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BODY-VORTEX INTERACTION, SOUND GENERATION AND 
DESTRUCTIVE INTERFERENCE 

 
Hsiao C. Kao 

National Aeronautics and Astronautics Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
                                                    

ABSTRACT 
 

      It is generally recognized that interaction of vortices with downstream 
blades is a major source of noise production.  To analyze this problem 
numerically, a two-dimensional model of inviscid flow together with the 
method of matched asymptotic expansions is proposed.  The method of 
matched asymptotic expansions is used to match the inner region of 
incompressible flow to the outer region of compressible flow.  Because of 
incompressibility, relatively simple numerical methods are available to treat 
multiple vortices and multiple bodies of arbitrary shape.  Disturbances from 
vortices and bodies propagate outward as sound waves.  Due to their 
interactions, either constructive or destructive interference may result.  
When it is destructive, the combined sound intensity can be reduced, 
sometimes substantially.  In addition, an analytical solution to sound 
generation by the cascade-vortex interaction is given. 

 
1. INTRODUCTION 
 
     Interaction of rotor tip vortices with downstream stators or other blades is commonly 
regarded as an important source of noise production (Refs. 1-3).  Although it is difficult 
to separate vortices from other secondary flow effects, the notion that vortices play an 
important role is generally accepted.  In order to make the problem tractable, a two-
dimensional model with rectilinear vortices in an inviscid flow is proposed.  The cases to 
be considered are: a moving vortex interacting with a single body (blade) and with several 
bodies, several moving vortices interacting with several bodies, and vortices interacting 
with a cascade.  Since the unsteady Kutta condition will be imposed, wakes behind the 
blades are expected to occur. 
     The main assumption made here is that the bodies must be acoustically compact.  In 
other words, the Mach number must be relatively low.  This enables us to use the method 
of asymptotic expansions to match the inner solution, which is incompressible, with the 
outer solution, which is compressible and satisfies the acoustic equation.  Since several 
bodies may be present, both constructive and destructive interference of sound waves 
from neighboring bodies have to be considered.  By manipulating the interference, it is 
possible to achieve pressure attenuation and reduce sound intensity. 
     Under the assumption of low Mach number, the characteristic length of the body is in 
general much smaller than the acoustic wave length, which implies that the compactness 
ratio is small and the flow in the vicinity of the body is not wave like.  Dowling and 
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Ffowcs Williams (Ref. 4, p.40) stated that all acoustic motions in the vicinity of a 
singularity are solutions of Laplace’s equations.  In the present investigation a body is 
represented by surface vorticity elements.  Therefore, the inner region surrounding the 
body is incompressible and is governed by the Laplace equation.  Disturbances generated 
in this region propagate outward as acoustic signals.  Thus, the outer region is 
compressible and governed by the acoustic equation. 
     Using asymptotic matching to solve aeroacoustic problems in low-speed flows has 
been examined previously (Refs. 6-12 for example).  In these studies if a body is present, 
it is usually of simple shape and amenable to conformal mapping.  Here this method is 
broadened to include multiple bodies of arbitrary shape.  With this extension, interference 
of neighboring bodies can be studied. 
     The time scale for blade-vortex interaction is of the order of L 0/U , where L  is the 
length of the body and 0U  is the freestream velocity.  In this time interval an acoustic 
wave has propagated to the distance of L /M0, which is much larger than L  as M0, the 
freestream Mach number, approaches to zero.  Thus, there are two disparate lengths, an 
indication of a singular perturbation problem. 
     The advantage of this approach lies mostly in the inner region, where incompressible 
solutions for several bodies can be obtained readily by a number of numerical methods.  
The method chosen here is Martensen’s surface vorticity method.  This method, which 
has been thoroughly investigated by Lewis (Ref. 5), is convenient for the present purpose, 
since the surface is replaced by vorticity elements, which along with moving vortices can 
be treated similarly by the Biot-Savart law. 
     The acoustic equation in the outer region, after the Fourier Transform, becomes a 
Bessel equation, whose outgoing wave is represented by a Hankel function.  Therefore, 
none of the unresolved complications in computational aeroacoustics appears.  The 
remaining task is to match the two regions and to perform the inverse Fourier transform 
to return to the physical space. 
 
2. METHOD VALIDATION 

 
     In order to gain confidence of using asymptotic matching to solve aeroacoustic 
problems, a simple problem of acoustic radiation by an oscillating circular cylinder is first 
examined.  It so happens that in this case a term-by-term comparison between the 
analytical and asymptotic solutions can be made without recourse to numerical results.  
Although this is a simple example, the matching procedures for more complicated 
problems are the same.  Therefore, more details than necessary are given below in order 
to lessen explanations for vortex interaction problems later. 
 
2.1  Inner Solution and its Fourier Transform 
 
     The motion of an oscillating circular cylinder as depicted in Fig.1 is expressed as 
 )exp( tiU CC ω , whose normal component on the surface is θω cos)exp( tiU CC .  Thus 

the velocity potential is 

θωφ cos)exp(
2

ti
r

a
U CC−= , 
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where CU  is the amplitude of oscillating velocity, a the radius of the cylinder, Cω  the 

angular frequency, r  the radial distance, c  the speed of sound, and t  the time.  For 
small oscillations, the linearized Bernoulli equation is valid and gives the perturbed 
pressure in the inner region as 
 

                                    )exp(cos ti
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The symbols in this equation refer to dimensionless quantities and are defined as follows: 
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Applying the Fourier transform pair to Eq. (1) 
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where δ (ω-ωC ) denotes the δ-function (Ref. 13). 
 
2.2  Outer Equation and its Solution 
 
     As mentioned previously, there is an outer characteristic length, which is much 
larger than the body length.  This length can now be used to rescale the coordinates in 
the outer region to give 

                               
a

x
MX C= ,                    

a

y
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With the rescaled coordinates held fixed and letting the Mach number tend to zero, the 
governing equation reduces to the classical acoustic equation.  Its form in polar 
coordinates becomes 
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where the subscript o refers to the perturbed p in the outer region.  In view of the inner 
solution in Eq. (1), the outer solution is assumed to be of the form 
 
                                                  θcos),(00 tRqp =′ .                                               (5)  

 
Upon substitution of this expression in Eq. (4) and applying the Fourier transform, it 
becomes 
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This is the Bessel equation of the first order, whose solution for the outgoing wave is the 
Hankel function of the second kind and is given by 
 

                                      θω cos)(ˆ )2(
10 RHAp =′ ,                                                   (7) 

 
where A is the unknown coefficient to be determined by matching. 
 
2.3  Matching and Inverse Transform 
 
     Eq. (7) is to be matched with the inner solution Eq. (3) by the method of asymptotic 
matching (Ref. 14).  With the aid of Ref. 15 for R→0, Eq. (7) reduces to 
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Comparing this expression with Eq. (3) gives 
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The inverse transform of Eq. (8) is 
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      This expression represents the far-field sound pressure radiated from the oscillating 
cylinder and is equivalent to the analytical solution of Eq. (2-69) in Ref. 4.  Since their 
solution was written with different notation and the present solution is only valid for a 
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small compactness ratio, λπ /2 a =ωCMC<< 1, where λ  is the acoustic wavelength, their 
solution is first cast in the form 
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where all quantities have been made dimensionless in accordance to the present notation, 

and the primes affixed to the Hankel function refer to differentiations.  )/()2(
0 crH ω′ in 

Ref. 4 has been replaced by the Hankel function of the first order )()2(
1 RH Cω− , and  iωε 

by CU .  Under the assumption of a small compactness ratio, the denominator becomes 

(Ref. 15) 
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With this expression given, one finds that Eq. (10) is equal to Eq. (9).  The last step is 
necessary, because the present method is valid for small compactness ratios. 
     For this simple example, the Fourier integrals can be determined analytically.  For 
more complicated cases, recourse to numerical methods, such as the discrete Fourier 
transform in Ref. 13, is necessary.  Therefore, an accurate evaluation of Fourier integrals 
is crucial.  In order to demonstrate this, we worked out numerically two Fourier integrals 
in Ref. 7 and then compared them with Crighton’s analytic expressions.  The agreement 
turned out to be rather good.  Details of this comparison will be given later. 
 
3. FORMULATION OF PROBLEM IN INNER REGION 
 
     Since the flow in the inner region is incompressible, its complex potential is 
 
 
 
  
 
where z = x + iy represents a field point in the flow field, zm = xm + iym  refers to the mid-
point in the surface vorticity element sm, whose vorticity strength per unit length is γm,  

and dsm  is the length of this element (Fig. 2).  The symbol zj  =  xj + iyj  refers to the 
location of  Γj.  The vorticity strengths γm and Γj  is defined to be positive when clockwise 
in accordance with Lewis’ convention.  The first group of terms refers to M surface 
vorticity elements of unknown strengths and the second group to N free vortices of given 
strengths.  The last term denotes the complex potential of the freestream velocity.  All 
quantities are dimensionless, which are defined in a similar manner as for Eq. (1).  The 
characteristic length here is the longitudinal length of the body L , and the characteristic 
velocity is the freestream velocity 0U . 
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     The derivative of W with respect to z gives the field velocity components u and v in 
the x- and y-direction as follows: 
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The free stream velocity is assumed to be always parallel to the x-direction.  Thus, the 
angle of attack of a body is the angle between the x-axis and the blade chord. 
     As the field point x and y approaches the surface point xm  and ym , Eqs. (12) reduce to 
Eq. (13).  The solution of this system determines the unknowns γm. 
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Here Kb(sn, sm ) and Kv(sn, sj ) are two influence coefficients representing the tangential 
velocity components at sn  induced by other vorticity elements and by free vortices 
respectively.  The symbol Rn  is the radius of curvature at sn  and θn  the tangential angle 
(Fig. 2).  The second term in the first equation accounts for the self-induced velocity of γn 
at element sn (Ref. 5). 
     Eqs. (13) are a system of M linear equations for M unknowns, which can be solved by 
any standard method.   The Gaussian elimination method was used for every example 
shown here. 
     With the quantities γm determined, the convective velocities for vortex Γk are known 
and are given by 
 
                      
 
For a system of N vortices, there are 2N such equations, whose solutions give the vortex 
trajectories. A second-order method is used for time evolution from t to t + ∆t. 
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    At each time step, uk and vk must be updated by solving Eqs. (12)-(14) anew.  The time 
step ∆t is generally determined by comparing two solutions, one obtained with ∆t and the 
other with ∆t/2.  If the agreement is reasonably good, the time step ∆t is chosen, 
otherwise the process continues.  It turned out that ∆t = 0.0125 was adequate for every 
case in this study and used for most of the computations here. 
      Lewis has cautioned that accuracy may deteriorate, if a vortex is located very near the 
surface.  Although this is not the case here, it is still useful to assess the accuracy.  The 
case to be tested is a 10% thick ellipse in a uniform stream parallel to the longitudinal 
axis with a stationary vortex situated near the surface.  Following the above procedures 
with a fixed vortex, a numerical solution was obtained.  With the aid of the Joukowski 
transformation, an exact solution is also available.  Shown in Fig. 3 is the comparison of 
surface velocity distribution between the exact and numerical solutions.  The agreement is 
seen to be good except near the trailing edge.  The accurate numerical result is mostly due 
to the dense distribution of surface elements (108 elements) and the accurate 
determination of slopes and curvatures.  The latter is possible, because the geometry is 
known analytically. 
 
3.1 Inner Solution and its Fourier Transform 
 
      Unlike an oscillating cylinder, which is always unsteady, the potential flow solution 
for body-vortex interaction involves a steady part.  This part can be neglected, because a 
steady motion generates no sound.  Therefore, only the unsteady part of the pressure will 
be considered.  This is accomplished by means of the linearized Bernoulli equation 
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where φ′ refers to the unsteady part of the velocity potential and D/Dt is the time rate of 
change in a coordinate system moving with the undisturbed fluid velocity.   
     For lifting bodies with temporal loading, vortices will be shed continuously.  There is 
a large number of mutually interacting vortices in the flow field, which are all similar. It 
is, therefore, possible to use one term to represent the entire group and Eq. (11) becomes 
 
 
 
  
where the symbol zct denotes the initial location of a vortex, which is either far upstream 
of the blade or immediately behind the trailing edge for a nascent vortex just being shed.  
This is invariant with time. The term  t + zct  refers to the position of a vortex at time t 
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convected by the freestream velocity U0 (U0=1) in the absence of the body and is 
“steady”.  The term z1 is the perturbed position of the vortex at time t  relative to the 
unperturbed position, t + zct.  Thus, only the terms γm and z1 in this equation are time-
dependent. 
     After excluding the steady part, Eq. (16) becomes 
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Expanding this equation for zm/z << 1, and z1/z << 1, and defining z = r exp(iθ), 
where θ is the angle of the receiver relative to the positive x-axis, and zm = δm × 
exp(iθm), one obtains 
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in which only the first order unsteady terms are retained.  This equation, as written, is 
valid for non-lifting bodies only, where the terms involving log r and θ are zero, 

because with no circulation around bodies  ∫∑ ∂∂=
=

dssds
M

m mm )/(
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φγ  = 0. 

     For lifting bodies the unsteady Kutta condition is imposed, resulting in vortex 
shedding and the cancellation of the singular terms involving log r and θ in Eq. (18).  
In an inviscid fluid the circulation must be conserved.  Thus, an incident vortex 
introduced in the upstream is accompanied by a vortex of opposite sense somewhere at 
infinity.  The same argument holds true for the bound circulation for an airfoil at an 
angle of attack.  In other words, Kelvin’s circulation theorem must be true for a large 
closed curve surrounding the whole system in the entire history of the motion.  It 
follows that the Kutta condition based on the conservation of total circulation for a 
single blade becomes 
 

Γb  + Γ1 +  k2  +  k3  +  …  =  Γb
(0)  + Γ1                                (19)   

  
In this equation, Γb

(0)  is the bound circulation of the blade under an angle of attack 
without the incident vortex and is a constant.  For a symmetric body without the angle 
of attack, Γb

(0)  is zero.  Γb is the bound circulation at a later time in the presence of 
vortices irrespective of the angle of attack, since induced velocities can create a local 
angle of attack.  Depending on positions of the incident vortex and the vortices in the 
wake, the value of Γb changes with time. For a single blade one vortex is shed after 
each computational step and is placed at a distance of ∆t/2 directly behind the trailing 
edge.  Thus, the symbols k2, k3, … refer to vortices shed sequentially in time.  Note 
that the quantity Γ1, the strength of the incident vortex, appears on both sides of the 
equation. 
     Although there is not a definitive form for the unsteady Kutta condition (Ref. 16), 
imposing it is still essential, so that the fluid leaves the trailing edge smoothly.  
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Obermeier (Ref. 17) used a similar form in solving the problem of rotor-vortex 
interaction.  The present form in Eq. (19) resembles, however, that for an oscillating 
airfoil given in Ref. 19.  This equation in conjunction with Wilkinson’s method 2 in 
Ref. 5 constitutes the constraint that the static pressures at two trailing elements at the 
upper and lower surfaces be equal. 
      As mentioned previously, there is a singularity in Eq. (18) for a lifting body.  This 
singularity can be removed by means of Eq. (19).  To this end, Eq. (18) is rewritten as 
follows with the shed vortices included. 
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After the Kutta condition is applied and the expansion performed, this equation 
reduces to 
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     By means of the linearized Bernoulli equation, the unsteady pressure due to the 
body-vortex interaction in the inner region becomes 
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where r and θ as before denote the radial distance and angle from the origin to the 
observer.  ∂γm/∂τ is the time rate of change of surface vorticity per unit length at a 
fixed point, while Dx1/Dτ, Dx2/Dτ, … are the total derivatives, the differences of 
vortex positions observed in a coordinate system moving at the freestream speed.  
Since the observer is stationary but vortices are in motion, r and θ will change with 
time, except those measured from the surface vorticity elements to the observer.  
However, owing to the fact that interactions become important only when vortices are 
near the blade, it is therefore assumed that these variable r’s and θ’s can be 
approximated by the fixed r and θ from the origin to the observer.  The error incurred 
in this approximation is small, since the present concern is with the far-field noise. 
     It is assumed that one vortex is shed from each trailing edge after each time step. 
Thus, there are two trails of wakes for a two-blade system.  However, there is only one 
equation for the system, i.e., Kelvin’s theorem.  Therefore, one additional equation is 
needed, but it is not obvious at present how to obtain this equation.  Under this 
circumstance, an assumption is made that Eq. (19) can be applied to each blade 
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independently.  At first glance, it appears that this procedure decouples two blades.  
Fortunately, the coupling still exists, except that it is now through the application of 
the Kutta condition.  Using Wilkinson’s method 2 to unload two trailing edges, one 
has to solve four equations from which two simultaneous equations result.  The 
unknowns in these two equations are Γb’s in Eq. (19), which are coupled.  A similar 
assumption can be made for three or more blades. In addition, a physical interpretation 
also may lend support to this assumption. When blades are far apart, it is reasonable to 
assume that vortex shedding of one blade is independent or nearly independent from 
other blades. Thus, Eq. (19) may be applied individually. As they move closer, this 
relationship is assumed to still maintain. 
     Applying the Fourier transformation to Eq. (21) gives the transformed pi′ 
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where M0 is the freestream Mach number and R = M0 r. 
 
4. OUTER SOLUTION, ASYMPTOTIC MATCHING, AND INVERSE 
TRANSFORM 
 
     The governing equation in the outer region is Eq. (4).  The solution of this equation 
is suggested by the inner solution and is assumed to be 
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where pm, p1s, p1c, p2s, p2c, ... are functions to be determined.  Substituting Eq. (23) into 
Eq.(4) and performing the Fourier transform result in a set of ordinary differential 
equations, all of which are of the form of Eq. (6), whose solutions for outgoing waves 
are the Hankel functions of the second kind.  Thus, Eq. (23) becomes  
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where Am, A1s, A1c ... are the unknown coefficients to be determined by matching.  For 
example, Am’s are the coefficients for the surface pressure fluctuations, A1s and A1c are 
for the moving vortex, and the remaining ones are for the shed vortices. 
     The steps for matching are the same as for the oscillating cylinder.  When this is 
done, Eq.(24) becomes 
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where k2, k3, ... refer to the strengths of shed vortices and are zero for non-lifting 
bodies.  This equation, after the inverse Fourier transform, yields the acoustic pressure 
in the far field 
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It represents the time history of the far-field sound pressure from the far upstream to 
the end of computation.  However, its value becomes appreciable only in the short 
interval when the vortex is near the body.  Outside of this range the medium is 
essentially silent.  This property of fast decay can also be seen in the linear theory of 
Howe (Ref. 19). 
 
4.1 Discrete Fourier Transform 
 
     At first glance, it appears to be uncertain whether the function in the inverse 
transform is absolutely integrable, since ωH1

(2)(ωR) in Eq. (25) approaches ω1/2 as ω 
→∞.  However, due to the fast decay vortex interaction terms, such as 
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ξξγ ξω de i
m

−
∞

∞−

∂∂∫ / , approach 1/ω2 at infinity.  The function as a whole is absolutely 

integrable.  The remaining work is to evaluate these integrals numerically by means of, 
say, the discrete Fourier transform. 
     In order to establish some confidence that the execution of the discrete Fourier 
transform as given in Ref. 13 is done correctly, Crighton’s solution in Ref. 7 is 
computed numerically.  The comparison is shown in Fig. 4 and the agreement is seen 
to be good.  In this figure, the scaling factor M1/2sin(θ/2)/rc r

1/2 for the acoustic 
potential in his Eq. (3.6) was not included and the value for rc r was chosen to be 15.0.  
The maximum value of the potential is at t = rc r and the decay is very slow.  This is in 
striking contrast with the vortex interaction of finite bodies, in which the sound 
pressure decays rapidly once the vortex passes the body. 
 
5. CASCADE-VORTEX INTERACTION 
 
5.1 Inner Solution 
 
     A cascade is an infinite array of similar blades and cannot in general be regarded as a 
compact body.  However, if one agrees to the viewpoint that the flow property of a single 
blade in a computational domain with appropriate periodic boundary conditions can 
represent that of a cascade, a cascade may then be considered to be compact.  Based on 
this assumption, an attempt may then be made to study sound generation of a cascade-
vortex interaction. 
     The complex potential for a series of vortices of equal strength placed uniformly at 
points z0 ± ikb along the y-axis is (Ref. 5 or 20) 
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     Upon substitution of  γmdsm  for Γ as was done for a single blade, the complex 
potential in the inner region of a cascade in a uniform stream together with a series of 
moving vortices of strength ΓS  at points zS ± ikb becomes 
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where the subscript i denotes the complex potential in the inner region.  Since there is 
only one vortex in each blade pitch, b refers also to the pitch of vortices. 
     This equation bears a close resemblance to Eq. (11).  Therefore, it is reasonable to 
expect that there is a counterpart of  Eq. (13) for a cascade, whose influence 
coefficients are 
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where most symbols have similar meanings as in Eq. (13).  In particular, KC 
corresponds Kb in Eq. (13) and Ks to Kv.  For more details, see Ref. 5 or 20.  The 
quantities γm and the vortex trajectories are determined in a similar manner as for a 
single blade. 
     The cascade blades are assumed to be lifting bodies and the Kutta condition has to 
be imposed.  This will result in arrays of shed vortices in wakes behind trailing edges.  
These terms must be added to Eq. (26) to form a complete system.  When this is done, 
the velocity potential becomes 
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where k2, k3, … refer to arrays of vortices shed at each computational step with the 
same pitch as for the blades.  In the limit of large |z| or |xi/x| <<1, where the subscript i 
denotes m, s, 2 or 3 ... in the above expression, Eq. (27) reduces to 
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     This equation is singular, since terms become arbitrarily large as y → ±∞.  To 
remove this singularity, recourse is made to the Kutta condition, which assumes a 
similar form as for a single blade 
 
                                        Γb  + ΓS +  k2  +  k3  +  …  =   Γb

(0)  + ΓS 

 
The notations in this equation are essentially the same as for a single blade, except that 
their meanings are slightly different. After the singularities are removed, Eq. (28) 
together with the linearized Bernoulli equation Eq. (5) gives 
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where p′i  denotes the perturbed pressure in the inner region.  The Fourier transform of 
this equation is  
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5.2 Outer Solution and Matching 
 

The acoustic equation in the outer region is given as 
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where X and Y are the rescaled coordinates, X = M0x and Y = M0y.  In view of the 
inner solution, which involves t and x only, the Y term in the above equation may be 
dropped resulting in a one-dimensional wave equation 
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This simplification is in agreement with our intuitive notion that the sound wave in the 
far field from an infinite array of blades should be independent of Y. 

     The Fourier transform of Eq. (30) gives 
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whose solution is  XieAp ω±=′0ˆ .  In the limit of x → 0, it becomes ≅′0p̂ A.  The 

quantity A may then be evaluated by matching with Eq. (29).  After this is done and 
the inverse Fourier transform is applied, the sound pressure in the far field becomes 
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     Under the assumption that changing the order of integration is permissible, this 
equation can be greatly simplified.  Using the second term as an example, one obtains 
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The subscript  t-M0 x  denotes the retarded time.  As seen, only the wave traveling in 
the positive x-direction is retained.  With this development, the above equation reduces 
to 
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     This is the final form of the first approximation for sound pressure of the cascade in 
the far field.  It propagates outward without distortion and with no diminution of 
amplitude except that the arriving time is somewhat delayed.  These are the 
characteristics of a one-dimensional wave.  The intensity is inversely proportional to 
the pitch.  

                 
6.  RESULTS AND DISCUSSION 
 
     Before presenting any results, it is worth making a comparison between a 
computation and an experiment.  Unfortunately, there is a scarcity of experimental data 
for this problem and it appears that only an order-of-magnitude comparison is possible.  
Booth’s data (Ref. 21) will be used here for comparison.  However, there is at least one 
major difference between the test and computation.  Vortices in his experiment either 
burst or split into fragments before reaching the blade. This condition cannot be 
simulated in the present computation and is likely to lead to a disagreement.  In 
addition, the measured pressure, on which the experimental sound production is based, 
included only 25% of the surface pressure fluctuation and neglected other sound 
producing mechanisms.  The acoustic field in Ref. 21 was evaluated in front of the 
blade, where the magnitude is very small.  This may be another source of the 
difference.  In spite of these discrepancies, a comparison may still be useful. 
     There were four different vortex trajectories recorded in Ref. 21 for the zero angle-
of-attack case.  The case of y/c = -0.219 was chosen for comparison, because the 
blade-to-vortex miss distance was the largest.  This value is equivalent to yv = -0.156 
in the computation, a distance of  0.156 chord lengths below the centerline.  The 
measured vortex strength was given as 0.49 m2/sec., which is equivalent to Γ = 0.524, 
a vortex of high intensity in an extremely low free stream.  For the convenience of 
comparison, the calculated dimensionless quantities have been converted to the 
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dimensional quantities in pascals and seconds as used in Ref. 21.  The area between 
two dashed curves represents approximately the range of test data in Booth’s Fig. 6b. 
     The predicted acoustic pressure shown in Fig. 5 consists of three parts: the unsteady 
surface pressure, the moving vortex and the wake.  Although the sound production by 
the wake is usually negligible, the application of the Kutta condition is still important, 
since without it the temporal variation of the surface pressure will not be correct.  No 
plot of the wake is given here, but it will be shown later in another example.  Its 
influence can, however, be seen in the insert in Fig. 5, where the vortex trajectory is 
bent slightly downward.  This bending was also mentioned in Ref. 17.  For various 
reasons mentioned above, the comparison in Fig. 5 can only be considered as an order-
of-magnitude comparison.   
 
6.1 Single Blade 
 
     After this digression, we now return to the main concern with vortex interaction.  
Shown in Figs. 6 and 7 are four examples of one incident vortex interacting with a 
symmetric blade (NACA 0012).  These interactions, though simple, play an important 
role as interferences and more complex cases are to be examined.  For this reason, 
some explanations are in order. 
     The observer in both figures is directly above the blade at a distance of 50 chord 
lengths from the leading edge, which is the origin of the coordinate system, and at 90° 
from the positive x-axis (r = 50 and θ = π/2).  The freestream Mach number M0 is 0.2.  
(Except as stated, r = 50, θ = π/2 and M0 = 0.2 for every computation henceforth.)  The 
initial position of the vortex is 5 chord lengths upstream of the leading edge in the x-
direction and ±0.1 chord lengths in the y-direction (xv = -0.5 and yv = ±0.1).  The sense 
of the vortex is either positive or negative (positive when clockwise in accordance with 
Lewis’ convention).  The vortex passes above the blade in Figs. 6 and below the blade 
in Figs. 7.  
     The sound pressure in Fig. 6a is caused by a counter-clockwise rotating vortex.  If its 
sense is reversed with all other parameters remaining unchanged, the sign of the sound 
pressure also will be reversed and the magnitude will be slightly higher.  In addition, the 
vortex trajectory and the vortex-to-blade miss distance are somewhat different (Fig. 6b).  
These variations are due to the different manners that an incident vortex interacts with the 
blade.  It is said that a vortex produces sound mainly when it cuts across base flow 
streamlines near an edge (see, for example, Howe or Ref. 11).  
     In computations with lifting bodies, wakes always occur due to the local angles of 
attack brought about by the induced velocities even though blades are parallel to the 
freestream.  Thus, in the examples of Figs 6 and 7 a part of the solution is the trail of shed 
vortices (wake), but this is not shown in the above figures because of the limited space.  
An example of the wake pattern, however, will be given in Fig.14b. 
     Figs. 7 depicts two examples for the vortex passing below the blade.  The acoustic 
pressure in Fig. 7a is equal to that in Fig. 6b, except the sign.  From the viewpoint of 
noise attenuation, this property of sign reversal is significant and will be exploited 
later.  Since the body is symmetric, this case is equivalent to the case of a clockwise 
rotating vortex passing above the blade with the observer below the body.  By the same 
token, the acoustic pressure in Fig. 7b is a counterpart of Fig. 6a. 
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     To present a more complete picture, the directivity pattern for Fig.6a is shown in 
Fig. 8a and is seen to be akin to that of a dipole.  The patterns for others in Figs. 6-7 
are similar and will not be given.  The directivities here are the standard polar 
diagrams with the rms pressures as the radial distances.  The sample time for the root 
mean square is somewhat arbitrary and was taken to be the range where the sound 
pressure is visually discernible.  The origin of the coordinates is at the leading edge of 
the blade or at the leading edge of the upper blade, if two blades are present.  The 
maximums in Fig. 8a occur at θ = π/2 and 3π/2.  The former corresponds to the 
observer’s position in Figs. 6a.  
     Knowing the occurrence of sound pressure of opposite signs, one can take 
advantage of this property to reduce noise.  In an ideal situation such as that in Fig. 9a, 
the cancellation is complete and sound is absent.  Normally even if there is no sound 
produced by the surface, the wake, if it exists, can still generate sound of very low 
intensity.  In this case of total destructive interference, the Kutta condition is 
automatically satisfied and there is no wake.  For this reason, the directivity is also 
zero. 
     For the complete destruction to occur, the blade has to be symmetric, and vortices 
are of equal magnitude, opposite sense and at an equal distance from the blade.  They 
also must pass the blade concurrently.  The last condition of concurrent arrival is a 
very stringent requirement.  In other words, the initial positions of these two vortices 
must be equal horizontally.  If instead of two isolated vortices, there are two streams of 
closely packed vortices, some of them will probably arrive almost concurrently.  
     Two vortex paths in Fig. 9a are symmetric with respect to the blade.  This is 
desirable but is not essential.  For instance, the noise attenuation in Fig. 9b is still 
substantial, even though the lower vortex path in Fig. 9b is 1.5 times farther from the 
chord than the upper path.  In comparison with a single vortex in Fig. 6a, the overall 
noise intensity is lower and the corresponding directivity in Fig. 8b is also considerably 
smaller.  
     Thus far the strengths of both vortices are equal.  This need not be the case as 
shown in Fig. 10a, in which the vortex paths are not symmetric, the strengths are not 
equal and yet the noise is lower. 
     The above are three examples with two incident vortices, one on each side.  In the 
following, examples are given with both vortices on the same side of the blade.  This is 
to demonstrate that the primary reason of noise attenuation is the presence of a pair of 
vortices of opposite sense as in Fig. 10b.  Notice that the induced velocities by vortices 
on themselves are in the opposite direction of the free stream.  Thus, the arrival time at 
the blade is delayed, which is reflected by the longer time for the peak pressure to 
appear.  The converse also is true.  In this case, the signals will be somewhat clustered. 
     Two more examples will be presented for a single blade.  One is the case that the 
blade is at an angle of attack of 5°.  The attenuation in Fig. 11a is considerable.  This is 
mainly due to the small separation distance between two vortices and not to the angle 
of attack.  If this distance decreases further, destructive interference also will be larger. 
The second case is shown in Fig. 11b, where a pair of vortices of same sense is 
convected by the free stream while rotating about their centroid.  Based on the 
previous assumption that attenuation is the result of two vortices of opposite sense, one 
may anticipate a twofold increase in noise in Fig. 11b as compared with Fig. 6a.  This 
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is, however, not the case.  The reason may be that the blade-vortex interaction for a 
rotating pair is sufficiently complex that cannot be explained by the simple addition.  
The evidence here and elsewhere indicates that a pair of rotating vortices acts 
somewhat like a single vortex as far as sound production is concerned. Note that a pair 
of spinning vortices without any blade will also produce sound (Ref. 6). However, its 
intensity is very low and cannot be easily discerned in this figure. 
 
6.2 Two or More Blades 
 
     Since the present method is not limited to a single body, attention is now directed to 
vortex interactions involving two or more blades with two or more incident vortices.  
One example in this group is a pair of stacked blades somewhat like a two-dimensional 
inlet with a single vortex moving through the passage as in Fig. 12a.  The separation 
distance between two blades is sufficiently large, so that the blade-to-blade influence is 
relatively small.  The resulting sound pressure is, therefore, similar to that of Fig. 7a 
for a single blade.  Note that two blades parallel to a uniform stream in the absence of 
incident vortices can still induce circulation on each other, but the total strength of 
circulations is zero in accordance with Kelvin’s theorem. 
     Although the directivity pattern for this case, if plotted, is similar to Fig. 8a, a 
radical change can take place, if another vortex is introduced.  For instance, the sound 
pressure in Fig. 12b received at θ = π/2 is nearly zero.  At first glance, one may think 
that this is a case of complete destructive interference.  This is, however, not the case 
after seeing the directivity diagram in Fig. 8c.  The overall intensity is actually 
increased but the directivity pattern has rotated 90° with the minimums in the vertical 
direction where the signal is received.  Attenuation is still possible by simply shifting 
the lower vortex upward as illustrated in Fig. 13a.  Although the magnitude of sound 
pressure in this figure is not too much smaller than others, the overall intensity is lower 
as can be seen by comparing the directivity of Fig. 8c with that of Fig. 8d.  The latter is 
the directivity pattern for Fig. 13a.  Moreover, the configuration in Fig. 8d is rotated 
and the mid-section is bulged out.  The direction of maximum sound intensity is, 
therefore, different.  The lower vortex in this case interacts with both blades, since it 
passes through almost the middle of the passageway.  This likely is the underlying 
mechanism of attenuation.  In order to see this effect, the sound pressures from both 
blades are plotted separately in Fig. 13b.  In this figure, the extent of attenuation, 
though not large, can clearly be seen.  Note also that for the purpose of attenuation the 
precise position of the lower vortex is not critical, as long as it falls within a certain 
range. 
     A further reduction of sound generation is possible, if two blades form a divergent-
like “channel” as in Fig. 14a.  The geometry of the blades is the same as before, except  
the outward rotations of 5°.  The upstream positions for two incident vortices in this 
case are also the same as in Fig. 13a.  Since two blades rotate outward and the vortex-
to-blade miss distances become larger, reduction in sound intensity is expected.  The 
extent of reduction as shown in Fig. 15a is, however, not foreseen. 
     Before proceeding any further, it is time to include a snapshot of the wake 
formation behind the blades.  As mentioned previously, the Kutta condition is imposed 
in computations with lifting bodies.  Therefore, wakes, though not plotted, are a part of 
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solutions.  The configuration in Fig. 14b should be a part of the insert in Fig.14a, if 
more space is available.  The two blades in Fig.14b correspond to the blades in the 
insert of Fig. 14a.  In the present formulation and for the convenience of bookkeeping, 
one vortex is shed from each trailing edge at every time step regardless of its strength.  
For instance, when the incident vortex is far from the body, the circulation around a 
large closed curve is essentially invariant, and yet the Kutta condition is still applied 
and vortices are still shed.  The strengths of these vortices are nearly zero, which 
manifest as straight lines in Fig. 14b.  Only the curved portions are created while 
vortices pass near the blades and contain significant vorticities. 
     As anticipated, a pair of like-signed vortices convected through an inlet-like 
passage will cause the noise level to increase as indicated in Fig. 16a and the 
accompanied directivity plot in Fig. 15b.  Although a similar technique as in Fig. 13a 
can be used to reduce noise level by lifting the lower vortex trajectory upward, the 
underlying mechanism appears to be different. With two vortices of same sense, each 
will rotate about the centroid with a constant speed.  The end result is to cause vortices 
moving away from the blades and, therefore, to lessen sound production.  Thus, as 
long as there are two vortices in the passage, a judicious arrangement of their positions 
can promote destructive interference. 
     In Section 6.1, two examples were given to demonstrate that: (a) sound production 
is not affected materially by the angle of attack (Fig. 11a), and (b) a pair of rotating 
vortices acts more like a single vortex than two separate vortices (Fig. 11b).  These 
properties are found to be essentially valid for two stacked blades.  
     In the preceding examples, the separation distance between two blades was fixed to 
be of one chord length.  Change of this distance is expected to have an effect on sound 
production.  However, a decrease of this distance by a moderate amount does not seem 
to have much effect on the noise intensity or the directivity pattern (Figs. 16b and 15c), 
while an increase by a similar amount proportionally elevates the intensity 
substantially (Figs. 17a and 15d).  The reason appears to be that as the separation 
distance increases, sound production from the upper blade and from the lower blade 
becomes essentially additive with little coupling between them, and the intensity 
becomes higher.  As the distance reduces, the coupling increases, more attenuation 
results and the intensity becomes lower.  Note that the observer’s position in Figs. 16b 
and 17a  is at θ = 45°, so that the received sound pressure is not zero.  If it were 90°, 
sound pressure will be zero as in the case of Fig. 12b.  
     Although the separation distance does not have a major effect on sound production, 
staggering (two leading edges are not aligned vertically) does.  This is somewhat 
equivalent to the non-concurrent arrival of two vortices.  Thus, the more it is 
staggered, the higher is the sound. The effect of staggering is shown in Fig. 17b.  In 
view of its directivity pattern in Fig. 18a, the noise intensity has been greatly increased.  
Note that the receding distance of the lower blade is relatively small and equals 0.25 
chord lengths.  There are two methods to bring down noise in this case.  One is the 
usual procedure of repositioning vortices to attenuate sound generation.  This method 
will not be repeated here.  The other is to reduce the size of the lower blade.  The 
reduction in noise is only moderate and is shown in Figs. 18b and 19a. 
     As the observer moves farther away from the interaction, the received sound is 
expected to decrease.  The relationship is not exactly linear as can be seen in Eqs. (10) 
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and (25).  In order to see this effect, Fig. 19b is included in which the observer is 100 
chord lengths from the origin as opposed to the usual distance of 50 chord lengths with 
all other parameters unchanged.   
     Next consideration is given to the case of three vortices interacting with 3 stacked 
blades (Fig. 20b).  In order to see the difference between this configuration and the 
corresponding case of two blades, Fig. 20a is first calculated, whose directivity pattern 
is in Fig. 18c.  Both the size and shape of this pattern are seen to be somewhat similar 
to those in Fig. 15b.  This seems to be reasonable, since in these two cases the 
strengths of vortices are equal, they are all negative and the vortex-to-blade miss 
distances are nearly equal, although the dispositions of vortices are different.  The case 
of 3 blades in Fig. 20b is merely an extension of Fig. 20a as is evident by comparing 
these two figures.  The unsettled question is whether its acoustic characteristics will 
approach asymptotically to that of a linear cascade as the number of stacked blades 
increases. 
 
6.3 Nonlifting Bodies 
   
     In all previous cases, only lifting bodies have been studied.  It would be of interest 
to give two examples corresponding to two previous cases but with nonlifting bodies. 
In these cases there will not be any wake and there is no need to impose the Kutta 
condition.  However, it was found that the calculated circulation around the body, 
though small, was not in general zero.  This discrepancy has to be removed, because if 
the circulation is not zero, the singularity in Eq. (18) will prevail, which will then have 
an adverse effect on the sound production.  In order to impose this zero circulation 
condition, a procedure similar to Wilkinson’s method 2 for the Kutta condition was 
employed.  
    The first example is similar to Fig. 6a and is shown in Fig. 21a.  It is interesting to 
note that there is no high peak in the sound production and the overall intensity is 
considerably lower than that in Fig. 6a.  The sound pressure distribution is seen to be 
antisymmetric with respect to the mid-point. This is likely due to the symmetry of the 
body. The second example is a counterpart of Fig. 10b.  Here the destructive 
interference is obvious and is more effective than that for a  lifting body.  In view of 
these two examples, it seems to indicate that if a lifting body can be replaced by a 
nonlifting body, the noise production by vortex interaction will be markedly lower.  
Although not evident, the geometry of this non-lifting body bears similarity to an 
NACA-0012 airfoil in the sense that it is essentially formed by two front halves of the 
airfoil.  Its thickness is also approximately equal to 12% of the length.  Thus, a large 
decrease in noise production by non-lifting bodies is likely due to the absence of the 
trailing edge. 
 
7.  CONCLUSION 
 
    The results of this study may be summarized as follows: (a) In the section of method 
validation, it is shown explicitly that the method of matched asymptotic expansions is 
a viable method for analyzing sound generation.  (b) A procedure is devised to 
examine the interaction of multiple bodies with multiple vortices.  (c) Under various 
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conditions, it is demonstrated that destructive interference is a possible mechanism for 
suppressing noise production.  (d) A solution to sound generation by cascade-vortex 
interaction is given.  (e) Based on numerical results, it appears that sound generation 
by vortex interaction with nonlifting bodies is much lower than that with lifting bodies.        
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Figure 1.—Cylinder oscillating in the x-direction.
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Figure 3.—Velocity distribution on upper surface of a thin ellipse in a uniform stream
   with an external vortex. Thickness to chord ration = 0.1; angle of attack = 0;             ,
   exact solution; +, numerical solution;    , vortex location.*
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Figure 4.—Numerical evaluation of Fourier integrals compared with Crighton's
   analytic solution of acoustic potential.             , analytic; +, numerical.
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Figure 5.—Comparison of calculated acoustic pressure (the solid line) with Booth's experi-
   mental data. Observer's distance = 100 chord lengths; angle of attack = 0. Booth's test
   data of four different blade positions fall approximately in the area between two dashed
   lines.
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Figure 6.—Time history of sound generation by an NACA-0012 airfoil with a vortex
   passing above. xv = –5.0, yv = 0.1:  (a) � = –0.1, (b) � = 0.1.
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Figure 7.—Time history of sound generation by an NACA-0012 airfoil with a vortex
   passing below. xv = –5.0, yv = –0.1:  (a) � = –0.1, (b) � = 0.1.
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(c)

Figure 8.—Directivity for:  (a) Fig. 6a; (b) Fig. 9b; (c) Fig. 12b; (d) Fig. 13a. 
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Figure 9.—Time history of acoustic interference. (a) Complete destruction:  � = –0.1,
   xv = –5.0, yv = 0.1; � = 0.1, xv = –5.0, yv = –0.1. (b) Partial destruction:  � = –0.1,
   xv = –5.0, yv = 0.1; � = 0.1, xv = –5.0, yv = –0.15.
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Figure 10.—Time history of acoustic interference. (a) Partial destructive interference:
   � = –0.1, xv = –5.0, yv = 0.1; � = 0.085, xv = –5.0, yv = –0.15. (b) Partial destructive
   interferenced:  � = –0.1, xv = –5.0, yv = 0.1; � = 0.1, xv = –5.0, yv = 0.2.
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Figure 11.—Time history of acoustic interference. (a) Partial destructive interference with
   angle of attack = 5°:  � = 0.1, xv = –5.0, yv = 0.03; � = –0.1, xv = –5.0, yv = 0.12. (b) Con-
   structive interferenced:  � = –0.1, xv = –5.0, yv = 0.1; � = –0.1, xv = –5.0, yv = 0.18.
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Figure 12.—Time history of sound generation by two stacked NACA-0012 blades.
   (a) One incident vortex; � = –0.1, xv = –5.0, yv = –0.12. (b) Two incident vortices;
   � = –0.1, xv = –5.0, yv = –0.12; � = 0.1, xv = –5.0, yv = –0.88.
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Figure 13.—Decomposition of acoustic pressure:  � = –0.1, xv = –5.0, yv = –0.12; � = 0.1,
   xv = –5.0, yv = –0.72. (a) Acoustic pressure of the entire system. (b)            , acoustic
   pressure from the lower blade;           , acoustic pressure from the upper blade.
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Figure 14.—Acoustic pressure and wakes:  � = –0.1, xv = –5.0, yv = –0.12; � = 0.1,
   xv = –5.0, yv = –0.72. (a) Time history of acoustic pressure from two divergent
   NACA-0012 blades of 5°. (b) A snapshot of wakes.
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Figure 15.—Directivity for:  (a) Fig. 14a; (b) Fig. 16a; (c) Fig. 16b; (d) Fig. 17a. 
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Figure 16.—Two examples of acoustic interference. (a) Two same-sense vortices:
   � = –0.1, xv = –5.0, yv = –0.12; � = –0.1, xv = –5.0, yv = –0.88. (b) Two opposite
   sense vortices; gap between blades = 0.75 chord lengths; observer's angle = 45°;
   � = –0.1, xv = –5.0, yv = –0.12; � = 0.1, xv = –5.0, yv = –0.63.
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Figure 17.—Two additional examples of acoustic interference. (a) Conditions similar to
   Fig. 16b, except gap between blades = 1.35 chord lengths, and yv = –1.23 instead of
   –0.63. (b) Conditions identical to Fig. 16b, except that two blades are staggered.
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Figure 18.—Directivity for:  (a) Fig. 17b; (b) Fig. 19a; (c) Fig. 20a; (d) Fig. 20b. 
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Figure 19.—Time history of acoustic pressure for two different observer's distances.
   (a) Two staggered blades with a smaller lower blade; observer's distance = 50 chord
   lengths; � = –0.1, xv = –5.0, yv = –0.12; � = 0.1, xv = –5.0, yv = –0.63. (b) Conditions
   identical to (a) except observed's distance = 100 chord lengths.
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Figure 20.—Comparison of acoustic pressures between two and three stacked blades.
   (a) Gap between blades = 0.75 chord lengths; � = –0.1, xv = –5.0, yv = 0.12; � = –0.1,
   xv = –5.0, yv = –0.63. (b) Gap between blades = 0.75 chord lengths; � = –0.1, xv = –5.0,
   yv = 0.12; � = –0.1, xv = –5.0, yv = –0.63; � = –0.1, xv = –5.0, yv = –0.87.
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Figure 21.—Time history of acoustic pressure from non-lifting bodies. (a) � = –0.1,
   xv = –5.0, yv = 0.1. (b) � = –0.1, xv = –5.0, yv = 0.1; � = 0.1, xv = –5.0, yv = 0.2.
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