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PREFACE

In 1995, NASA GRC initiated efforts to meet the US industry’s rising need to develop jet noise technol-
ogy for separate flow nozzle exhaust systems. Such technology would be applicable to long-range aircraft
using medium to high by-pass ratio engines. With support from the Advanced Subsonic Technology Noise
Reduction program, these efforts resulted in the formulation of an experimental study, the Separate Flow
Nozzle Test (SFNT). SFNT’s objectives were to develop a data base on various by-pass ratio nozzles,
screen quietest configurations and acquire pertinent data for predicting the plume behavior and ultimately
its corresponding jet noise. The SFNT was a team effort between NASA GRC’s various divisions, NASA
Langley, General Electric, Pratt&Whitney, United Technologies Research Corporation, Allison Engine
Company, Boeing, ASE FluiDyne, MicroCraft, Eagle Aeronautics and Combustion Research and Flow
Technology Incorporated.

SENT found several exhaust systems providing over 2.5 EPNdB reduction at take-off with less than 0.5%
thrust loss at cruise with simulated flight speed of 0.8 Mach. Please see the following SFNT related
reports: Saiyed, et al. (NASA/TM—2000-209948), Saiyed, et al. (NASA/CP—2000-210524),

Low, et al. (NASA/CR—2000-210040), Janardan et al. (NASA/CR—2000-210039), Bobbitt, et al.
(NASA/CR—201-210706) and Kenzakowski et al. (NASA/CR—2001-210611.).

I wish to thank the entire SFNT team of nearly 50 scientists, engineers, technicians and programmers
involved in this project. SENT would have fallen well short of its goals without their untiring support,

dedication to developing the jet noise technology.

Naseem Saiyed
SENT Research Engineer
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INTRODUCTION

The use of mixers and mufflers on jet engine exhausts for noise reduction has been a subject of
investigation for a number of years. As noise restrictions become more severe and human
tolerance is diminished, the search for better mixers and/or mufflers continues. This report
details the result of one such study in which a concept for fan and core-flow mixing is
analytically investigated. This concept, like many other bypass schemes, is intended to promote
the mixing of the hot and energetic core flow with the cold fan flow. The noise reduction that
ensues must be evaluated as well as the associated performance penalty. Calculations are
carried out using the Navier-Stokes equations and appropriate turbulence models.

To perform the required study Eagle Aeronautics, Inc., (EAI) has put together a team that is
composed of EAI, Analytica Service and Materials (AS&M) and ICEM CFD Technologies
(ICEM). Each possesses extensive experience in the technologies that constitute computational
fluid dynamics (CFD). Expedition of the subject contract has required each group to contribute
in areas where they have a particular, or unique, knowledge. The composite of these inputs
yields a very accurate and time-efficient methodol ogy/code-array for use in a variety of nozzle
applications. One nozzle configuration in the present study is axisymmetric and two others are
three dimensional due to the geometry of the “mixing” device. The 3D configurations are
periodic in the cross plane; only one section of a configuration is analyzed with periodic
boundary conditions applied for flow conditions at zero angle of attack.

The basic flow solver of the Navier-Stokes equations is PAB3D, which was developed by Dr.
Khaled S. Abdol-Hamid of AS&M under contract to the NASA Langley Research Center.  Dr.
Armin Wulf of ICEM using their COMAK generated surface and field grids and Hexa codes.
Post processing was done by Ms. Ana Tinetti using the POST code developed by Dr. Steven
Massey, both of EAL.

In the present report a brief discussion of the nozzle geometries, grid methodology, the flow
solver, and the cal cul ated results obtained are given in that order. Computation times, which are
of particular concern for the 2D and 3D configurations, are also noted.

METHODOLOGY
Nozzle Geometries

Both axisymmetric and three-dimensional nozzles are analyzed in this study. The 3D nozzles
are similar to the axisymmetric except for 12 or 24 tabs (or chevrons) arrayed around the
trailing edge of the core nozzle. They are alternately deflected inward and outward with respect
to the baseline axisymmetric nozzle geometry. Figure 1 shows a cross-section of the 2D nozzle
while figure 2 shows the geometry of the modified core nozzle of the 3A 12B, GE configuration.

Figure 3 gives a photograph of this same nozzle showing more clearly the core-nozzle tabs.

The Eagle team added a second 3D nozzle to illustrate the rapidity that geometry perturbations
could be made. It is designated 3A24B since it has twice as many tabs as the 3A12B nozzle.
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Grid Generation

The most time consuming job in applying CFD Navier-Stokes and Euler codes is the creation of
the surface and field grids. Starting with a given geometry informed decisions with respect to
the blocking structure and the grid resolution must be made. One must also estimate where large
flow gradients are expected and concentrate more grid points in these areas to accurately resolve
them. Solutions using the initial grid system will usually turn up regions where the grid will
need further refinement or where fewer points can be used. Areas of high grid skewness and
aspect ratio must be corrected; grid equivalency between various blocks should be checked. It
is extremely important in CFD to generate a grid that takes into account all of the geometric and
flow characteristics of the problem at hand as well as the stability of the solution methodology.

Surface modeling and grid generation in the present study was the responsibility of ICEM and
was expedited using their CFD COMAK and CFD Hexa codes. The latter has unique automatic
features enabling efficient (fast) geometry perturbations as indicated in the list below.

» Rapid block structure initialization.

» Easy-to-use tools allowing the user to detail the initial block structure (block splitting,
adjustment to given geometry, etc.).

=  Automatic insertion of O-grid topologies in the block structure (excellent discretization of
near surface regions, enormous time saver compared to conventional systems).

»  Automated set up of structured bunching based on a minimum of user input.

» Fully automatic meshing of the block structure (e.g., nodes associated to geometry surfaces
are projected onto these surfaces).

= Periodic grids.

» H-grid refinement (hanging nodes).

» Sub-topologies to easily handle repetitive components or sub-configurations in large
configurations.

=  Replay Mode: automated parametric meshing of similar geometries.

In this project, a 2D parametric geometry model and grid and a 3D parametric geometry model
and grid were developed for the nozzles shown in figures 1 and 2. The input convention for the
geometry is shown in figure 4. The user simply provides a file with 12 named curves: 7
horizontally oriented curves named C1, C2, C3, C41, C42, C51 C52 and CSYM for the curve
representing the center axis and 4 vertically oriented curves CV1, CV2, CV3 and CV4. The file
with the curves needs to be called INPUT P and needs to be provided as a Object part for
Comak in the ICEM CFD manager. All curves need to be NURB curves. The walls near the
core-nozzle trailing edge will be collapsed in the program. In addition, the user needs to
provide a set of parameters that dictate where the nozzle wall thickness goes to zero.  For the
2D case, the parameters are denoted as K-R1, K-R2, K-OP and K-OP2 as given in figure 5. The
blocking structure is shown in figure 6 and the numbering scheme for the 8-block grid in figure
7.

Figure 8 shows the “initial cut” of the 2D grid in and just downstream of, the 2D nozzle (also

see figure 6). Subsequently, several iterations were required to reconfigure the downstream grid
with the aid of PAB3D solutions, in order to better define the shear layers between the core and
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fan flows and between the fan and free-stream flows. Figures 9 and 10 show the result of this
exercise including the new K parameter values (figure 9) and the final near-field and internal
grid (figure 10). A total of 189,400 grid points were utilized.

Except for the region on and above the tabs, the 3D grid is the same as the 2D. In the 3D case,
the user needs to provide four more curves in the Object part. The curves are the inner edge
curves of the first two tabs (¥4, 1, ¥2) T1, T2, T3 and T4 as defined in figure 11. In addition, an
opening angle K-PE must be defined. These angles, along with the appropriate K values, are
given in figure 12. The outer core nozzle wall will be collapsed at the leading edge of the tabs
in the program, i.e., the tabs are considered as thin sheet metal. All subsequent steps are
automated and an input file for PAB3D is generated. The generation of the 3D parametric
surface model takes about 5 minutes on an SGI Octane and the 3D parametric volume grid, with
2.49 million cells, takes about 4 minutes. Additional details of the grid-generation methodology
are given in Appendix A.

The automatically generated 3D surface model for the nozzle with 12 tabs is shown in figure
13a along with the surface grid for a 30 degree section (required for PAB3D) in figure 13b.
Figure 14 shows the 9-block structure of the final 3D grid. Near field as well as the entire-field
grids are shown in figures 15 and 16. A total of 2,492,677 grid points were utilized.

A 24 tab grid was required for our 24 tab, core nozzle configuration and is similar to that for the
12 tab except only a 15 degree sector is required due to the reduced size of the tabs. This new
grid took less than 9 minutes to construct on an SGI Octane.

PAB3D Navier-Stokes Solver

The PAB3D flow solver is widely used in the United States aerospace industry for propulsion
component design, aircraft system analysis, and environmental quality studies including jet
engine acoustics. The solution methodology embodied in the PAB3D code can be applied to a
much wider range of problems for general industry and academia as a research tool or a
teaching aid.

The PAB3D code uses the Roe scheme to approximate the inviscid terms. The inviscid terms in
the Navier-Stokes equations in the Roe scheme are cast in the form of an approximate Riemann
problem. The interface flux in the streamwise direction is determined by separate terms,
depending on the quantities on the left (upstream) and the right (downstream) sides of the
interface. The downstream term is a significant part of any elliptic problem, has a value of zero
for hyperbolic or supersonic problem and can be ignored without introducing a significant flow
solution for parabolic problems. By ignoring the downstream dependence terms in the Roe
scheme, the solver becomes the space-marching scheme. Under the modified scheme, a
solution is obtained plane by plane from upstream to downstream by carrying out a sufficient
number of implicit iterations in each plane. A solution for the entire computational domain is
established in a single sweep. When the space-marching option is used for jet flow
computations as conditions permit, the computer time is less than one-twentieth of the time

NASA/CR—2001-210706 3



required for obtaining a time marching solution with the same flow condition. The accuracy
obtained by these different solversis practically indistinguishable.

PAB-3D has other built-in timesaving routines including grid sequencing and customized
computer memory requirements that permit the user to quickly obtain a converged solution.
PAB3D uses advanced turbulent models to model the Reynolds Stress terms in the governing
equations. There are several state-of-the-art two-equation and algebraic Reynolds Stress
turbulence models implemented in the PAB3D code. PAB3D is also capable of simulating
different gases (species) simultaneously for real gas simulations. The species concentrations are
used to evaluate equivalent thermodynamic and viscous parameters in the flow governing
equations. All scalar equations (turbulence and species concentration) are solved uncoupled
from the mean flow governing equations. This approach keeps the scheme partialy implicit
with areduction in computational time.

PAB3D uses either natural or specified locations for the transition of the flow from laminar to
turbulent. Turbulent calculations do not require any special initialization procedure for stable
computation. The code uses a flexible mesh sequencing procedure. Typical solutions will
require 800 iterations on a twice-coarsened mesh level, 400 iterations on a one-coarsened mesh
level, and 200 iterations on the finest mesh level. For example, 1,000,000 grid points require
25-30 hours using an SGI R10000/185 MHz workstation.

Another approach to reducing computation time is to use distributed computers or a
multiprocessor computer. GEAE has recently used the MPI (Message Passing Interval) version
of PAB3D to produce a solution for an equivalent nozzle-exhaust problem with CHEVRON
(noise suppression device). They used six HP 9000 computers and got a converged solution in
approximately 12 hours. Calculations for the 3D nozzle configurations in this study were
carried out using a cluster of four CPU SGI R 10000/195 MHz computers (roughly equivalent
to three Dec alpha 21164/533 MHz computers) and the MPI version of PAB3D. Appendix B
gives adetailed description of the virtues of computer clusters versus a single C-90 processor.

Three major grid divisions were created in the grid generation to reduce computational time.
The nozzle section was first run alone using a static backpressure boundary condition and an
elliptic solution procedure. The external nozzle section was run with the same approach. The
downstream section was run using the inflow from the nozzle and external nozzle sectionsin a
parabolic mode to provide an initial estimate of the flow solution. Theinitial estimate was used
to adapt the grid (as noted earlier) before continuing. The three-grid sections were combined
and run elliptically to provide the final solution including the interaction of the internal and
externa flows. The combined grid, up to 3 million grid points, will fit in the 300 MB of
memory on aworkstation. The solution strategy is summarized below.

» Y+ isaround 1 for the fine grid, and designed for not to exceed a value of 6 at the coarser
grid level. This makes the coarse and medium grid simulation accurate less than 5 percent
but represents quantitatively most of the flow characteristics.

= 4 CPU SGI R10000/195 MHz system is used to simulate the 3D cases, with speed
equivalent to 3 CPU Alpha 21164/533 MHz.
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» Usethe coarse grid level to define the elliptic and parabolic region, which is 1/64 of the fine
grid.

» Usethetime marching and grid sequencing technique to simulate the elliptic flow region.

» Usethe space marching to simulate the parabolic region.

The PAB3D code has been used to provide solutions for each condition using the following
optionsin the PAB3D code.

» Mixed Roelvan Leer scheme: Roe's scheme for the internal region of the nozzle and van
Leer’sfor the jet mixing layer region. This mix will provide the best combination based on
our experience.

» Both time-marching and space-marching schemes will be used for faster converged

solutions. Typical 1,000,000 grid points require less than 6 hours for converged solution.

Third-order accuracy in space.

Multiblock structured with general conservative patching technique.

Standard two equation k- model.

Shih, Zhu and Lumley Algebraic stress model.

A two-equation eddy-viscosity model and a non-linear algebraic Reynolds stress (SZL) model
solution will be provided for the 12 tab 3D configuration.

RESULTS

The PAB3D code, adong with the appropriate grids, has been applied to three separate
configurations, the 2D nozzle of figure 1, the 3D nozzle (3A12B) of figure 3, and the 3D nozzle
with 24 tabs. There are two sets of test conditions (see Table |) provided by the NASA Glenn
Research Center (GRC), one for the 2D case and one for the 3D cases. In addition, the 3A12 B
configuration has been run for a second turbulence model and the 2D nozzle was run using both
a set of experimental boundary conditions and the 3D test conditions. The six computer runs
carried out are listed below:

Configuration/Tabs Turbulence M odel Test Condition
2D 0 Std k-e 1
2D 0 Std k-e Experimental
2D 0 Std k-e 2
3D 12 Std k-e 2
3D 12 SZL* 2
3D 24 Std k-e 2

*Shih, Zhu, and Lumley eddy-viscosity model

NASA/CR—2001-210706 5



The “experimental” flow conditions referred to above are Py/Pamp = 1-7 for the fan flow, and
P/Pamp = 148 for core flow. The ambient free-stream Mach number is 0.05.

Sample results are presented below for five configurations and two turbulence models with
only the 2D nozzle with 3D boundary conditions excluded.

Axisymmetric nozzle

Figure 17 givens contour plots of the Mach numbers in and downstream of the 2D axisymmetric
nozzle with the flow conditions of “Test Condition 1.” Figure 17a gives these contours as lines
of equal Mach number, while figure 17b gives the near-field contours as regions of the same
Mach level, defined by the color key. The longitudinal dissipation and lateral spreading,
characteristic of nozzle flows, can be clearly seen.

Figure 18 gives similar results for the 2D nozzle with the “Experimental” values for the core
and fan pressure ratios. In this case, the fan flow Mach number is higher than that of the core
and downstream flow velocities and lateral mixings (due to the fan flow) are both higher (see
figures 17a and 18a) than that of figure 17. Note that the Mach-level key is different in figure
18 from that of figure 17.

3A.,B Nozzle

Calculated results for the 3D twelve-tab configuration and the k-__ turbulence model at test
condition is plotted in figure 19. Figure 19 includes seven color-contour plots of the following
quantities:

=  Symmetry plane Mach number Figure 19a
» Cross plane Mach numbers at x = 100 mm and x = 500 mm Figure 19b
= Symmetry plane turbulent kinetic energy Figure 19c
= Cross plane turbulent kinetic energy at x = 100 mm and Figure 19d
and x =500 mm
=  Symmetry plane pressure ratio Figure 19e
= Cross plane pressureratio at x = 100 mm and x = 500 mm Figure 19f
= Cross plane turbulent kinetic energy at x = 100 mm for three Figure 199
grid levels

Several features are of interest with respect to these results:

=  The small amount of shear between the core and fan flows (see figures 19a and 19c)
» The primary shear layer between the fan and free-stream flows (figure 19c)
= Cross plane plots of Mach number indicate a substantial
effect due to the tabs (figures 19b)
= Crossplane plots of turbulent kinetic energy show large production around the
fan/freestream interface (figure 19d).
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» The near constant pressure downstream of the nozzle (figures 19e and 19f)
= Grid level reduction from 444 to 222 shows a significant difference in the turbulent kinetic
energy. Further reduction to the 112 grid level has only a small effect (figure 19g)

Turbulence Modd Effects

Figure 20 presents the same set of contour plots, as figure 19 except the turbulence model is that
of Shih, Zhu and Lumley. Comparison of these results with those using the k- _model yield the
following observations:

»  The symmetry plane Mach contours are essentially the same (figures 19a and 20a)

= Cross plane Mach contours are al'so similar (figures 19b and 20b)

= The k-_ model yields a higher level of turbulent energy between the fan and free-stream
flows than the SZL model. Cross-plane plots of the turbulent energy show the same
phenomena (figures 19d and 20d)

» The downstream pressures are very little different (figures 19e, 19f, 20e and 20f)

= Both the k-_ turbulence model and the SZL model show that there is a significant difference
between the 444 and 222 grid levels for the turbulent kinetic energy while thereis very little
difference between 222 and 112 grid levels.

3A,,B Nozzle

As noted earlier, a 24-tab grid and calculation was carried out using alternating in and out
deflections similar to the 12-tab configuration. Since the 24 tabs had to fit the same
circumference as the 12 tabs, the 24 tabs are half the size of the 12 tabs. Seven figures give
these results asin the other 3D cases and are numbered 21athrough 21g. The results are for the
k- turbulence model and consequently should be compared to figure 19. Test condition 2 was
used as in the results for figures 19 and 20. It should be remembered that the 24-tab crossplane
plots are given for a 15-degree sector and should be combined with the mirror image to compare
to those of the 12-tab configuration.

Figure 21a shows that there is dlightly more attenuation of the downstream symmetry-plane,
fan-flow Mach number for the 24-tab configuration than the 12 tab. Cross plane Mach contours
in figures 21b and 19b for x = 100 mm and x = 500 mm indicate similar patterns (although
compressed) at x = 100 and dlightly different patterns at x = 500 mm. Overall it appears that the
24-tab configuration produces dlightly more Mach number reduction than the 12-tab. Figures
21c and 21d and figures 19c and 19d clearly show that the 12 tab configuration caused less
turbulent energy between the free-stream and fan flows than the 24 tab (see figures 19d and 21d
for x = 500 mm). Pressure ratio plots for the 24-tab configuration in figures 21e and 21f are
roughly the same as those of 19e and 19f for the 12-tab geometry. Finaly, the grid level
sensitivity of the turbulent kinetic energy, shown in figure 21g, is about the same as in figure
19g. Calculated results and electronic files have been formulated for the axysymmetric nozzle
with the 3D boundary conditions to enable a precise estimate of the effects of the tabs but no
plots were made. Filesfor al six cases are detailed in Appendix C.
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Concluding Remarks

Plug-nozzle/engine-exhaust, Navier-Stokes cal cul ations have been carried out for three separate
configurations, one 2D and two 3D. The latter are three dimensional due to the presence of
mixer elements on the trailing edge of the core nozzle. A total of six N-S calculations were
carried out to determine the effects of the turbulence model used, the grid size, 12 versus 24
mixer elements and the effects of the mixer elements themselves. Contour plots have been
included for Mach number, turbulent kinetic energy and pressure ratio for a number of cases.
Electronic files are available for all six cases.
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List of Figures

Figure No.

1. Geometry of Baseline Axisymmetric Plug-Nozzle Configuration

2. G.E. Plug Nozzle with Alternating Inward and Outward Tabs (Configuration
3A,,B) Core Nozzle.

3. Photograph of G.E. Plug Nozzle Showing Alternating Tabs on Core Nozzle.

4. Plug Nozzle Input Convention for Curves

5. Input Parameters for 2D Plug Nozzle Model

6. Automatically Generated Blocking for 2D Plug Nozzles

7. Blocking Numbers of the 2D Model (8 Blocks)

8. 2D Grid Detail

9. Updated 2D Modedl: Detail With New Parameters

10.  Updated 2D Grid: Detall

11. Input Convention for Tab Edge Curves and Angle for 3D Model

12. Input Parameters for 3D Plug Nozzle Model with Tabs

13a.  Automatically Generated 3D Surface Model for Nozzle with Tabs

13b.  Surface Grid for Plug Nozzle with 12 Tabs (30 Degree Section)

14.  Output Blocks for the 3D Model (9 Blocks)

15. Detail of 3D Model Grid on Symmetry Planej-min
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16.

17a

17b.

18a

18b.

19a

19D.

19c.

19d.

19e.

19f.

19g.

Grid of 3D Modél on j-min Symmetry Plane

PAB3D Solution for 2-D Nozzle. 212 Grid Level. Minf = 0.05, no fan flow, core
flow pt/pamb = 1.19 - Lines of equal Mach number.

PAB3D Solution for 2-D Nozzle. 212 Grid Level. Minf = 0.05, no fan flow, core
flow pt/pamb = 1.19 - Equal Mach Zones.

PAB3D Solution for 2-D Nozzle. 212 Grid Level. Minf = 0.05, fan flow
pt/pamb = 1.7, core flow pt/pamb = 1.48 - Lines of equal Mach number.

PAB3D Solution for 2-D Nozzle. 212 Grid Level. Minf = 0.05, fan flow
pt/pamb = 1.7, core flow pt/pamb = 1.48 - Equal Mach zones.

Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. Std. k- e turbulence
model, symmetry plane (j = jmax). — Equal Mach zones in symmetry plane.

Twelve Tab, PAB3D Solution for 3-D Nozzle, 112 Grid Level. Std. k- e
turbulence model, constant i planes— Equal Mach at x = 100 and 500 mm.

Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. Std. k- e turbulence
model, symmetry plane (j = jmax). — Equal turbulent energy zones in symmetry
plane.

Twelve Tab, PAB3D Solution for 3-D nozzle, 112 Grid Level. Std. k- e
turbulence model, constant i planes — Equal turbulent energy zones at x = 100
and 500 mm.

Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. Std. k- e turbulence
model, symmetry plane (j = jmax). — Equal pressure zonesin symmetry plane.

Twelve Tab, PAB3D Solution for 3-D Nozzle, 112 Grid Level. Std. k- e
turbulence model, constant i planes— Equal pressure zones at x = 100 and

500 mm.

Twelve Tab, PAB3D Solution for 3-D Nozzle, 112 Grid Level. Std. k- e
turbulence model, constant i planes — Effect of grid size on turbulent energy
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at x = 100.

20a. Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. SZL turbulence
model, symmetry plane (j = jmax) - Equal Mach zones in symmetry plane.

20b. Twelve Tab, PAB3D Solution for 3-D Nozzle, 112 Grid Level. SZL turbulence
model, constant i planes - Equal Mach zones at x = 100 and 500 mm.

20c. Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. SZL turbulence
model, symmetry plane (j = jmax) - Equal turbulent energy zones in symmetry
plane.

20d. Twelve Tab, PAB3D Solution for 3-D nozzle, 112 Grid Level. SZL turbulence
model, constant i planes - Equal turbulent energy zones at x = 100 and 500 mm.

20e. Twelve Tab, PAB3D 3-D Nozzle Solution, 112 Grid Level. SZL turbulence
model, symmetry plane (j = jmax) - Equal pressure zones in symmetry plane.

20f.  Twelve Tab, PAB3D Solution for 3-D nozzle, 112 Grid Level. SZL turbulence
model, constant i planes - Equal pressure zones at x = 100 and 500 mm.

20g. Twelve Tab, PAB3D Solution for 3-D nozzle, SZL turbulence model, constant i
planes — Effect of grid size on turbulent energy at x = 100.

2la. Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
symmetry plane (j = jmax) — Equal Mach zones in symmetry plane.

21b. Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
constant i planes— Equal Mach zones at x = 100 and 500 mm.

21c. Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
symmetry plane (j = jmax) — Equal turbulent energy zones in symmetry plane.

21d. Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
constant i planes— Equal turbulent energy zones at x = 100 and 500 mm.
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2le. Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
symmetry plane (j = jmax) — Equal pressure zones in symmetry plane.

21f.  Twenty Four Tab, 3D Configuration, 112 Grid Level. Std. k- e turbulence model,
constant i planes— Equal pressure zones at x = 100 and 500 mm.

21g. Twenty Four Tab, 3D Configuration. Std. k- e turbulence model, constant i
planes — Effect of grid size on turbulent energy at x = 100.
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SO S

Figure 3. - Photograph of G.E. plug nozzle showing
alternating tabs on core nozzle.
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Figure 8. - 2D Grid Detail
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Figure 13b. - Surface Grid for Plug Nozzle with

12 Tabs (30 Degree Section)
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Figure 14. - Output Blocks for the 3D Model (9 Blocks)
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Figure 16. - Grid of 3D Model on j-min Symmetry Plane
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