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A Very High Order, Adaptable MESA Implementation for
Aeroacoustic Computations

Rodger W. Dyson and John W. Goodrich
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Since computational cfficiency and wave resolution scale with accuracy, the ideal would
be infinitely high accuracy for problems with widely varying wavelength scales. Currently,
many of the computational acroacoustics methods are limited to 4** order accurate Runge-
Kutta methods in time which limits their resolution and cfficiency. However, a new proce-
durc for implementing the Modified Expansion Solution Approximation (MESA) schemes,
based upon Hermitian divided differences, is presented which extends the effective accuracy
of the MESA schemes to 57" order in space and time when using 128 bit floating point
precision. This new approach has the advantages of reducing round-off error, being casy
to program, and is more computationally efficient when compared to previous approaches.
Its accuracy is limited only by the floating point hardware. The advantages of this new
approach arc demonstrated by solving the linecarized Euler equations in an open bi-periodic
domain. A 500" order MESA scheme can now be ereated in seconds, making these schemes
ideally suited for the next generation of high performance 256-bit (double quadruple) or
higher precision computers. This case of creation makes it possible to adapt the algorithm
to the mesh in time instead of its converse; this is ideal for resolving varying wavelength
scales which occur in noisc gencration simulations. And finally, the sources of round-off
crror which effect the very high order methods are examined and remedies provided that
cffectively increase the accuracy of the MESA schemes while using current computer tech-
nology.

1 Introduction

Predicting the sources of jet noise requires computational methods that arc orders of magnitude
more cfficient and that provide very high resolution. This is accomplished numerically with very
high accuracy, adaptable, cxplicit methods whose benefits arc as follows:

e High accuracy methods arc more cfficient and provide fincr resolution of the physics [5];

e Adaptable methods can adjust their accuracy to resolve steep gradients while avoiding the
complexitics of mesh adaptation;

e And, explicit methods permit highly parallel/scalable computations by minimizing inter-
processor communication [4].

The proposed approach cnables the MESA schemes [5] to accomplish those objectives by mak-
ing them simple to program, adapt, and compile while simultancously reducing floating point
opcrations and round-off crror.

MESA schemes can be viewed as a multidimensional, higher order extension of Lax-Wendroff
schemes that incorporate more of the physics (via cross-derivative information) necessary to more
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accurately propagate waves along their characteristic surfaces. The MESA schemes require es-
sentially two procedures; a spatial interpolation followed by a time advance. Previously, the
sccond step was implemented using a recursive definition [4] which enabled arbitrarily high ac-
curacy in time. However, the spatial interpolation step required computer algebra [3] for the
symbolic creation of one-dimensional interpolants, cffectively limiting the accuracy of MESA
schemes to 29" order because of the computational complexity in producing its symbolic form.
This final limitation is removed in this work by replacing the one-dimensional symbolic in-
terpolant with a simple and cfficient form of the Hermitian divided difference interpolant. A
key finding of this paper is that all the spatial derivatives of a Hermitian divided difference
intcrpolant, at the midpoint of a two-point, multidimensional stencil, have a simple algebraic
cxpression which eliminates the need for computer algebra tools. Since small stencils have many
advantages [7] such as better resolution and casc of boundary implementations, using this new
form of Hermitian divided differences with two-point Hermitian MESA schemes would appear
idcal.

Divided differences have been used to interpolate data for many years dating back to Isaac
Newton, [11] and [2]. With the advent of digital computers, divided differences have been re-
placed by splines since polynomial interpolations tend to oscillate at higher orders. In addition,
Hermitian methods have not been extensively used due to the difficulty of obtaining the deriva-
tives of the function being approximated [14]. However, in this work, polynomial oscillations
arc climinated since only a single interval is used and the derivatives of the function at the end-
points of this interval arc completely prescribed. Also, round-off error is reduced for high-order
interpolations since guard digits arc introduced into the tableau [13]. And Hermitian divided
difference interpolations coincidentally use the same data found in the stencil of a 2% s+ 1 order
MESA scheme (f, ()J;(;) IO 0()]; (). For these reasons, Hermitian (Birkhoff [10]) divided

Hz2 ° :
differences arc used to grc?;% advantage here.

This paper first describes the new approach to spatial interpolation in onc-dimension and
then extends it to 2 x 2 Hermitian stencils. Next, the lincarized Euler cquations are solved in
a bi-periodic open domain by applying this new interpolation method to the MESA schemes.
The crror and cfficiency of the new approach is then compared with the previously best known
approach. And finally, various techniques are shown for improving the cffective accuracy of very

high order methods (> 30) when computer precision is limited.

2 Two-Point One-Dimensional Hermitian Divided-Difference
Interpolation

We will now provide an overview of Newton’s interpolation method based upon divided differ-
cnees.
Let 2;:4=0,1,..., n be any (n+1) distinet points of [a.b] and let f be a differentiable

function, C%a, b]. The cocfficient of 2™ in the polynomial p € P, that satisfics the conditions

Op(xi) _ Of(zi)
dr Oz

is defined to be a divided difference of order n [13]. These divided differences, once deter-
mined, completely define the spatial interpolant satisfying cquation 1.

A convenient mnemonic cormmonly used to determine the divided differences is shown in
figure 3 and is referred to as a divided difference tablecau. In this figure is the tablcau for
a fifth order onc-dimensional interpolant. When Hermitian data (the data and their spatial
derivatives) arc used for interpolation [13], the tableau is formed by inscrting all the known data
into cach column of the tablcau as shown in figure 4 for the casc of a two-point Hermitian stencil
with three data clements per grid point (f(z,v). fo (2, ), fez(z,9)). In general, for a two-point

i=0,1,....n, (1)
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Figure 1: Two Point Onec-Dimensional Stencil
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Figure 2: Two Point Two-Dimensional Stencil

Hermitian stencil in which the data: f(z,v), fo(2,9), foe(2,9), - -, W is known at both
grid points (x=x¢ and x=x) in figurc 1, the following procedurc will correctly place this data

into the tablcau.

J (@)

PO v s 101= P45 g0, 0.3 @

!

Dol Do[Q[i. j] =

With this initial data inscrted into the tablecau and the distance between both points defined
by Ah, the rest of the tableau is constructed using [2]:

(o0
Q1.1
Q10 (2
21 Q3.3
2.0 (3 Q11
(231 1,3 Qs.5
(3.0 1,2 5.1
Q11 05,3
Q1,0 5,2
5.1
5.0

Figurc 3: Divided-Difference Tableau for ¢202 MESA scheme
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Figurc 4: Loaded Divided-Difference Tableau for c202 MESA scheme, X-Direction

Qg —1]- Q[ — 1,5 — 1))
Ah
And with this tablcau, the interpolating Hermitian polynomial on a Hermitian stencil with
two points and s+ 1 data clements (primitive variable and its spatial derivatives) per grid point
may be evaluated with Newton’s interpolatory divided difference formula [2]:

DolDolQfi. 4] =

Adi— s, i), {i,s+1,2% s + 1}]; (3)

2% (s+1)—1 i—1
foy="> QG ][@—-=z) 4)
i—0 j—0
which may be rewritten as:
s 2(s+1)—1
f@) = 0G0 —2)+ Y QU@ —z0) (& —z) T (5)
i—0 i—s+1

Hermitian MESA schemes require evaluating this polynomial at the center of cach stencil
to interpolate the solution data and their spatial derivatives. In the gencral case in which a
MESA scheme of arbitrary accuracy is used, the spatial derivatives of equation 4 become very
complicated and require computer algebra tools for their solution. This limits the accuracy and
adaptability of these methods.

For cxample, a 49" order MESA scheme in onc-dimension requires 25 data clements per grid
point. But to time advance all those clements requires determining the derivatives of equation 4
up to the 501 order. The product terms in that cquation will double after cach differentiation
by the product rule of differentiation; this produces cquations with approximately 2°0 ~ 10'6
terms. Besides quickly exhausting memory resources of most computers, this also takes too
much time to calculate and makes it difficult to modify the accuracy of the numerical scheme
in rcal time to accommodate steep gradicnts.

Fortunately, by using a two-point stencil and a reformulation of cquation 5, it is possible to
cfficiently calculate all the necessary spatial derivatives without the use of computer algebra.

3 Fundamental Result: Direct Interpolation of Spatial Deriva-
tives at Center of Two Point Hermitian Stencil
A 2xs+1 order Hermitian MESA scheme (labeled c20s) will contain (s+1),(s+1)2, or (s+1)° data

clements per grid point for cach primitive variable in one, two, or three-dimensions respectively.
The MESA scheme requires all these data clements to be advanced in time. Accomplishing this
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requires interpolating 2(s+1),4(s+1)?, or 8(s+ 1) spatial derivatives at the center of the stencil
for cach primitive variable in onec, two, or three spatial dimensions respectively. Each of those
interpolations normally requires evaluating the derivative of equation 4 at & = 0. Because of the
product term in this equation, higher order derivatives of this equation become complicated, as
mentioned. However, the following main result of this paper provides an alternative formulation
for the interpolation of the spatial derivatives at the center of a two-point Hermitian stencil.

2(s+1)—1

de fg = > 3! e
I =Y et ()t Y 00ZG s dnsea)] ©

i=dz i=s+1
where Z is defined as:
: & dz! (s41—7) (i—(s41)—datr) p. (;
Z(i,s,dz, x9, 1) = Z W (—x0) (—z1) Py(i,s,dz, ) Py(s,7)
— Tz —7)lr!
(M)

with P; and Ps defined as:

de—1—7r
Py (i,s,dz,r) = H [f—(s+1)—¢] (8)
e—0
and )
r—
Py(s,r) = J[ s +1—4] 9)
k=0
;respectively.
This form can be rewritten as :
dx _ 2s+1
% = ;w Q. ) coef (i, dz) (10)

where the function cocf(i,dx) is predefined as:

Do[Do[coef[i,dz] = (i_li!dw)!(—wo)(i_m), {i,dz, s}], {dz, 0, (2s + 1)}]
DolDo|
coefli,dz] =

Zfio[ﬁ(_wo)(yd_r)(—wl)(i_s_l_dwh’) N (11)

Product[(i —s —1—e),{e,0,de — 1 —r}] =
Product[(s + 1 — k), {k,0,7 — 1}]]
Ad, s+ 1,25 + 11, {dz, 0, (25 + 1) }];

The function cocf(i,dx) in cquation 10 is independent of space and time and needs computed
only once. Thereafter only the divided difference terms Q(i,1) must be evaluated for cach stencil
at cach time step using equation 3.

4 Cost Comparison

As mentioned, this new approach climinates the need for using computer algebra to produce
high order MESA schemes; this reduces the initial cost of programming the MESA schemes and
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increascs its possible accuracy and adaptability. In addition, another unanticipated benefit of
this new approach is fewer floating point opcrations arc required as compared to the best previous
approaches. For example, the total cost to cvaluate all of the spatial derivatives required in a
2% s + 1 order MESA scheme (c20s) is the sum of the cost to compute the divided difference

terms, s, using cquation 3 and the cost of cvaluating all of the spatial derivatives (%)
using equation 10. Therefore the total cost of the new approach is:
((1+8)2) + (3455 +25%) =4+ Ts + 3> (12)

multiplications.

In the previously best known procedure [4], in which computer algebra is used to generate
the one-dimensional interpolant, cach spatial derivative required at most 2s 4+ 2 multiplications,
and there were 2s + 2 terms to be evaluated in one dimension resulting in a total cost of:

(25 +2)2 =4+ 8s + 45> (13)

multiplications.
Thercfore the new Hermitian (Birkhoff) divided difference form requires

5487 (14)

fewer multiplications. However, the assumption that calculating cach spatial derivative under
the old approach required 2s + 2 operations is an upper limit and in practice certain algebraic
canccellations may reduce that number. At higher accuracy this upper limit is more likely since
the equations become large and cancellations arc more difficult.

5 Two-Point Two-Dimensional Hermitian Divided-Difference
Interpolation

It is necessary to perforim a multidimensional interpolation for the MESA schemes in two and
three dimensions. While this could possibly be accomplished using other multidimensional
divided difference techniques [12], we will use the tensor product approach as in Dyson [4] since
this permits a detailed comparison of the new and old approaches.

5.1 Tensor Product Approach Overview

The tensor product approach interpolates all the spatial derivatives required for the MESA
schemes by performing a series of one-dimensional intcrpolations [4]. Each one-dimensional
interpolation requires a new divided difference tableau to be generated using equation 3. A sct
of onc-dimensional interpolations is first performed in the x-direction to interpolate the data

Hiti
%ﬁ;f’”)w 1 =0,1,...,8, and j = 0,1,2,....2*%s+ 1 at y = yo and y = y;. And then,
by interpolating in the y-direction using only these interpolated values, the following terms arce

found:

NI f(x =0,y =0)
Oxtyd

Vij:i,j=0,1,2,...,2%s+1 (15)

using the coordinate system in figure 2. These terms arc required for time advancing all the
data on cach grid point, namecly:

O f(z,y)

Sy Vijii,j=0,1.2,...,s (16)
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at grid points (2o, y0), (o, y1). (z1,Y0), and (z1,y1) as shown in figure 2.

This tensor product procedurce is extensible to any size stencil, but the Hermitian divided
diffcrence one-dimensional interpolation as developed in this paper is limited to two-point inter-
polations.

5.2 Fifth Order Two-Dimensional Interpolation Example

The combination of onc-dimensional two-point Hermitian divided difference interpolation with
multidimensional tensor product extensions is best understood with a simple example. We will
completely describe the process required to interpolate the data on a two point two-dimensional
stencil shown in figure 2 for the 5** order MESA scheme, ¢202.

The ¢202 MESA scheme in two dimensions, will contain the data: f, fy, feas fus foer foaes
fuys fyyzs fyyez at all four grid point locations as shown in figure 2 for cach primitive variable
(pressure, u-velocity, v-velocity). Using those 36 picees of information for cach primitive variable,
the two-dimensional spatial interpolant of the form:

5 5

Flay) =3 cfli 'y’ (17)

i—0 50
is created by finding the values of the ¢f (i, j) cocflicients where
flad)

ity

cf(i,j) = (18)

These cocflicients are found by first performing one-dimensional interpolations of the form:

5
flo)y =) cf()a’ (19)
i—0
where " ‘
S @=0y) _ Off(x=0,y) (1
SO =" =g - (20)
By ICtting f(X) in Cquation 19 be GClaCCd by f(.%’)~ fZI (’T)~ and fyy(w)v rCSpCCtiVCb’, then
L PO =0y1 _ ) f@=0) (1
cf(i) = Oyd O Or' Oy (ﬁ) (21)

Thus, it is possible to interpolate all the values, cf(i) for j=0,1, and 2 at the location
(z = 0,y = yo) shown in figurc 2 using the threc one-dimensional interpolants of the form
of cquation 19. This is repeated for the cf(i) values at the location (x = 0,y = yy) for cach j=0,
1, and 2 for a total of six onc-dimensional interpolations.

At this point, we have the two scts of interpolated values:

0" (e =0.y) (1
o (7) (22

This data may be used to evaluate the derivatives in cquation 15 at the center of the stencil.
This requires a sccond sct of one-dimensional divided difference interpolations in the y-direction
using only this data.
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Interpolating in the y-direction is accomplished with the polynomial:

5
fle=09)=> cf(G)y’ (23)
Jj—0
where y 0 —0 .
ey = HEZ L =0 () (29

This time however, we will interpolate the functions: f,fe, foefoee:feeee, a0d frrzzzs DYy
performing the following substitution into cquation 24:

flz=0,y) = 9fz=0.y) (l) (25)

oxt 1!

for i=0,1,2.3.4, and 5 so that

cf(4)

_ O f(z=0,y=0) ( 1 ) (26)

Ozt oy’ !

Thercfore this requires six more onc-dimensional divided difference interpolations for a total
of twelve when including the six horizontal interpolations. The substitution of equation 25 into
cquation 24 rcuscs the data from the x-direction interpolation, thereby introducing cfficiencies
not found with other multidimensional interpolation procedurcs. Note that this cfficiency is
only possible if the data in cquation 16 arc available at cach grid point so that a symmetry of
the spatial derivatives exists in all dimensions because both the tensor product and Hermitian
divided differences require this complete sct of derivative information. Fortunately, the two-point
Hermitian MESA schemes (c2os) provide cxactly this information.

5.2.1 Horizontal Interpolation Procedures

Applying the above concepts can be reduced to a few simple steps. Interpolating the intermediate
values at (0,yo) and (0,%1) in figure 2 is accomplished by:

e First, loading the known data from the stencil into the tablcau shown in figure 4 to
intcrpolate the data at ¥ = yo. The tableau is loaded with the function f, f,, and f..
data contained at the two grid point locations g and zy as indicated in figure 1.

e Sccond, build the divided difference tableau as described in equation 3.

tion 10.
o Fourth, repeat these three steps by substituting f(z) with f = f, f,, and f,,,.
e Fifth, repeat these four steps at y = y;.-
After these procedures, we have calculated the data:

O f(x=0,y)

R Vi:i=1,2,345andVj:j=0,1,2 27)

at grid coordinates (0,y0) and (0,y1) as labeled in figure 2.
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Figure 5: Loaded Divided-Difference Tableau for c202 MESA scheme, Y-Direction

5.2.2 Vertical Interpolation Procedures

Next, the data shown in equation 27 is used to perform the Hermitian divided difference inter-
polation in the y-direction by:

e First loading that data into the tablcau as shown in figurc 5 to interpolate the intermediate
data of the last step along the line = 0. The tablcau is loaded with the function f, f,,
and f,, data contained at the two grid point locations (0,y0) and (0,y1) as indicated in
figure 2.

e Sccond, build the divided difference tableau as described in cquation 3.

8 f (—0,y—0)

e Third, cvaluate the spatial derivatives 5y forj=0,1,2,3.4,

e Fourth, repeat these three steps by substituting f(z) with f = f, fo, fews fezer freze
and frpzee which arc the intermediate data previously cvaluated using the horizontal
interpolation procedures.

After these steps, all the spatial derivatives of £(x,y) necessary for advancing the data on the
grid is available for the MESA scheme.

6 Results

For the purposes of comparing this new approach with the old approach, it is necessary to divide
the results from the new approach by a factorial term. This is because the cocfficients for the
previous method [4] were cquivalent to using the equation:

2xs+1

@)=Y efa’ (28)

=0
in which the factorial term is included in these cf(i) cocflicients instcad of the form:

2xs5+1 f(

=3 ¢ i,t)wi (29)
1—0 )

in which the factorial term is not included and thercfore ¢f (4) = %w(*)

With this correction factor a direct comparison is possible between both approaches for very
high accuracy by using automatic code generation [6]. In particular, the relative efficiency and
accuracy of applying both intcrpolation methods to the same wave propagation problem arc
measured.
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6.1 Problem Definition

Wave propagation is described by the lincarized Euler cquations and its correct simulation in
time is important in many acroacoustic applications. We will solve the bi-periodic open domain
problem in which the physical domain is a unit square ([—1,1] x [=1,1] x [0, T]). The solution of
the lincarized Euler cquations in this case is assumed to be y-periodic (top and bottom of box
repeat) and x-periodic (left and right sides of box repeat). Using scparation of variables with
periodic boundary conditions, on the following lincarized Euler equation system with a constant
mean convection velocity veetor (M, M,):

du du ou Op
— + M, —+M,—+——=—=0,
ot Mrge T Mgy tar =0
Ov Ov ov  Op
My + M, ~— + £ =y, 30
8t+ w8w+ Yoy oy ’ (30)
Op Op dp Ou
— +My—+M,—+—+— =0,
ot var ey Tax Tay
with the boundary conditions :
U(l, Y, t) = U(—l, Y, t)
v(ly,t) =v(-1,y,1)
p(z,1,t) = plz,—1,1)
u(z, 1,t) = u(z,—1,t)
v(z, 1,t) = v(z, —1,1)
provides the following analytical solution:
p(x,y,t) = cos(mtv/2) sin(r (— (Myt) + x)) sin(m (— (Myt) + 1)) (31)

U(:I: y t) C( )S(/ ( (‘Z 4J,t) F .’I])) S1t (/ t\/_fz) 511](7 (— (/\4Jt) y))

LR - \/_ 1 +

1 (:’U” y” ) _C (/ ( (MJ ) y)) (/ \/_) (/ (_ ( T ) :I:))
2 t \/_ 2 Sl .M 1 +

(32)

6.2 Numerical Results

The results of these numerical experiments with 8 grid points per wavelength are shown for
double-precision (64-bit reals) in tables 1 and 2 and for quadruple precision (128-bit reals) in
table 3. The time to complete the simulation using cach approach is a mecasurc of relative cffi-
ciency and is shown for cach MESA scheme tested. In addition, the results for both approaches
arc placed above and below cach other for casy comparison. The seven column headings arce
defined as:

N Number of time steps.

T Total time clapsed in simulation.

maxperr The maximum absolute crror in the pressure.
llperr A mecasure of the average error (L1 norm) .

phmax Maximum pressure occurring in domain.
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phmin Minimum pressure occurring in domain.

initial

e-ratio The change in the total cnergy content of the system as a ratio (should be onc

for no changc).

Despite the cost analysis in scction 4 showing a slight advantage to the new approach for
all MESA schemes, numerical experiments show the old approach is actually faster for methods
less than about 15" order. This is likely duc to the length of the one-dimensional cquations
being less than the worst case used in the analysis. However, for higher order methods the new
approach is modestly faster while using double-precision calculations and it is significantly faster
when quadruple-precision is used (sce table 3).

Notice in table 1 that the new approach beging demonstrating less round-off crror at ap-
proximatcly 11** order accuracy. And at 15" order accuracy the new approach still maintains
essentially no growth in the cnergy compared to the old approach in table 2. And at 17 order
both methods begin introducing significant round-off crrors into the overall energy.

In quadruple precision, both approaches appcar similar at 15 order, however the new
approach is about 50 percent faster. And at 215 order accuracy the round-off crrors are higher
in the old approach while the new approach is more cfficient. By the time 27t order accuracy
is reached, both approaches arc showing significant round-off crror in the total system cnergy.

It was not possible to create a 33"¢ order or higher MESA scheme using the old approach,
but thc new approach appcars to maintain accuracy up to 57" order in quadruple precision
before round-off crror becomes too excessive. The sources of this round-off error arc explained
in the appendix A.
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N T | maxperr | ITperr | phmax | phmin c-ratio
OLD APPROACH ABOVE, NEW APPROACH BELOW
c202: Old Approach Time=254.79 , New Approach Time=290.39
200 | 1.00000E+01 | 9.07553E-04 | 1.36338E-03 | 8.95490E-01 | -8.95490E-01 | 9.97694E-01
200 | 1.00000E+01 | 9.07553E-04 | 1.36338E-03 | 8.95490E-01 | -8.95490E-01 | 9.97694E-01
2000 | 1.00000E-+02 | 2.06528E-03 | 3.24237E-03 | 2.40990E-01 | -2.40990E-01 | 9.79382E-01
2000 | 1.00000E-+02 | 2.06528E-03 | 3.24237E-03 | 2.40990E-01 | -2.40990E-01 | 9.79382E-01
20000 | 1.00000E+03 | 7.40171E-02 | 1.11612E-01 | 7.04408E-01 | -7.04408E-01 | 8.14061E-01
20000 | 1.00000E+03 | 7.40171E-02 | 1.11612E-01 | 7.04408E-01 | -7.04408E-01 | 8.14061E-01
c203: Old Approach Time=572.39, New Approach Time=641.52
200 | 1.00000E+01 | 2.04781E-06 | 2.99855E-06 | 8.96396E-01 | -8.96396E-01 | 9.99996E-01
200 | 1.00000E+01 | 2.04781E-06 | 2.99855E-06 | 8.96396E-01 | -8.96396E-01 | 9.99996E-01
2000 | 1.00000E+02 | 5.51277E-06 | 1.08654E-05 | 2.43050E-01 | -2.43050E-01 | 9.99952E-01
2000 | 1.00000E+02 | 5.51277E-06 | 1.08654E-05 | 2.43050E-01 | -2.43050E-01 | 9.99952E-01
20000 | 1.00000E+03 | 1.77378E-04 | 2.67937E-04 | 7.78247E-01 | -7.78247E-01 | 9.99543E-01
20000 | 1.00000E+03 | 1.77378E-04 | 2.67937E-04 | 7.78247E-01 | -7.78247E-01 | 9.99543E-01
c204: Old Approach Time=1108.65, New Approach Time=1311.10
200 | 1.00000E+01 | 2.86266E-09 | 4.24757E-09 | 8.96398E-01 | -8.96398E-01 | 1.00000E+00
200 | 1.00000E+01 | 2.86266E-09 | 4.24757E-09 | 8.96398E-01 | -8.96398E-01 | 1.00000E+00
2000 | 1.00000E-+02 | 8.95464E-09 | 1.86641E-08 | 2.43055E-01 | -2.43055E-01 | 1.00000E+00
2000 | 1.00000E-+02 | 8.95463E-09 | 1.86641E-08 | 2.43055E-01 | -2.43055E-01 | 1.00000E+00
20000 | 1.00000E+03 | 2.45441E-07 | 3.84170E-07 | 7.78425E-01 | -7.78425E-01 | 9.99999E-01
20000 | 1.00000E+03 | 2.45441E-07 | 3.84169E-07 | 7.78425E-01 | -7.78425E-01 | 9.99999E-01
c205: Old Approach Time=2034.22, New Approach Time=2533.79
200 | 1.00000E+4-01 | 2.70040E-12 | 4.09499E-12 | 8.96398E-01 | -8.96398E-01 | 9.99999E-01
200 | 1.00000E+4-01 | 2.69773E-12 | 4.09191E-12 | 8.96398E-01 | -8.96398E-01 | 1.00000E+00
2000 | 1.00000E-+02 | 2.00462E-11 | 3.45419E-11 | 2.43055E-01 | -2.43055E-01 | 1.00000E+00
2000 | 1.00000E-+02 | 2.00432E-11 | 3.45456E-11 | 2.43055E-01 | -2.43055E-01 | 1.00000E+00
20000 | 1.00000E+03 | 1.53291E-09 | 2.87923E-09 | 7.78425E-01 | -7.78425E-01 | 1.00000E+00
20000 | 1.00000E+03 | 1.53274E-09 | 2.87917E-09 | 7.78425E-01 | -7.78425E-01 | 1.00000E+00

Table 1: Cost and Round-off Error Comparison of New and Old 2D Interpolation Methods With
8 Grid Points Per Wavclength: Double Precision Computations
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N T | maxperr | ITperr | phmax | phmin c-ratio
OLD APPROACH ABOVE, NEW APPROACH BELOW
¢206: Old Approach Time=3372.85, New Approach Time=3978.52
200 | 1.00000E+4-01 | 4.72955E-14 | 5.58290E-14 | 8.96398E-01 | -8.96398E-01 | 1.00094E+00
200 | 1.00000E+4-01 | 2.56462E-14 | 4.69778E-14 | 8.96398E-01 | -8.96398E-01 | 1.00002E+00
2000 | 1.00000E+02 | 1.47465E-11 | 2.62678E-11 | 2.43055E-01 | -2.43055E-01 | 9.98917E-01
2000 | 1.00000E-+02 | 1.47443E-11 | 2.62938E-11 | 2.43055E-01 | -2.43055E-01 | 1.00004E+00
20000 | 1.00000E+03 | 1.45736E-09 | 2.73856E-09 | 7.78425E-01 | -7.78425E-01 | 1.00010E+00
20000 | 1.00000E+03 | 1.45717E-09 | 2.73851E-09 | 7.78425E-01 | -7.78425E-01 | 1.00001E+00
c207: Old Approach Time= 6557.54, New Approach Time=5824.79
200 | 1.00000E4-01 | 7.13873E-14 | 1.17613E-13 | 8.96398E-01 | -8.96398E-01 | 6.61955E+02
200 | 1.00000E+401 | 2.69784E-14 | 4.96476E-14 | 8.96398E-01 | -8.96398E-01 | 1.04582E+00
2000 | 1.00000E-+02 | 1.48251E-11 | 2.63057E-11 | 2.43055E-01 | -2.43055E-01 | 7.81400E+02
2000 | 1.00000E-+02 | 1.47365E-11 | 2.62886E-11 | 2.43055E-01 | -2.43055E-01 | 1.08933E+00
20000 | 1.00000E+03 | 1.45761E-09 | 2.73870E-09 | 7.78425E-01 | -7.78425E-01 | 6.05388E+02
20000 | 1.00000E+03 | 1.45698E-09 | 2.73832E-09 | 7.78425E-01 | -7.78425E-01 | 1.03607E+00
c208: Old Approach Time=7424.47 , New Approach Time=6443.41
200 | 1.00000E401 | 2.19713E-13 | 3.11883E-13 | 8.96398E-01 | -8.96398E-01 | 8.09897E+09
200 | 1.00000E+4-01 | 2.47580E-14 | 4.59314E-14 | 8.96398E-01 | -8.96398E-01 | 1.23692E+05
2000 | 1.00000E-+02 | 1.46503E-11 | 2.62826E-11 | 2.43055E-01 | -2.43055E-01 | 8.25499E+09
2000 | 1.00000E-+02 | 1.47489E-11 | 2.63057E-11 | 2.43055E-01 | -2.43055E-01 | 1.10213E+05
20000 | 1.00000E+03 | 1.45885E-09 | 2.73874E-09 | 7.78425E-01 | -7.78425E-01 | 7.70854E+09
20000 | 1.00000E+03 | 1.45711E-09 | 2.73847E-09 | 7.78425E-01 | -7.78425E-01 | 1.38970E+05
¢209: Old Approach Time=10112.20 , New Approach Time=11168.74
200 | 1.00000E+4-01 | 8.13960E-13 | 1.04409E-12 | 8.96398E-01 | -8.96398E-01 | 5.13309E-+17
200 | 1.00000E+401 | 2.58682E-14 | 4.62761E-14 | 8.96398E-01 | -8.96398E-01 | 2.81314E+11
2000 | 1.00000E-+02 | 1.52230E-11 | 2.65629E-11 | 2.43055E-01 | -2.43055E-01 | 5.05941E+17
2000 | 1.00000E+02 | 1.47471E-11 | 2.63039E-11 | 2.43055E-01 | -2.43055E-01 | 4.05821E+11
20000 | 1.00000E+03 | 1.46161E-09 | 2.73741E-09 | 7.78425E-01 | -7.78425E-01 | 4.91307E+17
20000 | 1.00000E+03 | 1.45712E-09 | 2.73848E-09 | 7.78425E-01 | -7.78425E-01 | 3.22536E+11
c2010: Old Approach Time=17783.09 , New Approach Time=11433.5
200 | 1.00000E401 | 2.76479E-12 | 4.08680E-12 | 8.96398E-01 | -8.96398E-01 | 3.58499E+25
200 | 1.00000E+401 | 2.62013E-14 | 4.66777E-14 | 8.96398E-01 | -8.96398E-01 | 2.85350E+18
2000 | 1.00000E-+02 | 2.05443E-11 | 2.66944E-11 | 2.43055E-01 | -2.43055E-01 | 2.28614E+25
2000 | 1.00000E-+02 | 1.47421E-11 | 2.63037E-11 | 2.43055E-01 | -2.43055E-01 | 3.55611E+18
20000 | 1.00000E+03 | 1.47549E-09 | 2.73275E-09 | 7.78425E-01 | -7.78425E-01 | 2.72428E+25
20000 | 1.00000E+03 | 1.45712E-09 | 2.73848E-09 | 7.78425E-01 | -7.78425E-01 | 3.55940E+18
c2011: Old Approach Time=1803.33 , New Approach Time= 1869.41
200 | 1.00000E4-01 | 9.20091E-12 | 1.09857E-11 | 8.96398E-01 | -8.96398E-01 | 4.76527E+32
200 | 1.00000E+4-01 | 2.85327E-14 | 4.66790E-14 | 8.96398E-01 | -8.96398E-01 | 7.71540E-+24
2000 | 1.00000E-+02 | 3.32458E-11 | 4.56052E-11 | 2.43055E-01 | -2.43055E-01 | 6.81984E+32
2000 | 1.00000E-+02 | 1.47503E-11 | 2.63034E-11 | 2.43055E-01 | -2.43055E-01 | 9.88028E+24

Table 2: Cost and Round-off Error Comparison of New and Old 2D Interpolation Methods With
8 Grid Points Per Wavclength: Double Precision Computations
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N | T maxperr | I1perr | phmax | phmin c-ratio
OLD APPROACH ABOVE, NEW APPROACH BELOW
c207: Old Approach Time=127.48 , New Approach Time=89.34
2 | 1.00000E-01 | 2.09573E-20 | 3.26076E-20 | 8.53711E-01 | -8.53711E-01 | 1.00000E+00
2 | 1.00000E-01 | 2.09573E-20 | 3.26076E-20 | 8.53711E-01 | -8.53711E-01 | 1.00000E+00
20 | 1.00000E-+00 | 9.75947E-20 | 1.53880E-19 | 2.64616E-01 | -2.64616E-01 | 1.00000E+00
20 | 1.00000E-+00 | 9.75947E-20 | 1.53880E-19 | 2.64616E-01 | -2.64616E-01 | 1.00000E+00
¢2010: Old Approach Time=359.67, New Approach Time= 230.74
2 | 1.00000E-01 | 1.76261E-30 | 1.51294E-30 | 8.53711E-01 | -8.53711E-01 | 9.99954E-01
2 | 1.00000E-01 | 5.54668E-31 | 8.26561E-31 | 8.53711E-01 | -8.53711E-01 | 1.00000E+-00
20 | 1.00000E-+00 | 3.00584E-29 | 4.99977E-29 | 2.64616E-01 | -2.64616E-01 | 9.99980E-01
20 | 1.00000E-+00 | 4.39112E-30 | 8.13865E-30 | 2.64616E-01 | -2.64616E-01 | 1.00000E+00
c2013: Old Approach Time=806.21, New Approach Time= 376.07
2 | 1.00000E-01 | 2.87010E-29 | 4.01517E-29 | 8.53711E-01 | -8.53711E-01 | 1.88808E+16
2 | 1.00000E-01 | 3.38964E-32 | 4.22501E-32 | 8.53711E-01 | -8.53711E-01 | 4.69234E+-06
20 | 1.00000E-+00 | 1.53766E-27 | 1.79257E-27 | 2.64616E-01 | -2.64616E-01 | 4.68978E+16
20 | 1.00000E-+00 | 9.39854E-32 | 1.21469E-31 | 2.64616E-01 | -2.64616E-01 | 8.26702E+06
c2016: Old Approach Time=NA, New Approach Time=686.30
2 | 1.00000E-01 | 4.31408E-32 | 3.50760E-32 | 8.53711E-01 | -8.53711E-01 | 8.95892E+28
20 | 1.00000E-+00 | 1.17097E-31 | 1.35263E-31 | 2.64616E-01 | -2.64616E-01 | 1.74818E+29
c2019: Old Approach Time=NA, New Approach Time=1439.74
2 | 1.00000E-01 | 3.69779E-32 | 4.17927E-32 | 8.53711E-01 | -8.53711E-01 | 8.80805E+51
20 | 1.00000E-+00 | 1.21719E-31 | 1.51134E-31 | 2.64616E-01 | -2.64616E-01 | 1.46755E+52
¢2022: Old Approach Time=NA, New Approach Time=2195.83
2 | 1.00000E-01 | 5.54668E-32 | 4.66316E-32 | 8.53711E-01 | -8.53711E-01 | 2.19468E+76
20 | 1.00000E-+00 | 1.21719E-31 | 1.30786E-31 | 2.64616E-01 | -2.64616E-01 | 4.81574E+76
¢2025: Old Approach Time=NA, New Approach Time= 2605.29
2 | 1.00000E-01 | 4.93038E-32 | 4.33575E-32 | 8.53711E-01 | -8.53711E-01 | 1.21860-+101
20 | 1.00000E+00 | 1.37126E-31 | 1.55859E-31 | 2.64616E-01 | -2.64616E-01 | 5.71654+101
c2028: Old Approach Time=NA, New Approach Time= 3653.88
2 | 1.00000E-01 | 5.23853E-32 | 5.09168E-32 | 8.53711E-01 | -8.53711E-01 | 2.81365+126
20 | 1.00000E-+00 | 7.85779E-32 | 1.28541E-31 | 2.64616E-01 | -2.64616E-01 | 1.62764+127
c2031: Old Approach Time=NA, New Approach Time= 4826.52
2 | 1.00000E-01 | 6.77927E-32 | 5.62612E-32 | 8.53711E-01 | -8.53711E-01 | 3.49609+152
20 | 1.00000E-+00 | 7.43198E-27 | 4.69403E-27 | 2.64616E-01 | -2.64616E-01 | 3.60786+168
c2034: Old Approach Time=NA, New Approach Time= 42884.60
2 | 1.00000E-01 | 6.77927E-32 | 6.47594E-32 | 8.53711E-01 | -8.53711E-01 | 1.62494+179
10 | 5.00000E-01 | 1.25506E-16 | 5.60704E-17 | 6.01971E-01 | -6.01971E-01 | 1.19710+-216
12 | 6.00000E-01 Infinity NaN 1.08423E-01 -Infinity NaN

Table 3: Cost and Round-off Exrror Comparison of New and Old 2D Interpolation Mcthods With
8 Grid Points Per Wavcelength: Quadruple Precision Computations
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7 Conclusions and Future Research

It is now possible to develop 200* order or higher wave propagation algorithms whose practical
utility is limited only by the precision of the computer. This is made possible by a change in the
procedure used to implement the spatial interpolation step of the MESA schemes. With this new
approach, the MESA schemes arce far simpler to program, more cfficient, and incur less round-off
crror. Automation is no longer necessary for algorithm development, but is still necessary for
testing the MESA schemes and for applying multidimensional wall boundary conditions [4].

This new implementation of the MESA schemes makes it possible to adapt the method to
the mesh instead of the common approach of adapting the mesh to the method which adversely
cffects the CFL constraints and complicates grid generation. By adapting the method using
cstimates of the gradicnts from the divided difference tableau, an cfficient procedure for resolving
many different wavelength scales may be possible. In particular, problems which contain a wide
range of wavclength scales, such as fan and jet noise gencration, may benefit from adaptive
algorithms such as these.

In short, this new approach is an improvement to the implementation of the MESA schemes
in cvery regard for methods of 15t% order or higher, and has many advantages for the lower order
methods as well. Two-point Hermitian stencils have many desirable propertics [4], [7] such as:

e They simplify boundary trcatments;
e They arc more computationally cfficient;
e And, they provide higher resolution.

In addition, they may now cnable adaptive algorithm implementations and be implemented in
arbitrarily high accuracy using the key result from this paper, cquation 10. Howcver, a limit
to the cffective accuracy is encountered with this implementation duc to the round-off crrors
incurred from subtractive cancellation as discussed in the appendix A. Some different approaches
for reducing round-off crror include:

e Reformulate the time advance step of the MESA schemes to climinate the factorial term
correction discussed in section 6 which multiplics the round-off errors.

e Modify the divided differences to central differences to avoid the divisions by grid point
distance, h, in cach column of the tablcau which also magnifics round-off crror [11]

e Reformulate the MESA schemmes to propagate complex variables in time and calculate
derivatives without subtractive cancellation [15]

e Usc divided difference pipclining [1].

e Usc the Stirling or Besscl form of the central differences to minimize the cocfficients in
Newton’s interpolatory cquation 4.

e Predict roundoff crror using the relationship between columns of the tableau (sum of
column j = difference of first and last terms in column j-1) [11], and then set to zero all
higher order divided differences in the tableau.

The last item limits the accuracy of the MESA scheme, but prevents contamination from
round-off crror. This also improves cfficicncy since it prevents unnccessary calculations which
will only introduce crror and computational overhcad. The ability to detect round-off crror is
a unique advantage of this new approach that may make using very high order methods on
available technology practical.

It is nccessary to use Hermitian stencils for very high order algorithims since traditional
Lagrangian stencils become excessively large in the limit. This paper has provided onc approach
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for this. In addition, it has provided some of the tools necessary for exploring the capabilities
of adaptive algorithms for adaptive resolution of steep gradients (shocks).

In the future, as very high precision, large-scale parallel systems become commmon, Hermitian
divided difference implementations of the MESA schemes will be very useful since they offer
minimal interprocessor cominunications [4] and accuracy limited only by machine precision. For
practical applications, this places a greater need on developing very high order wall boundary
and radiation conditions.
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A Sources of Round-off Error

The benefits of very high order accuracy begin to diminish as round-off crror grows. The
predominant source of this round-off crror is subtractive cancellation crror which occurs when
two numbers close in value arc subtracted from onc another. This results in a loss of most of
the significant digits in the mantissa.

The subtractive cancellation crrors will occur in the construction of the divided difference
tablcau as the standard deviation of the values in cach column decreascs. Each column, num-
bered j, in figure 3 is constructed for all i using:

Qij—1 — Qi1,j—
0uy - Q=G
i i—j

(34)

where for a two point Hermitian spatial interpolation, this relation reduces to dividing by z; —
x;—; = h, which is the distance between both grid points in figure 1.

Each divided difference term can be proved using the gencralized Rolle theorem to be equiv-
alent to [2]:

Qij = <&y < (35)

P&y —h h -
it 2 -2

That is, cach divided difference j-column contains data representing the j% derivative at
some point on the interval between both points. If we knew it applied at the center (x=0) of
the stencil, we could use it directly in the MESA scheme. However, the exact location of the
function is not known.

From cquations 34 and 35, the following is actually being calculated in cach column of the

tablcau: i L
y _ P G—) = T (G-1)
f& ) = ;
)
where &; ;1 and &_y ;1 arc contained within the interval between both grid points, ic. zg <
&ij1,8 151 <31
Now let j=1 and apply the mean value theorem of calculus to this equation, then it must be
the casc that:

(36)

h h

—5 = Cim10<&1<&o= 5 (37

Next, let j=2, then "looscly” applying the mean value theorem again to cquation 36 results in

the relation:
h h

T2 Gim1,0 <&—11 < &2 <& <&o= 2 9

This term "looscly” is used since the denominator in cquation 36 docs not change as addi-
tional columns arc processed and the mean value theorem could only be directly applied if its
size was &1 — &—1.1- However, on average, the interval will decrcase for most functions since
there will be onc or more critical points (&; ;) between & j—1 and &_q_j—1 when simulating the
oscillating functions that occur in acoustical applications.

Thercfore as j is increased, the interval in which &; ; can occur decrcascs. This has the cffect
of compressing all the data in column j closer together. In fact, by definition, the last column
of the tableau contains a single clement representing the center of the stencil with an interval
length of zcro for the column. As the points, &1 ; and & ; become closer in equation 36, the
subtractive canccllation errors increase.

For example, suppose there are 10 grid points per unit interval, then the first column has an
interval length of & = 1/10. In addition, supposc the interval length is halved in cach column,
then column j will have length (%)Jﬁl. With a 21%¢ order MESA method (c2010) there will be
21 columns with the intervals decreasing by six orders of magnitude in the last three columns.
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In fact, by the 5% column there is very little scparation between both data points (.00625 units)
resulting in subtracting two numbers that arc very close in valuc.

This subtractive canccllation crror is then magnified by the division of the small number,
h, in cquation 36. It is a simple matter to climinate this division by using the forward, back-
ward, or centered-difference forms [11] of the Newton interpolant. However, even without this
improvement, the results of this paper show using Hermitian divided differences with two-point
Hermitian MESA schemes results in less subtractive cancellation than previous methods.
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B Fortran90 Implementation

! This routine will calculate the spatial derivatives for the MESA scheme
! Using the data fdata(dx,dy,x,y) = D[f[x,y],{x,dx},{y.dy}H]
! It applies only to a c2os scheme, where the s=0,1,2,

! Q- [—————- 0 y=y1
! I I

! | I

! - + - y=0
! | I

' | |

! Q- [—————- 0 y=y0
! x=x0 x=0 x=x1

'
! INPUT: fdata(dx,dy,x,y) , x=x0,x1, y=y0,yl , dx=0,s , dy=0,s
! QUTPUT:cf (dx,dy,0) , dx=0,1, ..., 2*xs + 1 , dy=0,1, ..., 2%s+1

program multidimensional
implicit none

integer :: digits, e,i,j,k,s,n, dx, dy,r, yp, AllocateStatus
real (kind=selected_real_kind(30)) :: z, deltah, prodl, prod2, sum, innersum
real (kind=selected_real_kind(30)) :: h, x0,x1

real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: fdata
real (kind=selected_real_kind(30)), DIMENSION(:,:), ALLOCATABLE:: coef,Q
real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: cf,cfdata

integer, parameter :: Prec30 = Selected_Real_Kind(30)

read *, s

ALLOCATE (coef(0:2*(s+1),0:2%x(s+1)), STAT = AllocateStatus)

If (AllocateStatus /= 0) STOP ’x** Not Enough Memory *x*x’

ALLOCATE (cf(0:2%(s+1),0:2%(s+1),0:0,0:0), STAT = AllocateStatus)

If (AllocateStatus /= 0) STOP ’*%* Not Enough Memory *xx*’

ALLOCATE (cfdata(0:2%(s+1),0:2%(s+1),0:1,0:1), STAT = AllocateStatus)
If (AllocateStatus /= 0) STOP ’x** Not Enough Memory *x*x’

ALLOCATE (QC0:2%(s+1),0:2*(s+1)), STAT = AllocateStatus)
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If (AllocateStatus /= 0) STOP ’x** Not Enough Memory *x*x’
ALLOCATE (fdata(0:2*(s+1),0:2x(s+1),0:1,0:1), STAT = AllocateStatus)
If (AllocateStatus /= 0) STOP ’*%* Not Enough Memory *xx*’

deltah = x1-x0

'
! THIS SECTION NEEDS COMPUTED ONLY ONCE AND ITS RESULTS CAN BE REUSED AT EACH
! STENCIL -- SIGNIFICANT COMPUTATIONAL SAVINGS

! The variable array, coef( , ) is assigned next and does not depend on the

! stencil data, only upon the MESA scheme employed

'

outerloopl: do dx=0, 2 *x s + 1

do i=dx, s

end do

csetloop: do i=s+l, 2 x s + 1

sum = 0.0
sumloop: do r=0, dx

prodl=1.0
do e=0, dx-1-r
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prodl = prodl * (i - s -1 - e)
end do

prod2=1.0
do k=0, r-1

prod2 = prod2 * (s + 1 - k)
end do

sum = sum + ( Fac(dx)/(Fac(dx-r)*Fac(r)) ) * (-x0)*x(s+1-1r) * &
( -x1)#x(i-s-1-dx+r) * prodl * prod2
end do sumloop
coef (1,dx)=sum
end do csetloop
end do outerloopl

! This section is repeated for each stencil in the domain

! Assign known data and its derivatives from the MESA c2os 2 by 2 stencil

do dx=0, s

do dy=0, s

fdata(dx,dy,0,0)= STENCIL DATA AT LOWER LEFT
fdata(dx,dy,0,1)= STENCIL DATA AT UPPER LEFT
fdata(dx,dy,1,0)= STENCIL DATA AT LOWER RIGHT
fdata(dx,dy,1,1)= STENCIL DATA AT UPPER RIGHT
end do

end do

lastloop: do yp=0, 1
do dy=0,s
do i=0, s

Q(i,dx)= fdata(dx,dy,0,yp) / Fac(dx)
Q(i+s+1,dx) = fdata(dx,dy,1,yp) / Fac(dx)
end do
end do

! Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau
-

n=(2 * (s+1))
do i=s+1, n-1
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do j=i-s, i
Q@i,j) = QdG,j-1) - QGE-1, j-1))/ (deltah)
end do
end do

do dx=0, 2 x s + 1

sum=0.0

do i=dx, 2 *x s + 1

sum = sum + Q(i,i) * coef(i,dx)
end do

cfdata(dx,dy,0,yp)=sum

end do

end do

end do lastloop

! Repeat this process for the y-direction, only using the cfdata( , , ,)
! as developed by Goodrich

! Load table for Y interpolation

|

dxloop: do dx=0, (2x(s+1)-1)

do i=0, s

do dy=0, i
Q(i,dy)= cfdata(dx,dy,0,0) / Fac(dy)
Q(i+s+1,dy) = cfdata(dx,dy,0,1) / Fac(dy)

end do

end do

! Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau
-

n=(2 * (s+1))
do i=s+1, n-1
do j=i-s, i
Qdi,j) = (QG,j-1) - Q(i-1, j-1))/ (deltah)
end do
end do
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do dy=0, 2 *x s + 1

sum=0.0

do i=dy, 2 * s + 1

sum = sum + Q(i,i) * coef(i,dy)

end do

cf (dx,dy,0,0)=sum/ (fac(dx)*fac(dy))
end do

end do dxloop

! The spatial derivatives for the c2os MESA scheme at the center of the
! 2 by 2 stencil are stored in the cf(dx,dy,0,0) variables
! May need to use cf(dx,dy,0,0)/(dx! dy!) depending upon how the exact
! local propagator is evaluated
do dx=0,2%s+1
do dy=0,2x%s+1
print *, "cf(",dx,",",dy,",0,0)=",cf(dx,dy,0,0)
end do
end do

! Factorial Function

! In more efficient implementations, can precalculate all the factorial
! results and store as an array

FUNCTION Fac(N2)

REAL (kind=selected_real_kind(30)) :: Fac
INTEGER, INTENT(IN) :: N2
INTEGER :: I2

Fac = 1.0
DO I2 = 2, N2
Fac = Fac x 12
END DO
END FUNCTION Fac
end
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