normals does not require a non-standard profile angle pα  or the tilt of the head-cutter 

with respect to the cradle. 
 
Using pθ ,  it becomes possible to determine the unit vectors pe  and te  of principal directions on surface 

pΣ  at point M. 

  
Step 2: Determination of pinion machine-tool settings 

1BX (
1DX ), 

1mE , pm1 and the design parameter pR  

of the head-cutter (five unknowns are sought-for). 
  
As a reminder, 

1BX  and 
1DX  are related by equation (44). The determination of the machine-tool settings 

mentioned above is based on application of the system of equations (93) and equation (43) that represent a 
system of four non-linear equations with four unknowns:  

1DX , 
1mE , pm1 and  pR . 

  
The design parameters mentioned above provide as well improved conditions of meshing and contact at the 
mean contact point M. 
  
Step 3: Determination of machine-tool settings 

1r
S and 1q  and the pinion surface parameter ps  (three 

unknowns are sought-for). 
  
Determination of the mentioned three parameters is based on application of equation (42), considering that 
generating surface pΣ  is a cone. The final equations for a right hand pinion are as follows: 

 

  
)(

11 cos)sin(cos
1

M

mppppr XsRqS =+ θα#  (52) 

 

  
)(

11 sin)sin()sin(
1

M

mppppr YsRqS =+± θα#  (53) 

 

  
)(

1cos
M

mpp Zs =− α  (54) 

 
The upper and lower signs in front of 1q  in equation (53) correspond to the design of right-hand and left 

hand pinions, respectively. 
  
The stages of computation discussed above may be summarized as follows: 
  
(i) It is necessary to determine ten unknowns: six machine-tool settings (

1BX , 
1mE , 

1DX , 1q  , 
1r

S , pm1 ) , 

two surface parameters ( pθ , ps ), one cutter parameter pR  and one position parameter 
)0(

1ψ  which defines 

the pinion initial turn angle. 
  
(ii) The equation system for determination of the unknowns is formed as follows: 
 

  
)()(

11

B

m

M

m nn =  (55) 
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In addition, we use three curvature equations 
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Equation (55) is equivalent to two independent scalar equations, equations (56) is equivalent to three scalar 
equations, equations (57), (58) and (59) represent five scalar equations. Thus, the system of equations 
provides indeed ten scalar equations for determination of ten unknowns. The solution for the unknowns 
requires solution of a subsystem of four nonlinear equations (see step 2) and solution of six remaining 
equations represented in echelon form (each of the six equations contains one unknown to be determined). 
 
 
  
7. Simulation of Meshing and Contact Accomplished in Procedure 1 (Section 5)  
[7, 8, 9] 
  
The main goal of simulation of meshing and contact in procedure 1 (see Flow chart of Fig. 14) is to 
determine bearing contact that corresponds to pinion machine-tool settings obtained in section 6. 
Remembering that the computational procedures represented in sections 6 and 7 must be applied 
simultaneously, to represent an iterative process for determination of longitudinal path of contact. The 
developed TCA (Tooth Contact Analysis) computer program (based on simulation of meshing and contact) 
provides at each stage of iteration the path of contact. In addition, TCA provides the function of 
transmission errors which shape has to be corrected by application of pinion modified roll (see procedure 2 
of section 5). 
  
Applied Coordinate Systems:  The meshing of gear tooth surfaces is considered in the fixed coordinate 
system hS  that is rigidly connected to the housing (Fig. 22). Movable coordinate system 1S  and 2S  are 

rigidly connected to the pinion and the gear, respectively. Auxiliary coordinate systems 
1bS  and 

2bS  are 

used to represent the rotation of the pinion (with respect to 
1bS ) and the gear (with respect to 

2bS ). The 

errors of alignment are simulated by respective installment of 
1bS  and 

2bS  with respect to hS . 

  
The errors of installment are: H∆ – the axial displacement of the pinion; γ∆ – the change of the shaft 

angle γ ; E∆ – the shortest distance between the axes of the pinion and the gear when the pinion-gear axes 

are crossed instead of intersected; D∆ – the axial displacement of the gear. In the case of an aligned gear 
drive we consider that H∆ , γ∆  , E∆  and D∆ are all equal to zero. 
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Simulation Algorithm: During the process of meshing, the pinion and gear tooth surfaces must be in 
continuous tangency and this can be provided, if at any instant their position vectors coincide and the 
surface normals are collinear. Instead of collinearity of surface normals, equality of surface unit normals 
may be required. 
  
Pinion and gear tooth surfaces are represented in coordinate system hS  by the following equations 
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Here: 
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Unit normals to surfaces of pinion and gear are represented in hS  by the following equations, respectively 
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Conditions of continuous tangency of pinion and gear tooth surfaces are represented by the following 
equations 
 

  0rr =− ),,(),,,( 2

)2(

11

)1( φθφψθ gghpph us  (64) 

 

  0nn =− ),,(),,,( 2
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11
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1 =ψθ pp

a
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Surfaces 1Σ  and  2Σ  are represented in  hS   by four and three related parameters, respectively. Equation 

(66) is the equation of meshing of the pinion and generating head-cutter and relates the surface parameters 
of the head-cutter with the generalized parameter 1ψ  of motion of the process of generation of the pinion. 

Vector equations (64) , (65) and (66) yield three, two independent and one scalar equations, respectively. 
The whole system of equations (64) – (66) provides six equations for determination of seven unknowns 
represented as 
 

  0),,,,,,( 211 =φθφψθ ggppi usf ,   ,1Cfi ∈   )6,...,1( =i     (67) 

  

One of the unknowns, say 1φ , is considered as the input parameter in the range 
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πφπ
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assumed that the Jacobean of the system (67) differs from zero at each iteration. 
  
The paths of contact on the pinion and the gear tooth surfaces are represented by the following functions:  
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and  
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respectively. 
  
The function of transmission errors is defined as 
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The bearing contact is formed as a set of instantaneous contact ellipses. The lengths of the major and minor 
axes of contact ellipse and their orientation are determined using the approach proposed in [8]. 
  
Using vector function (70), we may determine projection TL  of the path of contact on the gear tooth 

surface on the tangent plane at the mean contact point M. The goal is to obtain TL  as a straight line directed 

longitudinally. The process of computation is an iterative process and requires simultaneous application of 
local synthesis and TCA. The errors of alignment in this procedure are not taken into account. The 
influence of errors of alignment on transmission errors requires additional application of TCA. 
  
It may be discovered in some cases of design, that the gear drive is too sensitive to errors of alignment. 
Then, it becomes necessary to deviate TL   from the longitudinal directed straight line by correction 2η  in 

procedure 3 (see Flow chart of Fig. 18). 
 
  
8. Numerical Example 
  
The theory developed will now be illustrated with the numerical example. The algorithms described above 
have been implemented by the computer program developed in Fortran and Visual Basic languages. 
  
The blank data and gear machine-tool settings have been adapted from the Gleason summary and 
represented in Tables 2 and 3. 
  
The final machine-tool settings for  pinion generation have been determined as the output of the computer 
programs developed and are shown in Table 4. The results of TCA obtained by the developed computer 
programs are shown by Figs. 23, 24, 25, 26, and 27 for aligned and misaligned gear drives. 
  
The investigation accomplished confirms that the longitudinal path of bearing contact developed is 
stabilized and the predesigned parabolic function absorbs the transmission errors caused by misalignment. 
The magnitude of transmission errors caused by misalignment might be controlled and does not exceed 7 
arc seconds in the example. 
 
  Table 2: Blank Data 
 
   

Applied parameters 
 

Pinion Gear 

Number of teeth 1N , 2N  10 52 

Shaft angle γ  $

90  
Mean spiral angle 21,ββ  '3032

$

 '3032
$

 
Hand of spiral Right hand Left hand 
Whole depth (mm)  16.637 16.637 

Pitch angles 21,γγ  '5310
$

 '779
$

 
Root angles  

11
, rr γγ  '429

$

 '875
$

 
Face angles   

21
, ff γγ  '5214

$

 '1880
$

 
Addendum (mm) 11.811 3.429 
Dedendum (mm) 4.826 13.208 
Face width wF  (mm) 71.120 

Diametral pitch (1/inch) 3.156 
Clearance 21,cc  (mm) 1.400 

Mean cone distance mA (mm) 177.521 
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  Table 3: Gear Machine Tool Settings and Installment of Head-Cutter 
   

 
Applied parameters 

 
Data 

1. Blade Specifications 
Blade angle at mean point M  $

20  
Parabolic coefficient ca  0.002 

Cutter Radial uR  (mm) 177.800 

Cutter point radius  gR  (mm) 177.800 ± 2.4123 

Blade edge radius wρ  (mm) 2.794 

Point width 
2wP  (mm) 4.826 

 
Gear Machine-Tool Settings 

Machine root angle 
2mγ  1076

$

 
Machine center to back GX  (mm) -2.007 

Horizontal 2H  (mm) 100.152 

Vertical 2V  (mm) 137.897 

 
 
 
 
 

Table 4: Pinion Machine-Tool Settings and Blade Data 
  
  

Applied parameters 
 

Concave Side Convex Side 

Blade angle pα  $

17  
$

23  
Cutter point radius pR  (mm) 174.496 185.151 

Radial setting 
1r

S  (mm) 150.301 195.018 

Installment angle 1q  "45362
'$

 "123261
'$  

Machine center to back  
1DX (mm) -4.530 8.134 

Sliding base 
1BX  (mm) 0.339 -1.795 

Blank offset 
1mE  (mm) 19.947 -20.314 

Ratio of cutting pm1  4.853 5.773 

Machine root angle 
1mγ  $

7.9  
$

7.9  
Coefficient of modified roll 2b  0.0302 -0.0527 

Coefficient of modified roll  3b  -0.0599 0.1157 
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9. Conclusion 
  
Based on the research performed the following conclusions can be drawn: 
  
(1) The developed approach of design has been successfully applied and enabled to design formate cut 
spiral bevel gears with a stabilized bearing contact and favorable shape of transmission errors of low 
magnitude. 
  
(2) The theoretical results obtained have been confirmed by simulation of meshing. 
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Appendix 1:—Relationships Between Principal Curvatures and 
Directions of Mating Surfaces 

  
Introduction 
  
The procedure of local synthesis requires the knowledge of principal curvatures and directions of 
contacting surfaces. In the case of design discussed in this paper, the pinion tooth surface is represented by 
three related parameters and the determination of pinion principal curvatures and directions is a complex 
problem. The solution to the problem is simplified by representation of pinion principal curvatures and 
directions in terms of principal curvatures and directions of the head-cutter and parameters of motions of 
the generating process (proposed in [8, 13]). 
  
Important relations between principal curvatures and directions of mating surfaces in point contact 
(proposed in [8, 13]) are applied for local synthesis (see section 6). 
  
Henceforth two types of instantaneous contact of meshing surfaces will be considered: (i) along a line, and 
(ii) at a point. Line contact is provided in meshing of the surface being generated with the tool surface. 
Point contact is provided for the generated pinion and gear tooth surfaces. The determination of the 
required relationships is based on the approach proposed in [8, 14]. The basic equations in the approach 
developed are as follows   

 

  
)12()1()2(

vvv += rr  (72) 

 

  n&nn ×+=
)12()1()2(

rr
��  (73) 

 

  [ ] 0
)12(

=⋅ vn
dt

d
 (74) 

 
Equations (72) and (73) relate the velocities of the contact point and the tip of the unit normal in their 
motions over the contacting surfaces. Equation (74) represents the differentiated equation of meshing. 
Equations (72)-(74) yield a skew-symmetric system of three linear equations in two unknowns 1x  and 2x  

of the following structure 
 
 

321 21 iii axaxa =+      (i=1 – 3) (75) 

 
Here: 1x  and 2x  are the projections of the velocity of the contact point in the motion over one of the 

surface on the principal directions of the mating surface. In case of line contact of surfaces the solution for 
the unknowns is indefinite and the rank of the system matrix of the linear equations is one. In case of point 
contact of surfaces the solution for the unknowns is definite, and the rank of the system matrix is two. The 
properties mentioned above are used for the derivation of the sought for relationships between the principal 
curvatures and directions of the meshing surfaces. 

  
Meshing of Surfaces 1Σ  and 2Σ : Surfaces 1Σ  and 2Σ  are in point contact and their meshing is considered 

in fixed coordinate system lS  (Fig. 20). Equations (72)-(74) yield the following system of three linear 

equations [8, 14] 
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where 
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The following are considered as being known: point M of tangency of surfaces 1Σ  and 2Σ , the common 

surface unit normal, the relative velocity 
)(12

v , the principal curvatures sk  and qk  and directions se  and 

qe  on 2Σ  at M, and the elastic deformation δ  of surfaces at M. The goal is to determine the principal 

curvatures fk  and  hk   and the angle 
)12(σ  formed by the unit vectors fe  and se . 

  

The velocity 
)( i

rv (i=1, 2) of the contact point on surface iΣ  has a definite direction and therefore the rank 

of the system matrix (76) is one. This property yields the following relation:  
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The sought for solution for fk , hk  and 
)12(σ  can be obtained if the following parameters will be chosen: 

the derivative 
,

21m ; the ratio δ/a , where a  is the major axis of the contact ellipse; the direction at M of the 

tangent to the contact path on one of the contacting surfaces 1Σ  and 2Σ . The relation between the 

directions at M of the tangents to the contact paths on both surfaces is represented by the equation [8, 14] 
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Choosing 2η  at point M, we can determine 1η . 

  

Procedure of Determination of  fk , hk  and 
)12(σ  

  
Step 1: Determine  1η  choosing 2η .  

  
Step 2: 
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Step 3:  
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Step 5: 
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Step 6: 
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where qs kkg −=2 . 

Step 7: 
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Step 8: 
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where qs kkK +=Σ
)2(

. 

Step 9: 

  2/)( 1

)1(
gKk f += Σ  (89) 

Step 10: 

  2/)( 1

)1(
gKkh −= Σ  (90) 

  
The procedure provided above can be used to obtain the sought for principal curvatures fk  and hk  at point 

M of tangency of surfaces 1Σ  and 2Σ   and the principal directions on 1Σ   at M. 

  
Meshing of Surfaces 1Σ   and pΣ :  The tool surface pΣ  generates the pinion tooth surface 1Σ . Surfaces 

1Σ  and pΣ are in line contact and point B is the given point of the instantaneous line of contact. The 

meshing of surfaces is considered in 
1mS . At point B the following are assumed as given: the curvatures fk  

and hk  of surface pΣ ; the unit vectors fe  and  he  of principal directions on 1Σ ; the surfaces unit normal ; 

the relative velocity 
)(12

v . The goal is to determine the principal curvatures pk  and tk  of surface pΣ , and 

the angle 
)1( pσ that is formed by the unit vectors fe  and pe . 

  
Equation (72)-(74) yield a system of three linear equations 
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The direction of 
)( p

rv  is indefinite since surfaces pΣ  and 1Σ   are in line contact. Therefore, the rank of 

system matrix of equations is equal to one. Using this property, the following equations are obtained: 
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Here: 
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Figure 1.—Illustration of tangency of surfaces Σ1 and Σ2.
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Figure 2.—Transmission function (a) and function of transmission errors (b)
   of a misaligned gear drive.
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Figure 3.—Transmission function (a) and function of transmission errors (b)
   of a gear drive with a predesigned parabolic function.
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Figure 4.—Interaction of predesigned parabolic function ∆φ2
(1) (φ1) with linear function ∆φ2

(2) (φ1)
   caused by misalignment.
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Figure 5.—Machine tool settings for gear generation. (a) For left hand gear. (b) For
   right hand gear.
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Figure 6.—Illustration of gear cutter blades and generating surfaces.
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Figure 7.—Geometric model of gear tooth surfaces.

Figure 8.—Machine tool settings for installment of the to-be-generated pinion.
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Figure 9.—Machine tool settings for installment of pinion head-cutter. (a) For right hand pinion.
   (b) For left hand pinion.
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Figure 10.—Illustration of pinion cutter blades and generating surfaces.
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Figure 11.—Geometric model of pinion tooth surfaces.

Figure 12.—Illustration of parameters η2 and a applied for local synthesis.

Tangent to the path of contact

Instantaneous contact ellipse
Tangent plane T at M
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Tangent plane T at point M

Figure 13.—Projections of various paths of contact LT on tangent plane T.
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Figure 14.—Flow chart for procedure 1: design of bearing contact.
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Figure 15.—Illustration of computations for determination of β2(m'12) = 0.
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Figure 16.—Flow chart for procedure 2.
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Figure 17.—Illustration of variation of coefficients b2 and b3 of modified roll.
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Figure 18.—Flow chart for procedure 3.
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Figure 19.—Representation of point A in coordinate system S2.
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Figure 21.—For derivation of pinion machine tool settings.

Figure 20.—Coordinate systems S2, Sl, and S1 applied for local synthesis.
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Figure 22.—Coordinate system applied for simulation of meshing of pinion and gear tooth surfaces.
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Figure 23.—TCA results output by Visual Basic: simulation of meshing without misalignment.
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Figure 24.—TCA results output by Visual Basic: simulation of meshing with misalignment ∆H = 0.1 mm.

NASA/CR— 2001-210894



     51

Figure 25.—TCA results output by Visual Basic: simulation of meshing with misalignment ∆D = 0.1 mm.
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Figure 26.—TCA results output by Visual Basic: simulation of meshing with misalignment ∆E = 0.1 mm.
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Figure 27.—TCA results output by Visual Basic: simulation of meshing with misalignment ∆γ = 3'.
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