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PREFACE

In 1995, NASA GRC initiated efforts to meet the US industry’s rising need to develop jet noise technol-
ogy for separate flow nozzle exhaust systems. Such technology would be applicable to long-range aircraft
using medium to high by-pass ratio engines. With support from the Advanced Subsonic Technology Noise
Reduction program, these efforts resulted in the formulation of an experimental study, the Separate Flow
Nozzle Test (SFNT). SFNT’s objectives were to develop a data base on various by-pass ratio nozzles,
screen quietest configurations and acquire pertinent data for predicting the plume behavior and ultimately
its corresponding jet noise. The SFNT was a team effort between NASA GRC’s various divisions, NASA
Langley, General Electric, Pratt&Whitney, United Technologies Research Corporation, Allison Engine
Company, Boeing, ASE FluiDyne, MicroCraft, Eagle Aeronautics and Combustion Research and Flow
Technology Incorporated.

SENT found several exhaust systems providing over 2.5 EPNdB reduction at take-off with less than 0.5%
thrust loss at cruise with simulated flight speed of 0.8 Mach. Please see the following SFNT related
reports: Saiyed, et al. (NASA/TM—2000-209948), Saiyed, et al. (NASA/CP—2000-210524),

Low, et al. (NASA/CR—2000-210040), Janardan et al. (NASA/CR—2000-210039), Bobbitt, et al.
(NASA/CR—201-210706) and Kenzakowski et al. (NASA/CR—2001-210611.).

I wish to thank the entire SFNT team of nearly 50 scientists, engineers, technicians and programmers
involved in this project. SENT would have fallen well short of its goals without their untiring support,

dedication to developing the jet noise technology.

Naseem Saiyed
SENT Research Engineer
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Task 2 — Flow Solution for Advanced Separ ate Flow Nozzles
Response A: Structured Grid Navier-Stokes Approach

Final Technical Report

1.0 OVERVIEW

This report describes the work performed under NASA/Glenn Research Center Contract No.
NAS3-99098 supporting technology for reducing aircraft noise caused by the exhaust plume from
separate flow nozzles. A series of detailed CFD plume flowfield simulations was performed to better
understand the flowfield features introduced by passive noise reduction devices and to predict the
resulting mean and turbulent flowfield quantities. The nozzle configurations studied included a baseline
(axisymmetric) design and two modifications to the baseline using a pre-determined arrangement of
chevrons and tabs attached at the core nozzle exit. The flowfield domain extended from upstream of the
nozzle exit to approximately 25 fan diameters downstream to assess core/fan mixing enhancement. The
resulting mean and turbulent flowfield quantities were to be then compared with experimental
measurements performed at the same operating conditions. The numerical solutions were also used as
inputs to the MGB [1] code for assessing the Reynolds-averaged Navier-Stokes (RANS) methodology in
predicting the observed jet noise level reduction resulting from vortical mixing enhancement.

An overview of the nozzle configurations studied is displayed in Figure 1. The baseline
configuration consists of an axisymmetric laboratory scale separate flow nozzle with an external plug.
The chevron assembly is characterized by six evenly distributed sets of two chevrons that alternately
point inward toward the plume axis and outward by the same relative angle with respect to the core cowl
exit. The tabs considered are of “delta’ design arranged in an alternating pattern such that six are
inclined by 30° into the core stream, six are inclined by 30° into the fan stream, and twelve tabs remain
aligned (i.e., neutral) with nozzle exit convergence angle. For a RANS flowfield simulation, both the
tab and chevron arrangements alow for 30-degree symmetry to be assumed for the computational
domain. In al smulations, strut and pylon interference effects have been neglected, and the inflow
profiles do not include boundary layer effects. The results discussed below are "first-pass;” a baseline
ke turbulence model (no axisymmetric correction or non-linear extensions) has been used, and a
constant turbulent Prandtl of 0.7 has been employed based on previous plume modeling experiences.
The flowfield solutions have been solved on grids of comparable axial and radial resolution. The results
and comparisons are discussed below.

Two sets of flowfield conditions were used for each nozzle in these studies. The first s,
specified in Table I, corresponded to conditions to be run at the NASA/Langley Jet Noise Laboratory
(JNL), where mean and fluctuating flowfield quantities were to be measured for comparison with
numerical predictions. These comparisons were to provide useful information in turbulence model
assessment for jet noise prediction. Unfortunately, these experimental results were not obtained during
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the period of performance of thistask. As an aternative to turbulence model validation and rectification
with the JNL data, the three nozzle/plume flowfields were also run at conditions for which mean flow
and acoustic measurements were previousy obtained at the NASA/Glenn jet noise facility; these
flowfield conditions are listed in Table II. The resulting CFD mean and turbulent flowfields were then
delivered to NASA/Glenn for data comparison. Qualitatively, both engine conditions produced similar
mixing features for a given nozzle configuration. Therefore, for brevity, this report will focus on
discussing the flowfield comparisons for the Power Point 22 operating conditions. For completeness,
radial profile comparisons at stations of interest to NASA/Glenn have been included as an appendix to
this report. Results of the Power Point 21 flowfield calculations will be presented once experimental
comparisons are made available.

Tablel. Power Point 22 Flowfield Conditions
For Assessing Jet Noise Reduction

Core Fan Freestream
Total Pressure (atm) 1.480 1.695 1.035
Total Temperature (K) 794.44 333.33 298.87
Freestream Static Pressure = 14.4 psia (0.98 atm)
Freestream Static Temperature = 294.26 K
Freestream Mach Number =0.28

Tablell. Power Point 21 Flowfield Conditions
For Assessing Jet Noise Reduction

Core Fan Freestream
Total Pressure (atm) 1.650 1.800 1.035
Total Temperature (K) 833.33 333.33 298.87
Freestream Static Pressure = 14.4 psia (0.98 atm)
Freestream Static Temperature = 294.26 K
Freestream Mach Number =0.28

2.0 NUMERICAL PROCEDURE

The internal and jet plume flowfields for a baseline axisymmetric (Model Designation 3BB) and
two advanced 3D nozzles with chevrons (Model 3A,,B) nozzle and tabs (Model 3T,,B) were calculated
using the CRAFT structured grid Navier-Stokes code. The CRAFT code is a finite-volume, fully
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implicit, Roe/TVD solver that has been used extensively for jet simulations studying noise reduction
concepts and aircraft plume IR signatures [2-5]. A number of capabilities exist in CRAFT that make it
suitable for advanced jet simulation studies, and these are highlighted below. For al smulations a
perfect gas equation of state (g=1.4) and a constant turbulent Prandtl number of 0.7 were assumed, and a
baseline ke turbulence model was used. Sensitivity of the flowfield features to turbulence modeling
extensions, such as the Gatski/Speziale non-linear turbulence model, centerline corrections, and variable
Prandtl number, were not considered in the present effort but may be important to consider in future
studies after data comparisons are made.

The grid blanking methodology in CRAFT increases its versatility for flowfield problems
involving complex geometries. This feature works in conjunction with the implicit ADI procedure for
inverting the matrix arrays in the direction of the implicit sweep. Grid blanking also facilitates
structured mesh generation by allowing the grids to better conform to the specified geometry and flow
direction and minimize “skewness.” As an example, a schematic of the grid blanking used for the
baseline nozzle flowfield is illustrated in Figure 2. User-specified boundary conditions along internal
and external grid surfaces allow for automatic construction of patches, or sweeps, in each computational
direction. Moreover, wall boundaries do not need to coincide with inter-block boundaries. This allows
for a more generalized placement of interior boundary conditions away from regions that are likely to
interfere with shear layer development and restrict time advancement.

The boundary layer region is an important aspect of the nozzle flowfield, especially for transonic
exhausts. It is therefore important to accurately predict the mass deficit effect of the boundary layer to
assess nozzle performance. In addition, boundary layer turbulence can impact the downstream plume
shear layer development, especially for the core/fan mixing region where velocity ratios are small.
Resolution of the boundary layer flowfield near the wall would require tightly packed grids of high cell
aspect ratio, which increases storage and CPU costs (more grid points needed) and often hinders solution
convergence due to the small local time steps required. In an effort to reduce the costs for resolving
viscous wall effects, acompressible law of the wall model [6] has been implemented in CRAFT and was
used for both the axisymmetric and 3D simulations. Wall functions analytically relate surface boundary
conditions to points in the inertial sublayer region, where the shear stress is assumed constant. In this
study, the grid resolution employed ensured that the first cell location off the wall was less than ay” of
25 and a minimum of eight grid points were below a y* of 300. This latter constraint was made to
provide a reasonable estimate of momentum deficit effects on the flowfield exhaust (e.g.. mass flow
rates). For the present studies, adiabatic walls were assumed.

The solution of the 3D nozzle flowfields required nearly three million grid cells for the chevron
case and five million cells for the tab case. To boost solution turnaround time, a domain decomposition
strategy was employed for distributing the overall computational volume across a user-specified number
of processors and running the CRAFT code in parallel viathe Message Passing Interface (MPI) library.
This domain decomposition procedure allows for linear solution speedup on parallel architectures and
operates independently of the patching methodology described above. This feature enables the user to
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focus grid construction based on flowfield resolution requirements and not on processor load balancing.
This also alows for placement of potential inter-block boundary interference away from regions of shear
layer evolution. For the present simulations, sixteen processors were used for the chevron solution, and
twenty processors were used for the tab flowfield.

Subsonic conditions were imposed at all inflow boundaries using the specified total pressure and
total temperature. For the current simulations, charging station profiles were unavailable, and thus
uniform conditions were prescribed at these boundaries.

3.0 COMPUTATIONAL DOMAIN

The entire computational domain consisted of the internal nozzle flowfield, initiated at alocation
prescribed by NASA/Glenn sufficiently upstream of the core and fan nozzle exits, and the volume of
external flow enclosing the downstream plume and associated freestream. The nozzle component
surfaces were specified using IGES files obtained from NASA/Glenn, and grid construction was done
using GRIDGEN Version 13. The streamwise length of the computational domain extended 25 fan exit
diameters downstream of the external plug tip and included the entire jet growth in the radial direction.
Both the axisymmetric and 3D chevron grids were constructed with similar wall mesh density to
minimize boundary layer resolution effects in the subsequent flowfield comparisons. The axisymmetric
grid dimensions were 537x160. An overall view of this mesh and the use of grid blanking for this
geometry are shown in Figure 3. Grids were packed radially along all wall surfaces and axially near the
fan and core nozzle exits. The axisymmetric grid topology was selected to facilitate comparisons with
the chevron flowfield and to provide a good initial flowfield solution for the 3D cases. A similar
gridding strategy was used for the chevron case (537x160x40), shown in Figure 4, and the tab case
(537x160x60), shown in Figure 5. Figure 6 illustrates the overall flow domain used for the chevron
nozzle; the blue outlines in this figure denote the sixteen processor breakup of the domain for parallel
execution. Based on the geometric configuration, thirty-degree symmetry was assumed, and Figure 7
illustrates the azimuthal grid density used for resolving cross flow features.

4.0 BASELINE NOZZLE STUDIES

Predicted Mach number contours for the overall axisymmetric solution domain are shown in
Figure 8. The peak Mach number at the fan exit is slightly below sonic (0.956). The blunt trailing edge
of the external plug produces a small recirculation zone and downstream wake region along the plume
axis. Figure 9 shows a close-up view of the Mach number contours in the vicinity of the nozzle. The
curvature of the internal wall surfaces near the fan and core exit stations establishes local expansion
regions and produces non-uniform Mach number profiles at the exit planes. Figure 10 shows the
resulting static pressure flowfield near the nozzle exit, and Figure 11 shows predicted stagnation
pressure contours for the overall flowfield, which indicates the mixing extent of the fan stream and
freestream. Figure 12 gives a close-up view of the predicted stagnation pressure profile at the core
nozzle exit station. At thislocation the fan flow boundary layer is shown to be slightly thicker than that
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of the core. Figure 13 shows contours of the total temperature flowfield and illustrates the relatively
slower mixing of the fan and core streams, characteristic of unmodified separate flow nozzles. The
turbulent viscosity contours of Figure 14 display the relative levels of turbulent mixing between the
three streams. The velocity ratio between the fan and core stream is small; shear layer mixing in this
region is consequently slow and results in a long plume core length.  The turbulence flowfield is
dominated by the fan/freestream mixing; the displayed turbulent viscosity contours must be clipped by
an order of magnitude (Figure 14b) to enhance visualization of the fan/core shear layer. The turbulence
intensity is a non-dimensional quantity defined for the present comparisons to be the ratio of turbulent
Kinetic energy to mean kinetic energy:

\/%, whereq :%(u2 +VZ + V\/Z)

This quantity is shown in Figure 15 for the baseline nozzle configuration. Again, this figure illustrates
the dominance of the turbulence flowfield by the fan/freestream mixing layer and the small levels of
turbulent mixing between the core and fan streams.

5.0 CHEVRON NOZZLE STUDIES

As described above the chevron nozzle is a modification of the baseline design and consists of
twelve chevrons alternately deflecting inward and outward along the core cowl lip. This configuration
has thirty-degree symmetry, with one symmetry plane slicing through the center of the upward chevron
and the other dicing through the center of the downward chevron. The presence of the chevrons
significantly changes the plume structure in the near field. As shown in the Mach number, static
pressure, and stagnation pressure contours of Figures 16, 17, and 18 respectively, there is a notable
difference in the mixing of the core/fan flow in the upward deflected chevron plane versus that in the
downward deflected one. The downward deflected chevron allows for penetration of the fan flow into
the core stream just downstream of the nozzle exit, while the upward deflected chevron alows for an
“injection” of core flow into the fan stream. Overall fan/freestream shear layer mixing does not seem
significantly altered by the presence of the chevrons. Total temperature contours, shown in Figure 19,
indicate significantly greater mixing of the fan and core flows in the near field. The clipped turbulent
viscosity contours of Figure 20 indicate that the fan/freestream mixing layer is still the dominant
turbulent region in the plume near field. While the fan/core turbulent viscosity region is slightly broader
in the upward chevron plane than was seen for the axisymmetric nozzle, the magnitude levels are
approximately the same. This observation is also seen in the turbulence intensity contours of Figure 21.

The enhanced mixing in the near field by the chevrons appears to result from the establishment
of large-scale counter-rotating vortices. Figure 22 shows at selected axia locations the cross-flow
velocity vectors, which have been colored by the total temperature to better visualize how they affect the
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core/fan mixing. These vortices act to “pinch” off regions of core flow, which are then locally mixed
out.
6.0 TABNOZZLE STUDIES

As described above, the tab nozzle is a modification to the baseline design and consists of
twenty-four delta tabs arranged in an “upward-neutral-downward-neutral” pattern along the core nozzle
exit circumference. As in the chevron nozzle, this configuration contains thirty-degree symmetry, with
one plane of symmetry dlicing through the center of an upward deflecting tab and the other slicing
through the center of a downward tab. Contours have been made in these two planes to help assess the
effects of the tabs on the plume structure. Mach number, static pressure, and stagnation pressure
contours, shown respectively in Figures 23, 24, and 25, indicate notable differences in the mixing of the
core/fan flows due to tab deflection angles. The downward deflected tab allows for penetration of the
fan flow into the core stream just downstream of the nozzle exit, while the upward deflected tab allows
for an “injection” of core flow into the fan stream. The overall mixing behavior is qualitatively similar
to that seen for the chevron nozzle configuration. It is important to note that the stagnation pressure
contours indicate that |osses occur near the deflected tabs.

Stagnation temperature contours, shown in Figure 26, indicate significant mixing of the core and
fan flows in the plume near field. A comparison of total temperature profiles aong the plume axis,
presented in Figure 27 for the three nozzle configurations, shows that the potential core is dramatically
reduced by the presence of the tabs. However, these axial profiles do not completely represent the
flowfield mixing, since the dominant vortical mixing in the near field occurs off-axis. A better
description of core flow mixing is illustrated in the station-wise integrated flowfield comparisons of
Figure 28. Both the tabs and chevrons significantly increase mixing in the plume near-field, with the
tabsinitially producing a dlightly faster rate. Once the vortical regions become fully mixed, overall core
flow is significantly reduced, as seen in the large slope change approximately 30 inches downstream of
the fan exit.

Figure 29 presents contours of turbulent kinetic energy along the symmetry planes. Asin the
chevron and baseline cases, the shear layer mixing between the fan and freestream dominates the
turbulence field. Peak values for the present study are shown to occur off-axis shortly downstream of
the plug tip, followed by a slow decay as the fan/freestream mixing layer approaches the axis. Due to
the presence of recirculation zones, high values of turbulent kinetic energy are also seen in the vicinity
of the upward and downward penetrating tabs. These turbulent regions do not seem to promote mixing,
as evidenced by relatively thin fan/core shear layer and the rapid decay of turbulent kinetic energy in
thisregion.

While the total temperature contours indicate rapid mixing of the core and fan streams by the
presence of the selected tab configuration, the flowfield analysis indicates possible areas for
improvement. In particular, the relatively large penetration of the tabs into the core and fan streams
establishes localized regions of recirculation zones that were not seen in the chevron mixing analysis.
Figure 30 shows vectors of velocity colored by stagnation pressure to indicate the losses associated with
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the recirculating regions. Figure 31 shows that these zones aso produce high levels of turbulent kinetic
energy. The turbulent kinetic energy does little to enhance the shear mixing of the core and fan streams
and may be a potential source for noise emission, an undesirable feature.

7.0 CHEVRON/BASELINE COMPARISONS

In an effort to gain more insight into the physics of the chevron mixing, comparisons were made
at several axial locations between the baseline and chevron plume flowfields. Figure 32 is provided as a
reference to physically indicate the location of each station relative to the nozzle assembly. The station
numbers represent their respective relative distance from the fan nozzle exit. The stations selected for
comparison include locations of interest to NASA/Glenn for future comparisons with experiments as
well as supplemental locations upstream of the core plug tip to better identify the developing vortical
patterns generated by each design.

Figure 33 compares the total temperature mixing of the axisymmetric nozzle with that using the
chevrons. The alternating pairs of upward and downward chevrons establish localized regions of core
flow, which are then mixed out by the presence of the cross flow vortices. By X=30, the dominant
physics mixing the fan and core streams is shear layer turbulence, which is relatively weak. Despite the
rapid mixing in the plume near field, the core stream for the chevron case is not fully mixed until further
downstream. In fact, it appears that the centerline rates of temperature decay are similar in the farfield
for the two configurations. Figure 34 compares the turbulent kinetic energy contours at the same axial
locations. The shape of the shear layer between the fan and core streams appears distorted by the
chevrons; however, the overall width of the shear layer is not significantly altered. Figure 34 aso
indicates the presence of local turbulence intensity peaks within the fan/freestream shear layer due to the
flowfield distortion. These peaks produce dlight distortions (a non-circular shape) in this region
downstream due to a localized increase in the fan and freestream turbulent mixing. Peak levels of
turbulent kinetic energy to not appear in the baseline plume until further downstream (X=80), where the
primary shear layer reaches the axis.

8.0 TAB-CHEVRON FLOWFIELD COMPARISONS

In an effort to gain more insight into the physics associated with the tab and chevron mixing,
plume flowfield comparisons were made at the same axial locations used above. Figure 35 compares
the total temperature mixing the chevron and tab nozzle flowfields. The upward and downward pattern
of the chevrons establishes localized regions of core flow, which are then mixed out by the presence of
counter-rotating vorticies. The tab configuration establishes a more complex vortex pattern. The effect
of the “neutral” tabs between the “penetrating” ones is to establish radial vortex “pairs,” which promote
faster mixing than the chevrons. This can be seen most clearly in the locations downstream of the plug
tip; at X=24 inches, the core flow is amost completely mixed for the tab case, while the chevron mixing
is not completed until much further downstream (X=60). Figure 36 compares contours of stagnation
pressure for the two designs. The effects of tab-induced recirculation are evidenced by the lower values
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of stagnation pressure in the vortex core regions. Figure 37 compares contours of turbulent kinetic
energy at the same axial locations. The distortions of the fan/core shear layers highlight the differing
vortex roll-up patterns established by the chevrons and tabs. Peak values of turbulence in the
fan/freestream shear layer are similar for the two cases, although high values of turbulent kinetic energy
persist farther downstream for the chevron case.
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(a) baseline

(b) chevron

Figure 1. Overview of AST nozzle configurations studied.

NASA/CR—2001-210611 9



“uoneINSIJuod 9[Zzou uraseq o) pardde se apod [JV YD Jo A3ojopoyowr Jurydojed Jo uonensn[y ‘z ainbi4

| =
- -
gstlaams UM Xn| |
[ o
ol -
- il
o -
Y
r
| & F 1= £poqisiuad
A
e
=
=
w -]— |02 3109
14 '
"3
2
o
M t<@— |MO0D ue}
i
]
h  J . 4

10

NASA/CR—2001-210611



"u0I3a1 9[zZou JO dn—aso[d (q) pue MIIAIIAO (B) :PLIS JLIIOWIWASIXR duIaseq ‘€ aanbi4

]

NASA/CR—2001-210611



*9[ZZOU JO UOI3aI Ul PLIS UOIAYD JO MIIA dn 3so[) ‘i aanbi4

\

L

12

NASA/CR—2001-210611



ﬁ-——__.-'
e
P
.

e

NASA/CR—2001-210611

13

Figure 5. Close—up view of the tab grid in region of nozzle.
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Xis measured from plug tip
Rc is the core exit radius

Note

Figure 22. Crossflow velocity vectors colored by total temperature at selected axial stations of chevron plume flowfield.
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