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PREFACE AND ACKNOWLEDGMENTS

The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provides us the opportunity to view the
current scope of the microgravity Fluid Physics and Transport Phenomena Program and conjecture about its future.
The program currently has atotal of 100 ground-based and 20 candidate flight principal investigators. A look at the
collection of abstracts in this document clearly shows both the high quality and the breadth of the ongoing research
program. One can easily notice many established world-class scientists as well asinvestigators who are early in
their career poised to achieve that stature. We hope that many of the participants in this conference will perceive
microgravity fluid physics as an exciting and rewarding area of research and choose to participate in the upcoming
NASA Research Announcement expected to be released in Fall of 2000.

The microgravity program under the |eadership of its new director, Dr. Eugene Trinh, is poised for some changes.
Although the utilization of the International Space Station (ISS) and development of facilities and hardware to
achieve that will continue to be the centerpiece of the program, the research to be conducted on it aswell asin the
ground-based program is likely to see a shift in emphasis. Dr. Trinh indicates that the first goal of the Microgravity
Research Program is the development of a fundamental scientific base for human and robotic forays into outer
space. The second goal isthe utilization of the unique space environment for basic and applied scientific knowl-
edge, both to fulfill innate curiosity and to improve the human condition on Earth. Asthe Agency moves to tap the
potential of the emerging disciplines of nanotechnology and biologically inspired technologies, the Microgravity
Research Program plansto play asignificant role by promoting research in these areas. Cross-disciplinary research
is another theme that program is emphasizing.

Two elements of the International Space Station (ISS) are already on the orbit and the next major phase of the
assembly is about to begin in earnest thisyear. |SS provides the microgravity research community with atremen-
dous opportunity to conduct long-duration microgravity experiments, which can be controlled and operated from
their own laboratory. Frequent planned shuttle trips will provide opportunities to conduct many more experiments
than were previously possible. NASA Glenn Research Center isin the process of designing a Fluids and Combus-
tion Facility (FCF) to be located in the US Laboratory Module of the ISS that will accommodate multiple users with
abroad range of fluid physics and transport phenomena experiments and enabl e these experiments to be conducted
in acost effective manner. Physics of Colloidsin Space (PCS) our first major experiment is to be launched in

April of 2001. Launch of the Fluids and Combustion facility in 2004 will begin the full utilization of 1SS by the
discipline.

NASA had asked the National Research Council (NRC) to undertake an assessment of scientific and related techno-
logical issues facing NASA’s Human Exploration and Devel opment of Space endeavor. An NRC committee
Chaired by Prof. Raymond Viskanta (Purdue University) recommended the following areas of high priority research
on fundamental phenomena/processes:

» Surface and Interfacial Phenomena

e Multiphase Flow and Heat Transfer

e Multiphase Systems Dynamics

*  Fire Phenomena

e Granular Mechanics

As one might have expected, most of these high priority areas fit well within the fluid physics and transport phe-

nomenadiscipline. They bear a strong resemblance to the performance goals previously developed by the

Microgravity Research Program that are listed below:

1. Advancethe state of knowledge sufficiently to allow development of reliable and efficient heat transfer tech-
nologies for space and extraterrestrial operations.

2. Advance the state of knowledge sufficiently to allow development of effective fluid management technology for
space and extraterrestrial and industrial applications.

3. Establish the knowledge base required to design chemical process systems for exploration missions.

4. Advance the state of knowledge sufficiently to enable dust control technologies and bulk material handling for
extraterrestrial habitats and/or in situ resource utilization.
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Like the Microgravity Research Program, this conference has undergone a number of changes and innovations. In
consultation with the Fluid Physics and Transport Phenomena Discipline Working Group chaired by Professor Paul
Neitzel, we decided to abandon the production of proceedings with the full-length papers on a CD ROM and elected
to go with avirtual proceedings of the presentation charts on the World Wide Web at the website
http://www.ncmr.org/events/fluids2000.html. In this regard we acknowledge the support of our principal investiga-
tors who have provided us timely inputs of their charts and abstracts and accommodated our format requirements.
This cooperation was critical in implementing this and is very much appreciated.

The Discipline Working Group has provided the much-needed guidance in planning the content and the format of
this conference. Their advice and guidance were essential for the success of this conference.

This conference has been organized and hosted by the National Center for Microgravity Research on Fluids and
Combustion under the leadership of its Director, Professor Simon Ostrach. | would like to acknowledge the exten-
sive efforts of Ms. Christine Gorecki and other members of the Center in planning, organizing, and hosting the
conference and in preparing the proceedings and Conference materials. Sincere appreciation is offered to the authors
for providing the abstracts and presentation chartsin atimely manner and to the members of the Microgravity Fluids
Physics Branch of NASA Glenn Research Center for their many contributions.

Finally I would like to express my gratitude to all of the Conference participants for their contributions to the
success of this Conference.

Dr. Bhim S. Singh

Fluid Physics Discipline Lead Scientist
Mail Stop 500-102

NASA Glenn Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

Phone: 216-433-5396

Fax: 216-433-8660

E-mail: bhim.s.singh@grc.nasa.gov

This conference was made possible by the efforts of many people. We acknowledge the contributions of the follow-
ing individuals:

Fluid Physics and Transport Phenomena Discipline Working Group:
G. Paul Neitzel (chair), Georgia Institute of Technology
Bhim Singh (vice-chair), NASA Glenn Research Center
Iwan Alexander, Case Western Reserve/National Center for Microgravity Research
Sanjoy Banerjee, University of California-Santa Barbara
Bradley Carpenter, NASA Headquarters
Stephen Davis, Northwestern University
Donald Gaver, Tulane University
Joe Goddard, University of California, San Diego
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Outline

 NASA Program Organization
* Physical Sciences Research in Space - Biology Connection
 Fluid Physics Program Dual Thrust - Integrating Function

e Immediate and Future Plans

9/29/00
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Physical Sciences Research Division Goals

To carry out cutting-edge, peer-reviewed, and multi-disciplinary
basic research enabled by the space environment to address
NASA'’s goal of advancing and communicating knowledge

To develop a rigorous cross-disciplinary scientific capability
bridging physical sciences and biology to address NASA's
human and robotic space exploration goals

To establish the ISS facilities into a unique on-orbit science
laboratory addressing targeted scientific and technological
issues of high significance

To enhance the knowledge base impacting Earth-based
technological and industrial applications

9/29/00
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Division of
Physical Sciences in Space*

Proposed
Organization | ™" it e

*Materials Science
*Fluid Physics
*Combustion Science
*Exploration Research
*Biomolecular Physics
*Atomic and Molecular Processes in Biosystems
*Biological Sensing Phenomena
*Cellular Components Assembling Mechanisms
*Biotechnology & Earth-based Application
*Cellular Biotechnology
*Macromolecular Biotechnology
*Earth-based Applications
*Manage Division Education & Outreach, Unique
Facilities Utilization, Internat’l Science and CSC

Research Collaborations

Cross-disciplinary Science and Technology Working Group
Commercial Space Centers

*Research and technology development from TRL 1 - 3
9/29/00 EHT
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Fundamental research
enabled by the microgravity
environment

9/29/00

Goal-oriented basic
and applied research

Basic resear ch tar geting
human space exploration
goals

Microgravity research in
support of Earth-based
applications




0L¥012-000C—dD/VSVN

0T

Fifth Microgravity Fluid Physics and Transport Phenomena Conference
Cleveland, Ohio, August 9-11, 2000

» The Microgravity fundamental research carried out in Code U (Office of
Fundamental Research) involves a substantial multi-disciplinary
scientific community

» This peer-reviewed research is laying the groundwork for the
development of enabling technologies for future human exploration

* This research is complementary to the technology development efforts
carried out in both Code R (Office of Aerospace Technology) and Code
M (Office of Space Flight): The Knowledge generated by basic research
In code U can be transferred to Codes R and M for the development of
Capabilities, and finally to Code M for integration of Products into
systems and platforms.

9/29/00
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Physical Sciences and Microgravity:
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Microgravity Fluid Physics Pls Currently in the Program

NRA Flight Definition/Flight Ground-based

Prior 1

91 3

94

96

98

Total Current

00

*Planned
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Fluid Physics Program Dual Thrust:

» Peer-reviewed research based on scientific value and
exploiting advantages of the microgravity environment

* Peer-reviewed research based on engineering applications
and relevant to human space exploration endeavor

The second component will be strengthened with a rigorous
research program coordinated with other NASA enterprises

9/29/00
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Fluid Physics Relevance to NASA Biology Program:

e Flu

Id Physics is “ The Foundation for all other Microgravity

science Disciplines”

This

statement must be validated by implementing an

Integrating function across the physical sciences disciplines
as well as across the entire the biological sciences relevant
to the Code U program

Example in current research program: S. Garoff’'s Micro-
Scale Hydrodynamics near Moving Contact Lines

9/29/00
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‘ Microscale Hydrodynamics Near Moving Contact Lines (WSCALE) '

Objective: Line Hydrod ics (f2)

To understand the wetting of solids by fluids.

Payoff:

Apparent contact line
Value and Benefit: A correct understanding AR S cop "“__Li
of wetting physics would have a % S

ignificant im n:
significant impact o a = contact angle.

The design and optimization of coating S bt
processes, including rapid coating of b= A ssut
optical fibers, and durable coatings on sy AP P

lemuical

metals. . Vidcoas fifes — S@fas l@mnsion

i T

Materials for oil recovery processes. e {hwer Hagios

dmmeicy cllls
The design of MEMS and BIOMEMS

Liegrh acnda
devices.
. . Stmdy twin views of ihe contact lme area for
Design of processes for preparation of various velocities, fuids, and conminer dimensions

pharmaceuticals.

Pl: Steve Garoff PS: David Jacgmin PM: Amy Jankovsky
Carnegie Mellon University NASA Glenn Research Center NASA Glenn Research Center

9/29/00 EHT 11
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R. Mathies U-c-Befkdey

raue

Microfluidic devices
for fundamental biology
investigations in space

9/29/00

Liquid Management in uG

Interface Dynamics
in multiphase flows and
heat transfer systems




0L¥012-000C—dD/VSVN

LT

Fifth Microgravity Fluid Physics and Transport Phenomena Conference
Cleveland, Ohio, August 9-11, 2000

Immediate and Future Plans

» Establish and sustain an engineering-oriented research
program coordinated with NASA'’s Offices of Space Flight and
of Aerospace Technology

» Define a discipline roadmap to implement an integrating
function across the physical and biological sciences

» Create a vigorous research program with a mix of “high risk”
research combined with rigorous, detailed oriented tasks to
strengthen its status within NASA, and to advocate for growth

9/29/00
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Keynote Speaker

Microgravity Research in Support of Technologies
for the Human Exploration and Development of
Space and Planetary Bodies

Prof. Raymond Viskanta
Purdue University

NASA/CP—2000-210470 18



0L¥012-000C—dD/VSVN

61

MICROGRAVITY RESEARCH IN SUPPORT
OF TECHNOLOGIES FOR THE HUMAN EXPLORATION
AND DEVELOPMENT OF SPACE AND
PLANETARY BODIES

Dr. Raymond Viskanta
Purdue University
Past Chair, Committee on Microgravity Research
National Research Council

Fifth Microgravity Fluid Physics and Transport
Phenomena Conference

August 9, 2000

1 Commiltes or Microgravity Research
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Committee on Microgravity Research
(Membership through June 30, 2000)

RAYMOND VISKANTA, Purdue University, Chair

ROBERT A. ALTENKIRCH, Mississippi State University
ROBERT L. ASH, Old Dominion University

ROBERT J. BAYUZICK, Vanderbilt University

CHARLES W. CARTER, JR., University of North Carolina at Chapel Hill
GRETCHEN DARLINGTON,* Baylor College of Medicine
RICHARD T. LAHEY, JR., Rensselaer Polytechnic Institute
RALPH A. LOGAN, AT&T Bell Laboratories (retired)
FRANKLIN K. MOORE, Cornell University

WILLIAM W. MULLINS, Carnegie Mellon University (emeritus)
ROSALIA N. SCRIPA,* University of Alabama at Birmingham
FORMAN A. WILLIAMS, University of California at San Diego

SANDRA J. GRAHAM, National Research Council, Study Director

*Farmer member,

2 Cammittee on Microgravly Reszarch
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History

Study requested by MSAD in 1996 in response to reorganization of NASA and
placement of microgravity in HEDS enterprise

Phase | report {published 1997)

¢ a preliminary report

o considered broad categories of HEDS technologies

s assessed current microgravity research for potential to contribute to HEDS
» provided programmatic recommendations regarding MRD’s role in HEDS

Phase |l report (published July 2000)

¢ surveys wide range of specific technologies

» identifies and describes specific microgravity phenomena important to HEDS
technologies

¢ recommends focused areas of microgravity research

¢ provides programmatic recommendations

3 Committee an Microgravity Research
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Purpose and Scope
|

Purpose

To identify opportunities for microgravity research to contribute to the
understanding of fundamental scientific questions underlying operation and
development of exploration technologies

Scope

¢ Considered all HEDS environments {space, lunar, Mars, asteroids)

* Does not recommend (to NASA) program balance between HEDS related
research and other microgravity research

4 Lorrmitte or Micregrawiny Research
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Technological Challenges
L |

“If we’re going 1o think of a human Mars mission ... we can’t use
engineering processes that we have today. The limitations of these
systems are the biggest barrier to reducing the costly probiem of
design uncertainty”

Sam Venneri

NASA Chief Technologist
June 1998

Aerospace America

5 Committee on Microgravity Research
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Hubble Instrument (NICMOS) Faces Shorter Lifespan

“We have no space experience with these things, we’re pushing

the envelope because we wanted to try to get a four- to five-year

lifetime. What we’re finding out is that the properties of this stuff
are not well understood, not modeled.”

Edward Weiler, ., .-
NASA AA for,Science
Space News 3

March 31 — April 6, 1997

30 Commitec on Microgravity Researsh
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Charge to the Committee on Microgavity Research

o CMGR will undertake an assessment of scientific and related
technological issues facing NASA’s Human Exploration and
Development (HEDS) endeavor.

e« The Committee will specifically look at mission enabling
technologies which, for development, require an improved
understanding of fluid and material behavior in reduced
gravity environment.

e The Committee and NASA mutually interpreted the main
thrust of the charge to be determination of the gravity-related
physicochemical phenomena most relevant to HEDS
technology needs and recommendations of fundamental
research on those phenomena.

Commhies on Microgravity Research
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Materials Processing in Microgravity
.

e Previous CMGR NRC reports

- “Toward a Microgravity Research Strategy,” 1992
- “Microgravity Research Opportunities for the 1990s,” 1995

¢ For example, solidification of metals is affected by
buoyancy forces

— Microsegragation reduced by microgravity environment
- Suppression of detrimental convection

— Growth is diffusion controlled

— ug eliminates sedimentation

B Cammittee on Mierogravily Researsh
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Primary Resources
-]

» Various Workshops

— Workshop on Research for Space Exploration:
Physical Sciences and Process Technologies

— Sixth International Conference on Engineering
Construction and Operations in Space

— Ninth Annual NASA-JPL Advanced Space Propulsion
Research Workshop

e 30 years of reference documents on space technology and
fluid/materials behavior

e Detailed technical briefings from NASA, academia and
industry

T Commilies an Microgravity Fesearch
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BEIGEIN G DS — XMoo

- Human Support

Health & Human Performance
Advanced Life Support
Advanced Habitation Systems
EVA & Surface Mobility

Space Transportation

Affordable Earth-to-Orbit Transportation
Advanced Interplanetary Propulsion
Cryogenic Fluid Management

Aeroassist

In Situ Resource Utilization

Research & Technology Investment Areas for Exploration

Advanced Space Power

Advanced Power Generation
Power Management
Power Storage

Information & Automation
Communications & Networks
Advanced Operations
Intelligent Systems
Intelligent Synthesis Environment

Sensors & Instruments

Science & Engineering Field Labs
Planetary Prospecting
Sample Curation

Environmental & Medical Moﬂfmrfﬁg
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{ CONTINLEELD /
Advanced Space Power

Y Advanced Power Generation

* Lightweight, high rclaibility, high efficiency
systems for multi-year missions

* Megawatt-class systems for efficient
spacecraft propulsion

» 100 KW-class fixed surface power
systems

* 10 KW-class mobile systems
* | KW-class human-portable systems
* Advanced PV systems for 1-100 KW
* Solar Dynamic options for 10-1000’s KW
* Potential Nuclear options for 100 - Multi-MW

Energy Storage

« High capacity regenerative fuel cell and
lightweight battcry options for long-term
storage and fixed surface operations

* Compact, mobile systems (batteries, fuelcells
or flywheel systems)

Power Management

»  Very lightweight, high efficiency systems (10-
100X better than state-of-the-art)

*  Broad power range: KW to MW

* Reconfigurable, fault tolerant power networks
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HEDS Functions

Power Generation and Storage
Space Propulsion

Life Support

Hazard Control

Material Production and Storage

Construction and Maintenance

Somrmitles on Microgravity Roscareh
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Approach

Defined broad HEDS functions
Determined capabilities required for each function

Discussed various technologies capable of fulfilling each function
Current space technologies

Proposed space technologies
Current Earth technologies applicable to space
Broke down technologies into subsystems and processes
Identified common subsystems (or processes) affected by gravity levels

Identified phenomena important to operation of subsystem and processes

10 Canmitdes on Microgravity Research
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Approach (Example)

HEDS function
(Space Propulsion)

Capabilities required to fulfill function
{Generation of adequate propulsive force)

System/Technologies that can provide capability
{(Solar Electric/Rankine Cycle)

Subsystem/Component
(Two-phase radiator)

Phenomena that affect operation of subsystem in low gravity
(Multiphase flow and heat fransfer)

12 Commitlee on Microgravity Research
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Approach (Example)

HEDS function
(Material Production and Storage)

Capabilities required to fulfill function
(Physical and chemical processing)

System/Technologies that can provide capability
(Sabatier reactor)

Subsystem/Component
(Catalyst bed reactor)

Phenomena that affect operation of subsystem in low gravity
(Flow in porous media)

1 Commities on Vicrograwily Hesearch
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Capabilities Needed to Carry Out HEDS Functions

Power Generation and Storage
Generation of adequate energy
Storage of energy
Conversion of energy to work

Space Propulsion*
Generation of adequate propulsive
force

Life Support*
Revitalization of atmosphere
Reclamation of water
Management of solid waste
Control of temperature and humidity
Production of food

Hazard Control
Protection of crew and habitat/spaceship from fire
Protection from radiation
Protection from chemical and biological
contamination

Material Production and Storage*
Extraction and transport of feedstock
Concentration and beneficiation of feedstock
Physical and chemical processing
Storage of processed materials

Construction and Mainfenance
Site preparation
Fabrication of components or structural elements
from raw or processed materials
Joining of components or structural elements

13 Commitree an Microgravity Research
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Schematic of a generic electric power system.

 EnERaY SOURCE |

HISLERR
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AHD DIEmIEUTION

ﬁsam'rons
CONVERTERS, -

'c:omnm. ciRetits |
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SPACECRAFT
SYSTEMS

T ioADS

- - ENERGY STORAGE. -

e ; RECHARGEABLE BATTERIES
1 FIEGENERAIWEFUELCELLS

FLYWHEELS '
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Corrmittea on Microgravity Research:



0L¥012-000C—dD/VSVN

o€

Qualitative diagram illustrating the regimes of applicability

ELECTRIC POWER LEVEL (kWel

of various space p

ower systems.

SSNUCLEAR REACTORS
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7/ POWER SYSTEMS 7
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X GENERATORS =
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Solar Energy Flux as a Function of Distance From the Sun
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Schematic diagram of fuel cell-electrolysis cycle.

Commiltee an Mezragravity Research
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Static feed water electrolysis cell.

Product H, Product O,

t

f :

Liquid
Water

. 40H’

Eiectrodes

b 4H20 = 4e — 2H, + 40H"

~ Oy + 2H,0 + 4de

=+ Asbestos Matrices

DC Power
Supply
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List of Selected Subsystems for Passive

and Active Power Generation
]

Reprasenlative
Subsystem

Passive

Balteries

Boiler

Caplilary pumpad
loop

Il

Compressor

—

-

Condanser

-|

I 1

Converter

Controls

e

Evaporator

Heal exchanger

IZIr_I

Haat pipes

x|={' ||

Igl'_l

Fhase separator

Flpes .

o

Pumps

Radiators

Regenarative
heat exchangers

=]

IT(T|= | =TT

izl

Regulators

Solar array

Solar collestor

L] i r-' l_'

Storage

Turbine/alternataor

Valves

ri-lzlzl -

=|r|=|T] |rr

r"'l:—gg' —

NOTE: the abbreviations: PV-photovoltaic, TE-thermoelectric, Tl-thermoionic, TPVY-

thermophotovoltaic, BR-Brayton, RA-Rankine, ST-8tirding, and AMTEC-alkali mstai thermal-to-
electric conversion.The letters L, M and H designate low, medium, and high preliminary
assessment of the impact of reduced gravity on the phenomena taking place in the subsystam,
respectively. Where no letter is given, the subsystem is not applicable to the system listed.

NASA/CP—2000-210470
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Phenomena Affecting Common Subsystems
)

Phenomenan L
T

Multiphasa Systam
Combustlon
Granular Flow
Struciural Dynamics

Pyrolysls

Subgystem/
Variant
Storage tanks
Gas
Liguid
Cryogenic
Pumps
Conmnsmﬁ PR .. . - ' . . . . . FRRNPINE
Liquid fine .
Microdevices
Compressors — S A DO
Rotary .
Prping P | 1]
Gas-phase " " v .
Ligurd-phase - : 1
Two-phasa I HENE. K i w | w ] w] .
Radialors
Sdid-stata : .
Gas-phase AU R D * -1 v
Two-phase . e o e} el e .
Heat pipes
Capllary pumpad loaly | = | = | = . T om O T s | .
Simpla . L . s [ s | » |
Fang and blowars | - »
Evaporators :
Boalars . Lo [ 3 - » - [} N
Vaporizera e o . . .
Liquifiars ]
Condengers : . . .
Distillations units : : -
Fillersisaparators : A . P .| .
Gas/solid '
Gas/liquid L =
Liguid/liquid . i
Liguid/sai - ' I
Yortex separalors :
Hotating dram
saparators i
Spargera ! i “-| - .
Walves and attuators : i
Heatars i
Lalalyst bads ’ *
Seels : e I I
Haat gxzhangars . :
Gas/gaa - . :
Gasdiguid ' . . i
Gae/solid B .
Fluidized-bad v
Fire eatinguishers - -
Smoke detactors .

Flow In Fur_u:f.ls Medla
Boiling Heat Tmn-sl;er- o
Multiphase Flow amnd Hea
Phase-Change Heat

Phase Scparation/Distrib.
Condensation Heat

Gapifarity
Marangoni Flows
Tvo-Phase Flows
Mixing
Convection
Evaporation Heat
Sulidi;icatiun

Weiting

-
L
-
L ]
-
L

—--r

18 Committec on Micregravey Resaarch
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Phenomena of Importance in Reduced Gravity
L

Interfacial Phenomena

Capillary Equilibrium and Dynamic Forms
Watting
Marangoni Effect

Multiphase Flow

Phase Separation and Distributicn
Mixing

Multiphase Systerns Dynamics
Flow in Porous Media

Heat Transfer

Singla-phase Convection

Evaporation Heat Transfer

Boiling Heat Transfer

Condensation Heat Transfer

Two-phase Forced Convection Heat Transfer
Solid/Liquid Phase-change Heat Transfer
Phase Change Heat Transfer in Porous Media

Solidification

Pattern Formation
Casting

Chemical Transformation
Combustion
Pyrolysis
Solution Chemistry

Behavior of Granular Materials

Lunar and Martian Regolith
Kinetics of Granular Fiow

18 Commitiee or Wlerogravey Rescarch
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Cryogenic Storage

Gravity Issues

Fractional Gravity
- terrestrial storage technologies probably adequate
- other environmental considerations - dust, temperature cycles, eilc.

Microgravity
- fluld position
- fluid configuration
- fluid transfer
- heat transfer

15 Committee on Misrogravity Rezearch
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Effect of g-Level on Multiphase Flow
Two-phase flow of air and water through a pipe at normal gravity (top), fractional
gravity (middle), and very low gravity (bottom). (The gravity vector is directed
toward the bottom of the photos.) The flow distribution of gas and liquid in two-
phase systems is strongly affected by the gravity level. Currently the impact of

‘that altered distribution on flow dynamics, heat transfer rates, and pressure drop

characteristics is poorly understood.

Slug Flow | o
DGRV - — —

G's

Committee on Microgravity Research
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1g. 3. Comparisons of flow regimes under earth gravity and microgravity

FEOM SRITo T R, Muce, Exg A DEslan (1999



Radial void distribution for 1 g, and bubbly upflow

(Serizawa, 1974) where « is the local void fraction
and r/R is the relative radial position.

o, Local Void Fraction

-1-.;0 ' o : 1.0
Radial Position ryR

: Committag on Microgravity Besearch
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Approximate composite microgravity pool boiling curves for R-113
from steady and quasi-steady measurements made during shuttle

flights STS-47, STS-57, and STS-60.

10D .
1 © Transient - high subcoeling
o Transicar « low subcooling v (CHF). Kuia _
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tn : Peol Builing High ﬂuh-l..nnlmg
e - - : a g
= : . ]
g Low subcooting
:5" & -] ~
ot g K o
= o
I s
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Natucal Coavection Film Boiling. Berzason {1961}
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0.1 ' - — .
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Heater Surface Superheat(AT, =T, - T,,) {".'(__':}.
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Examples of Phenomena in Heat Pipes in ug Environment -
An Example

Obstruction of liquid transport by incipience of nucleate boiling

Recession of the evaporating liquid meniscus in a groove can lead to
unstable mode of operation in the axially-grooved evaporator

Formpation of vapor zone in a porous structure can increase the
overall thermal resistance of evaporator and finally lead to dryout in a
heat pipe

Shear stresses at the liquid-vapor interface combined with the effects
of thermocapillarity can lead to flooding of he capillary structure in the
condenser of an axially grooved heat pipe

Existence of thick liquid films attached to the extended evaporating
meniscus in a capillary tube can effect performance (dryout) in
capillary-driven devices

25 Commities on Microgzawly Research
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Schematic of a simple heat pipe.

Hest input
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Concrete Production

Cement Production
Quarrying, grinding and blending, clinkering, ball-milling

Concrete Production
Batching of aggregate an cement, mixing, transport, placement, curing

Gravity Issues

Clinkering dependent on rate of fall in kiln
Heat and mass transport in kiln
Sedimentation and buoyancy during/after placement

16 Comimiltes on Microgravity Hasearch
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High Priority Research Areas

e [mportant ones arising in numerous HEDS technologies where
gravity impacts physical phenomena

* Not every phenomena category resulted in high priority research
recommendation

e Only those high priority research areas which have a potential of
affecting a wide range of HEDS technologies are identified

e Medium priority research aras are listed in the report

24 Camrmitee on Microgravity Besearch
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Surface or Interfacial Phenomena
]

High-Priority Research Recommendations:

e Physics of Wetting—hysteresis effect, dynamics of wetting process, wetting below
scale of correlation length, empirical and fundamental knowledge of wetting
material combinations and conditions

« Capillary Driven Flows—flows and transport regimes during evaporation and heat
transfer, scaling of flow regime boundaries, Marangoni convection, effect on
dynamics of liquid and bubble oscillation, effect on motion of contained liquid

HEDS Applications

» Welding, liquid phase sintering, the operation of wicks in heat pipes for thermal
management, use of capillary vanes in cryogenic storage tanks to control the
position and movement of liquids, lubrication, in boiling/condensation heat transfer
including the rewetting of hot surfaces

240 Commitree on Microgravity |lgsearch
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Multiphase Flow and Heat Transfer
]

High-Priority Research Recommendations:

Develop physically-based models for predicting flow regimes, flow regime
transitions, and multiphase flow and heat transfer in reduced gravity.

Assess model using reduced-scale and separate-effects experiment in
microgravity.

Assess gravitational effect on forced convective boiling, two-phased forced
convective heat transfer and pressure drop.

HEDS Applications

Power production and utilization systems, life support systems, other phase
change systems that require high energy-transport effucuency and high power-to-
weight ratios.

21 Comruttee on Microgravity Resgarch
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Multiphase Flow and Heat Transfer

Other Research Recommendations:

¢ Assess gravitational effect on convective condensation heat transfer.

Study methods for enhancing single- and two-phase heat transfer and reducing
pressure drop, in order to decrease equipment mass and volume.

¢ Study effect of gravity on two-phase and boiling flows in porous media.

HEDS Applications

« Power production and utilization systems, life support systems, other systems that
require high energy-transport efficiency and high power-to-weight ratios

22 Commitiec an Micragravity Fesearch
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Multiphase System Dynamics
|
High-Priority Research Recommendations:

¢ Collection and analysis of stability data on hoiling and condensing systems at
reduced gravity for use in testing analytical models of linear stability thresholds
and non-linear instability phenomena

HEDS Applications

» Reliable phase change systems. Prevention of operational problems or severe
damage due to global system instabilities in multiphase power/propulsion systems.

23 Cormittes on Migregrawty Rescarch
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Fire Phenomena
e

High-Priority Research Recommendations:

¢ Experimental, theoretical and computational studies of flame spread over surfaces of
solid materials in microgravity and fractional gravity, examining ignition requirements,
flame-spread rates, and flame structure.

« Gravity effects in smoldering, inciuding initiation and termination, propagation rates,
products of smoldering, and conditions for transition from smoldering to flaming
combustion.

HEDS Applications

e [ire detection and suppression aboard spacecraft and in other sealed habitats.

25 Committes on Microgravity Hasearch
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Granular Materials
|
High-Priority Research Recommendations:
o Development of predictive models of granular deformation and flow under
reduced gravity, including the effects of particle size, shape and constitution,

particle agitation, and electrostatic charge, expecially at low pressures.

¢ Predictive models of dust behavior in spacecraft and extraterrestrial
environments, including cohesion and adhesion mechanisms.

HEDS Applications

¢ Site preparation, mining activities, ore processing, structural installations and
habitat construction

26 Commites on Micrograwly Rosears™
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Programmatic Recommendations
L

Integrated multiphase fiuid physics research program needed to develop a reliable,
computational fluid dynamics model for predicting multiphase flow and heat transfer
behavior in reduced gravity systems.

NASA-wide coordination is heeded to ensure continuous exchange of information and
ideas, between fundamental research programs and spacecraft designers, on reduced
gravity issues.

» A rigorous peer review mechanism has been vital to quality of microgravity research
program and should be maintained as HEDS related research is incorporated into the
program.

» Research could probably not be accommodated within current pg fluids program

These recommendations are directed to NASA in general and not just to microgravity
program.

27 Commitee on Micragravity Fesearch
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Programmatic Recommendations (cont.)
L

+ NASA should utilize 1SS and its subsystems for test bed studies of scientific and
engineering concepts applicable to HEDS technologies, such as:

= Multiphase flow and heat transfer experiments to support computational model
development

» |dentification of fundamental control loop or system instabilities
» |nstrumentation and control systems for HEDS hardware

» Development of autonomous operational principles for HEDS systems

2B Cemmittes on Microgravity Research
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PRESSURE-RADIATION FORCES ON VAPOR BUBBLES

A. Prosperetti, Y. Hao, and H.N. Oguz
Department of Mechanical Engineering, The Johns Hopkins University
Baltimore MD 21218

At normal gravity, the effectiveness of boiling as a heat transfer mechanism relies in no
small measure on the rapid removal of vapor bubbles from the heated surface by buoyancy.
This process has a two-fold benefit, as it both aids in removing latent heat and in promot-
ing microconvective motion near the surface. At low heat fluxes, in microgravity conditions
complex bubble coalescence phenomena help remove bubbles from the heated surface, but the
effectiveness of this mechanism is limited and the critical heat flux is reached at much lower
wall superheats than on Earth.

In order to increase the critical heat flux at low gravity it is therefore desirable to remove
bubbles from the heated surface providing a substitute for buoyancy. The objective of this
work is to study the suitability of acoustic pressure forces (also known as Bjerknes forces) as
a means to achieve this end. This idea seems promising because small bubbles (smaller than
the resonant radius) tend to be attracted by sound pressure antinodes (such as those formed
near a solid heating surface), while larger bubbles are repelled by pressure antinodes. One
can thus envisage a situation where, as the vapor bubbles grow, they are eventually pushed
away from the heated region. Furthermore there would be the additional benefit of the local
microconvection induced by the pulsating vapor bubbles.

This argument ignores however the effect of the wall on the pressure field produced by the
pulsating bubble itself. This effect can be approximated by replacing the wall by an image
bubble, which would be pulsating in phase with the real bubble. It is known that such an
image bubble exerts an attractive force on the real bubble whatever its radius, and it is not
obvious a priori which one of the two effects would prevail.

Our calculations show that, if the wavefronts are parallel to the solid surface, the attractive
force of the image bubble prevails and the vapor bubble is attracted by the wall. A typical
example is shown in Fig. 1. Obviously, it is impossible to achieve bubble removal with such an
arrangement. However, if the wavefronts are perpendicular to the wall, the bubble is pushed
along the wall away from the pressure antinode once it grows past its resonant radius and the
objective of this investigation can be met (Fig. 2).

This work therefore suggests that acoustic forces can be used to remove bubbles from the
heated area provided conditions are such that the force is directed parallel to the rigid wall.

The previous results have been obtained with a pure vapor, spherical bubble model. In the
continuation of this work deformation of the spherical shape will be allowed and the simulta-
neous presence of an incondensable gas in the bubble will be considered.
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Figure 1: (Left) Bubble radius (a,above) and distance above the wall as a function of time under the
action of a 20 kHz sound field with wavefronts oriented parallel to the rigid surface. The pressure
amplitude is 0.3 atm, the initial bubble nucleus has a radius of 35 ym, and the resonance radius Ryes
used to normalize the radius in the upper panel is 75 ym. The liquid is water at 100 °C and 1 atm
pressure. At time zero the bubble is positioned 1 mm away from the solid wall located at Z = 0.

Figure 2: (Right) Bubble radius (a, above) and distance from the pressure antinode located at X
= 0 (b, below) as a function of time under the action of a 1 kHz sound field with wavefronts oriented
perpendicular to a rigid surface. The pressure amplitude is 0.4 atm, the initial bubble nucleus has a
radius of 35 ym, and the resonance radius Ry.s used to normalize the radius in the upper panel is 2.71
mm. The liquid is water at 100 °C and 1 atm pressure. At time zero the bubble is positioned 4.4 mm
above the solid wall and 75 pm away from the pressure antinode. Note the change of direction of the
bubble motion as it grows past the resonant radius.
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ON VAPOR BUBBLES
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Figure 6.36, Approximate compesite microgravity pool boiling curves for R-113 from
steady and transient measurements on PBE-IA-IB-IC (STS-47-57-80).

NASA/CP—2000-210470




0L¥012-000C—dD/VSVN

<9

MOTIVATION

-

e In low gravity bubbles linger near heated surface
= Coalescence and dry-out are favared

e Possible means to remove bubbles from the neighborhood
of the heater are

— Electrostatic fields
— Flow

—> Acoustic pressure radiation forces

e More gencrally, in microgravity means to “manage” bubbles are
necessary



FORCE ON A BUBBLE
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COMPONENTS OF MODEL

Vapor bubble in oscillating pressure field

Bubble-liquid réiétive velocity

Primary Bjerknes force

Effect of wall (~ “image bubble”) — Secondary Bjerknes force
Bubble motion under action of Bjerknes forces

Bubble deformation (in progress)



BUBBLE-BUBBLE INTERACTION - I
(WALL EFFECTS)
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Green's identity for one body
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BUBBLE-BUBBLE INTERACTION - II

Singularity expausion of the potential

¢~ZZA“ G(x —y®)

=1 n=0

Cocflicients A7 must be determined from boundary conditions

To impose them, use local representation near cach bubble
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TEMPERATURE FIELD
SPIIERICAL VAPOR BUBBLE

Energy equation
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Low Velocity Flow

Low Velocity Flow
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EXPERIMENTAL INVESTIGATION OF POOL BOILING
HEAT TRANSFER ENHANCEMENT IN MICROGRAVITY
IN THE PRESENCE OF ELECTRIC FIELDS

Cila Herman
Department of Mechanical Engineering
The Johns Hopkins University, Baltimore, MD

Problem statement

The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by
previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor
of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric
field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than
gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally
and theoretically.

Method of study and results

The research carried out within the framework of the NASA project focused on the analysis of bubble
formation under the influence of electric fields. In the first phase of the research air was injected into the working
fluid PF5052 through an 1.5mm diameter orifice located in the center of the circular ground electrode which is flush
with the bottom wall of the test cell. The life cycle of the bubble was captured on videotape with a high-speed
camera. Bubble shapes in terrestrial conditions and microgravity (microgravity experiments were carried out in
NASA's KC-135 aircraft) with and without electric fields were visualized for a range of operating parameters. In
addition to evaluating the effects of gravity, the magnitude and polarity of the electric field, the mass flow rate of
the air injected into the test cell, as well as the level of heating applied to the bottom electrode were varied during
these experiments. Typical bubble sequences for the uniform electric fields (0V and 25kV potential difference
between the electrodes) recorded in terrestrial conditions are shown in Figure 1 and in microgravity in Figure 2.

e T
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Figure 1. Bubble formation at an orifice without electric field (top) and with 25 kV applied to the electrodes as
function time visualized under terrestrial conditions in the Heat Transfer Lab of the Johns Hopkins University.

Experiments were carried out for two configurations of the electrodes. In the first series of experiments the
two electrodes were parallel, generating a uniform electric field. In the second series of experiments the shape of the
high-voltage electrode was modified to a spherical shape (its diamater being one fourth of the diameter of the
circular ground electrode) and positioned off-axis with respect to the bottom ground electrode. This electrode
configuration yields a nonuniform electric field.

Bubble shapes and sizes were measured using digital image processing. A dedicated digital image
processing code was developed for this purpose using the Matlab software. In the analysis, selected image sequences
were converted into a digital format using a frame grabber. The images were then enhanced and sequentially read by
the image processing code. The size of the bubble during bubble formation, its volume and key dimensions were
extracted and stored in a file for further evaluation. Measured bubble shapes are currently being compared with
predictions obtained using simplified analytical models.

In addition to the visualization of bubble shapes, temperature fields were visualized using holographic
interferometry. Dedicated image processing codes for the evaluation of interferometric images of bubbles and

NASA/CP—2000-210470 77



tomographic algorithms for the tomographic reconstruction of 3D temperature distributions around the bubble were
developed.

a=-0.026 = m=1 0576 10 k /s
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Figure 2. Bubble formation at an orifice without electric field (top) and with 25 kV applied to the
electrodes (bottom) as function time visualized in microgravity conditions in NASA's KC-135 aircraft.

The results of visualization experiments clearly indicate that there are significant differences in bubble
shape, size and frequency, caused by effects of gravity and electric fields. In terrestrial conditions the bubbles at
detachment are much smaller and more elongated in the presence of the electric field than for the reference
conditions without the electric field. Microgravity experiments have verified that in the presence of electric fields
bubbles do detach from the orifice and move away from the surface as opposed to the situation when large spherical
bubbles developing at the orifice remain motionless on the surface in the absence of acceleration. The bubble shape
in microgravity is elongated when an electric field is applied between the electrodes, contrasted to the nearly
spherical shape in the absence of the electric field. In addition to the change of shape, one key difference in the
behavior of the bubbles in the

[l WA -3

presence of the electric fields is the o= 9.8, E= 50 kv b =457 =98, E= 0 kv
significantly reduced tendency for Bl rwwreyyres S T
coalescence. w1 1
Apart from the = 0'5/_\('&” 05 mt
experimental studies, existing = 0 0
simplified analytical models S 05 05
describing bubble formation at an 5 r
orifice and during boiling were =0.3644rmrm r=0.38077mm
. 15 15
evaluated and modified to 0 1 2 3 o 1 2 3
acco%nmodats: th; physical effects g= 0.098, E= 50 k¥ g=0.098, E=0 kv,
considered in the NASA study. By B8, a0 Ross
Bubble shapes and sizes at w1 1
detachment were evaluated for a = 0_5/_\ . 05 /_\“/m
range of working fluids as function = 0 i limit 0
of the magnitude of the electric field S 05 v 05
and the gravity level. 5 : y
The influence of gravity r=2.7023mm r=3.8077 rm
- 15 1.5
level on bubble shapes in the 0 1 2 3 0 1 2 3

performance fluid PF5052 for two wertical axis vertical axis
values of the potential difference

imposed between the electrodes,  Figure 3. Bubble shapes at detachment for terrestrial conditions and

U=50kV and U=0V, is illustrated in  1/10g for a potential difference between the electrodes of 50 kV (left)
Figure 3. Results obtained for and 0 kV (right)

terrestrial conditions show little

difference in bubble shape due to the

electric field. Bubble elongation in microgravity is pronounced, as illustrated in Figure 3. The elongation becomes
more significant with increasing magnitude of the electric field (50 kV) both in terrestrial conditions and
microgravity. The comparison of modeling data with experimental results is currently underway.
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Pool Boiling in Microgravity

under the Influence of Electric Fields

OUTLINE

1. Introduction and motivation

2. Summary of past research accomplishments

3. Bubble formation at an orifice in microgravity under the influence
of electric fields

- Experimental approach

- Experimental setup

- Visualization images and results
- Modeling efforts

4. Outlook and future research
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Pool Boiling in Microgravity
under the Influence of Electric Fields

FORCES ACTING ON A BUBBLE DURING
DYNAMIC BUBBLE GROWTH

Force balance 7, +F . =F, + F, + -

2
Drag F, =Cn%[§] rr?
Surface tension F; =2z r,o siny
4 d’R
Inertia Fi=—2R p —
173 2L i’
Pressure Fp = 22, Apy | w7l

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Microgravity
Under the Influence of Electric Fields

FORCE CAUSED BY THE ELECTRIC FIELD

= = 1 2 1 ) o€
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Coulomb’s force (electrophoretic) pE
Dielectrophoretic force %EIV.-:
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Gases: p{a—£~) ~e(eg-1)  Liquids p(ai] _&k -V e -2
%P Jr op )y 3

Relaxation time of electrical charges
g

Thermophysical and transport prope rties k= k(EJand u = u(E)
Electrical properties: and o =(0),(1-bAT)
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Pool Boiling in Microgravity
under the Influence of Electric Fields
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Momentum equation

GOVERNING EQUATIONS
p(§+i5-\7ir'] =-Vp+p E@—# v
ot
V-vy=0

Incompressibility condition

Energy equation

Force of electrical origin

oT
ot

F, =pfé—152v£-v 1p g %
2 2 op ),

o electrical conductivity
E electric field strength
p, free charge density

¢ dielectric permittivity

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Past research accomplishments
- measurement techniques -

- Visualization of unsteady temperature distributions around bubbles
using real-time holographic interferometry

- Accounting for light deflection effects in the reconstruction of temperature
distributions from interferometric images

- Reconstruction of axially symmetrical temperature distributions
from interferometric images

- Reconstruction of 3D unsteady temperature distributions from
interferometric images using tomographic techniques

- Measurement of bubble volume and dimensions using digital image processing

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Microgravity
under the Influence of Electric Fields

R Tt - A e

THERMAL PLUME ABOVE THE HEATED DISK
VISUALIZED BY HOLOGRAPHIC INTERFEROMETRY

by -
e
&y ET PGS

Surface
B temperature T,.= 29 °C
g AT/fringe pair=0.05 °C

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory



Pool Boiling in Microgravity
under the Influence of Electric Fields

AIR BUBBLES INJECTED INTO THE THERMAL
BOUNDARY LAYER THROUGH AN ORIFICE

Working fluid: PF-5052
Saturation

temperature: T,, = 50 °C
Pressure: p= 1 bar

Surface
temperature:T, = 25 °C
AT/fringe pair = 0.05°C

Time separation
between
images = 0.01 seconds

The Johns Hopkins University Cila Herman
Heal Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

PHF VAPOR PATTERNS
HYDRODYNAMIC THEORY

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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SCHEMATIC OF THE
EXPERIMENTAL SETUP
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Pool Boiling in Microgravity

under the Inﬂlme of Electric Fields

Schematic of the
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Heat Transfer Laboratory

NASA/CP—2000-210470 90



0L¥012-000C—dD/VSVN

T6

Pool Boiling in Microgravity

under the Influence of Electric Fields

Details of the
test cell

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Surface and contour plots of the electric potential () for 20kV
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Surface: electric field (normE) Contour: electric field (normE)

x 10

3.666
3.483
33

3.117

275
2.567
2.384
22
2017
1.834
1.651
1.467

el 1.284

1.101
0917
0734
05

0.367

0.1

2933

x10

3.9

125

05



Pool Boiling in Microgravity
under the Influence of Electric Fields

Pressure relief system

FLEXIBLE CONTAINER 3 FLEXIBLE CONTAINER 2 LA : T

(for adding PISOS2 to [for rernoving excess alr)
e test cell)

1/8° O.D. Tubing

L. N (for removing the excess ai
(Materal: Tetzel] — g ool
—> PF 5052
1 Air+pF 5052
1/8* O.D. Tubing
(Material: Tetzel)
" Blectiodes
Syringe volume: 25 mi
—>
Syringe Alr T Air
The Johns Hopkins University Cila Herman

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Experimental rack

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Pool Boiling in Microgravity

Under the Influence of Electric Fields

Experimental parameters

* Potential difference between electrodes: 0V, 5kV, 10kV,

15kV, 20kV

» Polarity

 Shape of the high-voltage electrode: cylindrical, spherical

» Heating applied to the ground electrode
* Gravity: 1g, Og, 0.3g, 0.1g

* Mass flow rate of the injected air

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herrman
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Pool Boiling in Microgravity

under the Influence of Electric Fields

PHF VAPOR PATTERNS

=

-

S

4

a) without electric field

U

[

/_,'

@

b) with electric field

The Johns Hopkins University
Heat Transker Laboratory

Cita Hetrman



0L¥012-000C—dD/VSVN

00T

Pool Boiling in Microgravity
Under the Influence of Electric Fields

HYDRODYNAMIC MODEL FOR PEAK HEAT FLUX

(/e _ g 3[03(»'% A )J" Zuber and Tribus (1958)

hﬁpr pf

based on the Helmholtz - Taylor analysis

ELECTRIC FIELD EFFECT -
ELECTROHYDRODYNAMIC APPROACH

%=C{(OE(PLP,))% [ Py JJs—a.)‘ET Melcher
] | I JE ptp

h,p, 2, (e +5,) (1963)

Reduction of bubbie departure size PE=C,
increase of bubble departure frequency =,

Healod surface

Liquid stream

The Johns Hopkins Universily Cikr Hermar:
Heat Transfer Laboralory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Life cycle of an injected bubble in 1g

Poterwial Difference: 0 kV
Mass Flow Rate: 2.58 x 107 kyg/s
Time Imierval: 0.004 s

Terrestrial, Cleveland Matrix, Experiment No, 7

Tome = D055
VYohame = 4.22 x 107 cm’

The Johns Hopkins Uiniversity
Heat Transfer Laboratory
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Fool Boiling in Microgravity

under the Influence of Electric Fields

Life cycle of an injected bubble in 1g, 20kV

Experiment Parmocters:
Potential Difference: 20 kY
Mass Flow Rate: 2.58 x 107 kg/y
Time Interval: D.004 5

Temrestrual, Cleveland Matrix, Experimem Mo. 11

Time = 0,024 s
Volume = £.77x10° em’

Avcrage Acceleratoon:
Acceleration X: O g
Acceleration Y: O 2
Acccleration 7: 1 g

The Johns Hopking University
Heat Transfer Laboratory

. Cika Herman



Pool Boiling in Microgravity
under the Influence of Electric Fields

Life cycle of an injected bubble in microgravity, 0V

-

0L¥012-000C—dD/VSVN

Time=03

€01

Experiment Parmmeters: Averspt Accelerstion:
Potential Differesce: 0 kV Accelerstion X: 0.02g
Mass Flow Rate: 2.58 x 107 kg/s Accelesstion Y: 0.04 g
Time Inserval: D.043 s Accelerstvn Z: D02 g
Cleveland, Dey 2: October 20, 1999, Experament No. 7
The Johns Hopkins University

Heat Transker Laboratory



0L¥01C-000C—dD/VSVN

70T

The Johns Hopkins Universify

Cleveland Experiment Day 3 October 21, 1999

Heat Transfer Laboratory

under the Influence of Electric Fields
Typical Acceleration Data: Bolted-Down Configura

Acceleration vs. Time (Segment 8)

Time (s)

Acceleration X:
-0.02 + /- 0u
Acceleration Y.
-0.03 +/- 04
Acceleration Z:
0.00 +/-0.0

Cila Herman
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Pool Bailing in Microgravity

under the Influence of Electric Fields

Typical Acceleration Data

0.18

-- 0G Portion

Acceleration vs. Time (Segment 8)

) 1
i N —— Accalerometer X
0os + —— Accelerometer Y
i gl Accelerometer Z
0
Acceleration X:
005 -0.02 +/- 0.0
Acceleration Y:
-0.03 +/-0.01
Acceleration Z:
0.1 0.00 +/- 0.03
Cleveland Experiment Day 3 Ocfober 21, 1999
The Johns Hopkins University Cila Heman

Heat Transfer Laboratory
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Pool Boiling in Microgravity
under the Influence of Electric Fields
Typical Acceleration Data
Acceleration vs. Time (Segment 10)

1.4

12

0B
06

04

02

—— Acceleromater X
—— Accelerometer Y
Accelerometer I

Free-float (43-47 s.

5} Acceleration X:
-0.021 +/- 0.0¢

a3 Acceleration Y:
-0.030 +/- 0

Accelerafion Z-
04 0.015 +/- 0.6k

_Hﬂ.mn BExperiment Day 3 February 3, 2000
The Johns Hopkins University Cila Hsrm‘unf

Heat Transfer Laboratory



Acceleration vs. Time (Segment 10)

Pool Boiling in Microgravity
Z D S —— -
% under the Influence of Electric Fields ]
g Typical Acceleration Data -- Free-float Porfion s e
| &

Accelerafion X;
-0.021 +/-0.0C

Accelerafion Y:
-0.030 +/- 0.0C

Accelergtion Z;
0.015 +/- 0.00

Cila Herman
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Pool Boiling in Microgravity
under the Influence of Electric Fields
Interfacial instability on bubble surface in microgravity

Experimental Parameters:
Potential Difference: 0 kv

Mass Flow Rate: 4.09 x 10 -7 kg/s
Time interval: 0.004 s

Cleveland Experiment, Day 3, October 21, 1999

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields
Coalescence of Bubbles in Microgravity

Experiment Parameters:

Potential Difference; 0 kV

Mass Flow Rate: 4.09 x 10 -7 kg/s
Time interval: 0.004 s

Cleveland Experiment, Day 3, October 21, 1999

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields
Life cycle of an m]ected bubble in microgravity, 20kVL—

Time=0.52s
Volume = 9.19 x 107 em’
Potential Difference: 20 kV Acceleration X: 0.03 g
Mass Flow Rate: 2.58 x 107 kg/s Acceleration Y: 0.02 g
Time Interval: 0.040 s Acceleration Z: 0.02 g
Cleveland. Day 2: October 20, 1999, Experiment No. 11
The Johns Hopkins University Cila Herman

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Bubble dimensions: terrestrial, 0V

Experimental Sequence
Terrestrial - Cleveland Matrix
0 kv,1g, 0.7 mm

3 -|'— — = 3 e
Height

£ 2 ol
5 S DS
2 K %
£ £ N~
a 2 o
2 \h
S 1 4 S
o

0 I T 1 T | D - I | | 1 5

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Time (s) Time (s)
The Johns Hopkins University Cila Herman

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Bubble dimensions: terrestrial, 20kV

Experimental Sequence

Terrestrial - Cleveland Matrix

20 kV, 1 g, 0.7 mmi/s

4 4
Height
3+ _ 3
E 4
£ -
3 |5
e o
§ 2 /mm § 2 -\
o 3
= F g
é / \:\;x
@ S
L& 14 RN
%‘?_——______ B
0 T T 1 T I 0 1I T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
Time (s) Time (s}

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

Bubble dimensions: microgravity, 0V

Experimental Sequence
Cleveland, Day 2 - October 20, 1999
0kV,0g, 0.7 mm/s

7 125
Height 1.20 -
8 - = .
7 1164 |
£ -7 Width |
E -l / = 110 |I H‘.
% / - | \hi
; 1.05 A
5 J-r’-’:/_ﬂ ‘lL,,l. !
g 4 1 ,FI A 1Im ] i..llrll q%l\h |
s j/ L_l"ll o '.I I_-’h'l
0.95 W e /
: \r | e M
14 S
I 0.90 - .I"&
2 rll T T T T T 085 T T : : : T
00 01 02 03 04 05 Q8 0O7 00 01 02 03 04 05 06 o7
Time (s) Time (s)
The Johns Hopkins University Cila Herman

Heat Transfer Laboratory



0L¥012-000C—dD/VSVYN

147"

Pool Boiling in Microgravity
under the Influence of Electric Fields

Bubble dimensions: microgravity, 20kV

Experimental Sequence
Cleveland, Day 2 - October 20, 1999
20 kV, 0 g, 0.7 mmi/s
a —
1.3 —l_
Height ~
/ 1.2
- 64
E 1.1 -
. | <" \Width H I \l
2 / by T
|:|=:| 3 I,_f'ﬁ' -'u" A%
f/ p=li [N
2] 07 - RN
1 T T 1 T T ﬂﬁ T T Hl- =
00 01 02 03 04 05 086 0.0 0.1 0.2 0.3 0.4 0.5
Time (s) Time (s)

The Johns Hopkins University

Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

THERMOPHYSICAL PROPERTIES OF PF-5052
AND SELECTED WORKING FLUIDS

Fluid |Chemical Thermophysical Properties
Structure| Boiling | Critical Point | Density Thermal Specific Heat

Point at25°C| Conductivity | Capacity at 25°C

T Te Pc Pe Kiiq Kyap Cplig Cp vap

[°Cl rcl [bar] [kg/m’]) [W/mK] [W/mK] [JkgK] [VkgK]

5F|;N0 50.00 | 181.00 | 19.15 | 1700.0 | 0.062 0.010 975.2
R123 |CHCLCF;| 27.78 | 183.70 | 3.67 | 1463.0 | 0.081 0.011 965.0 | 721.0
R141b [CCLFCH;| 32.15 [ 20835 | 4.54 | 1230.0 | 0.091 6914 | 775.3
Water |H,O 100. | 3740 | 219 | 9583 0.679 0.025 4220.0 ]2030.0
The Johns Hopkins University Cila Herman

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

ELECTRICAL AND OPTICAL PROPERTIES OF
PF-5052 AND SELECTED WORKING FLUIDS

Fluid | Chemical Optical Electrical Properties
Structure | __Properties
Index of Permittivity Electrical Relaxation
refraction at Conductivity Time
25°C
n E)ig o i
[Farad/m] [1/Qm] [ms]

PF5052 |CsF,)NO 1.2712 1.541 E-11 1.29E-08 1.20

R123 CHCLCF; 1.329 3.984 E-11 4.72E-08 0.84

R141b CCLFCH; 1.36 7.145 E-11 9.47E-09 7.55
(at 10 °C)

Water H,O 100. 7.080 E-10 5.52E-06 0.12

The Johns Hopkins University Cila Herman

Heat Transfer Laboratory
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Pool Boiling in Microgravity

under the Influence of Electric Fields

MAXIMUM BUBBLE SIZE IN THE ABSENCE

OF ELECTRIC FIELD (Fritz, 1935)

Basic assumptions:
1. Buoyancy balanced by surface tension forces
2. Orifice diameter much smaller than bubble diameter (?)

Governing differential equation: =+

X Ry, (o}
L o)
Maximum bubble volume: Vrﬁm[%] =0.01667 ®
c

1

Equivalent departure radius: R, =0.0103 ® [E—T
pg

Fritz, W., 1935, Berechnung des Maximalvolumens
Physikalische Zeitschrift, Vol. 36, No.11, pp. 379-384.

1 sin®_ 2 glpy-ps) ,

von Dampfblasen,

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Pool Boil'm in M rau!z' - . S

Under the Influence of Electric Field

Radius of spherical bubbles as
function of contact angle: Fritz model

--------

S i - e T T T T Y P el e Sl

| R R [————— SR --,lr------.-.---:.----a.--..-- i

..........................................................

-----------------------------------------------------------

The Johns Hopkins University Cila Herman
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Pool Boiling in Microgravity

Under the Influence of Electric Fields

MAXIMUM BUBBLE SIZE IN AN ELECTRIC FIELD
Cheng and Chaddock, 1986
Assumptions:

e Relies on bubble volume and contact angle from Fritz model

* Buoyancy balanced by surface tension and the electric field force
e Orifice diameter much smaller than bubble diameter (?)

e Bubbles with spheroidal profiles

E | 2
Governing equation: Sladsad T |- L o 0
ox e 30 O«
Parameters:
|
23 . - -
e= [l - 5—1] — eccentricity H= (6 — 1), , a = mfl" - radllus
a (1- H)E;, +ng; minor radius
- -2 1
n= 25 (e 2] Bond number 8o g= 2.2 g
2e l-e o

Cheng, K.J., Chaddock, J.B., 1986, Maximum size of bubbles during nucleate
boiling in an electric field, , Int. J. Heat Fluid Flow, Vol, 7, No. 4, pp.278-282.

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory
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Pool Boiling in Mi ravi
Under the Influence of Electric Fields

Elongation of the bubble in
the elec field |

B s Sy WP [ P ————— T ——— (A T ——

sssshssssssdessssnsleme P - Py — - S A | |

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman



0L¥01C-000C—dD/VSVN

Tct

Pool Boiling in Microgravity

Under the Influence of Electric Fields

Elongation of the bubble as function f...: 7w
of radius and electric field magnitude

1.’ - e T
- s 5
s 2 : e
~ 43H-- 10 [l ol 4
i electric field (kV) E i
_ i’-.ig_h .......... fronsiossuncossnsnssasibyonssiosusi s sl saess
T S e e« S——
- ......... ;_-h .......... 4
| RO i__— - I - F i = IIL
0 D& s 25 3
:  radius (mm) .

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Pool Bailing in Microgravity

Under the Influence of Electric Fields

Bubble shapes in PF5052 as functlon = &

of the parameter

Cila Herman
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Pool Boiling in Microgravity

Under the Influence of Electric Fields

Bubble shapes in PF5052 as function

of electric field and gravity

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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Pool Boiling in Microgravity

Under the Influence of Electric Fields

Bubble shapes in R141b as function
of contact angle and electric field

The Johns Hopkins University
Heat Transfer Laboratory

Cila Herman
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_I_’oouaoiling_in Miwmi

Under the Influence of Electric Fields

Bubble shapes in R141b

The Johns Hopkins University
Heat Transfer Laboratory
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Pool Boiling in Microgravity
Under the Influence of Electric Fields

Future work

« Validation of the analytical model *

* Numerical determination of electric field force components
for experimental sequences *

* Quantify the impact of electrode shape *

» Establishing the dependence on gravity level *

* Experiments with boiling on a single nucleation site
* Experiments with holographic interferometry

The Johns Hopkins University Cila Herman
Heat Transfer Laboratory



Surface plot of the electric field for 25kV on the top electrode; with a bubble between electrodes

0.5
0

-0.5

NASA/CP—2000-210470 127



SATURATED POOL BOILING HEAT TRANSFER MECHANISMS

J. Kim, N. Yaddanapudi
Dept. of Mechanical Engineering
University of Maryland
College Park, MD 20742

ABSTRACT

In the present work, saturated pool boiling was studied in a reduced gravity environment
provided by a KC-135 aircraft. The objective of this work was to identify the boiling processes
associated with nucleate boiling, critical heat flux (CHF), and transition boiling. Saturated pool
boiling of FC-72 at 1 atm on an array of 96 heaters, each 0.27 mm x 0.27 mm in size was
studied. Each of the heaters was maintained at a constant temperature by means of electronic
feedback circuits, and the time-resolved heat flux from each heater was calculated from the
instantaneous voltage across that heater. At each temperature, the voltage across the individual
heaters were sampled at a rate of 1250 Hz for 6.4 seconds.

Boiling curves for microgravity
and earth gravity are shown in Figure
To avoid hysteresis associated wi

20

boiling incipience, the measuremen B

—=&— Earth Gravity 2

were started off at a high wa 151 | —e— microgray 1

—&— Microgravity 1

superheat. The earth gravity data ¢
seen to be very repeatable. The boili
curves for microgravity agreed witl
each other for superheats upiB0 K,
but differed at higher superheats. TI
discrepancy between these two boilit
curves is probably due to g-jitter, whic 5 2 25 % % w
tends to remove the larger vap ATIK]
bubbles from the heater surfac
allowing liquid to rewet the surface. A
lower wall superheats, nucleate boilir.y
was observed wherein multiple bubbles grew, often merged, then departed with relatively small
departure diameters. At 35 K and 40 K, a single large bubble was seen to cover the entire heater.
In the low heat flux nucleate boiling regime (from 15 K to 25 K on Figure 1), microgravity heat
fluxes were slightly larger than the corresponding values in earth gravity due to more nucleation
sites and larger bubbles in microgravity. Similar trends were observed by other researchers [1, 2,
3]. A critical heat flux (CHF) of about 7.5 W/émvas observed in microgravity at a wall
superheat between 30 K and 35 K. CHF was not reached in earth gravity over the superheats
studied. However, a CHF of 22 W/€mwas observed in a previous study of saturated pool
boiling in earth gravity using a similar heater [4]. The CHF values in microgravity were about
35% of those in earth gravity, similar to that observed by other researchers [2, 3]. The visual
observations in microgravity seemed to indicate that bubble coalescence governs CHF.

Images of boiling in microgravity were correlated with time resolved heat flux maps. It
was observed that high heat flux was associated with areas covered with small, rapidly

q [Wicm?

Figure 1. Boiling curves in earth gravity and
microgravity.

NASA/CP—2000-210470 128



nucleating bubbles, while low heat flux was associated with the large bubbles. The array heat
transfer in microgravity is governed by the extent of the surface covered by high heat flux, small
bubble boiling.

The time resolved heat flux data were
conditionally sampled according to whether
not boiling occurred on the surface, providing
average heat flux during boiling. To do this, o o craviy, Run 2
boiling function, B(t), was generated from tf 15 1 | Zo Mooty Run2
time-resolved heat transfer signal whose valu¢
1 when boiling occurs on the surface and
otherwise. The boiling function was used

10

a, [Wiem?]

obtain the boiling heat flux (the heat flux th 5t
occurs only when boiling is present on ftl
surface) over the entire heater array. The ti 0

10 15 20 25 30 35 40 45
AT [K]

and array averaged boiling heat flux is plott
vs. wall superheat in Figure 2 for the eai ) - _
gravity and microgravity runs. Boiling heat flu Figure 2: Boiling heat flux in earth and

for both gravity levels increase monotonical microgravity.

over the range of superheats studied, ana

collapse onto a single curve. This result is not unexpected since inertia forces dominate bubble
growth when the bubbles are small. In microgravity, large heat transfer rates were observed
where numerous small bubbles (on the order of the individual heater size) nucleated, with very
little heat transfer associated with the large bubble. Since large heat transfer rates are associated
with small bubbles, and since small bubbles are not affected significantly by gravity, it is not
surprising that the boiling heat flux is relatively insensitive to gravity.

In summary, heat transfer during boiling in microgravity seems to be governed by two
parameters: 1). the size of the large primary bubble on the surface, and 2). the heat flux
associated with the small scale boiling at a given superheat. The first parameter appears to be
governed by bubble coalescence, and determines the extent of the surface covered by small
bubble boiling. The second parameter can be obtained from the earth gravity boiling heat
transfer data. Future work should concentrate on determining the effect of gravity on
coalescence phenomenon.
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Microgravity—Some Initial Results,” Microgravity Science and Technology VII/2, Hanser
Publishers, Munich, pp. 173-194.

4. Rule T.D., and Kim, J., 1999, “Heat Transfer Behavior on Small Horizontal Heaters during
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Individual Heaters

*

Pt heaters on quartz substrate
5 um line widths

Heater size 270 pm

Heater resistance ~1000 Q

270 pm

JK
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Boiling on Heater Array

2 SPEED +
ENENEER
1080 HZ

e 96 heaters in array
{@ e 2.7 mm X 2.7 mm array size
e

JK
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+
Vout

Rh L
Digita
R3=48.7 K
Potentiometer

e 96 feedback circuits (one per heater)
e Constant temperature operation
e 15 kHz frequency response

JK
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Pressure regulator

Compressed air ‘ ®

—> ] X X
Stainless stedl
bellows

Viewports<>O Not to scale

) ®

n %
Stirrer
! (%9 Fill port/vacuum
Light—> | Filter — ——>
| Window
Microscale heater array
Mirror High-speed digital video

e Prototype for Dr. H. Merte’s shuttle payload
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Advantages of Current Approach

e Can obtain data at CHF and in transition boiling
without danger of heater burnout

e Can obtain time resolved and local heat flux
information

e Semi-transparent substrate allows high-speed
images to be obtained simultaneously with heat flux

JK
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Superheat=20 K Superheat=25 K Superheat=30 K

orl

e Increase in number of bubbles with
superheat until 25 K

e Coalescence of bubbles above 25 K

e Steady state reached?

Superheat=35 K Superheat=40 e Effects of g-jitter?
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Superheat=25 K

20
\
18 1 | —»— earth granity, run #1
€ 167 | carth gravity, run #2

—&— microgranity, run #1

—= microgranity, run #2

Heat flux (Wic
=

15 20 25 30 35 40
Wall superheat (°C)

Superheat=30 K

e Higher heat fluxes in pg at low superheats * Lower CHF in ug
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Comparison Between Images and Heat Flux Map

T
'_"'F.
i e Wall Superheat=40 K

=

™ e High heat transfer associated with small,
% rapidly nucleating bubbles

e Low heat transfer associated with large
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—o6— Earth Gravity, Run 1
—&8— Earth Gravity, Run 2
15 L —@&— Microgravity, Run 1 _
—— Microgravity, Run 2
-
> 10 -
2
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=p
S F -
0 ] ] ] ] ] ]
10 15 20 25 30 35 40 45

AT [K]

e Boiling heat flux in earth gravity and microgravity are similar
e For small scale bubbles, boiling is not influenced by gravity
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~q-'- e Can predict boiling curve in microgravity if boiling heat flux in

A earth gravity and boiling fraction are known.
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MICROGRAVITY RESULTS:
SOUNDING ROCKET & KC-135
Subcooling=35 K, 1 atm
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Iticrogravity Period

SAMS-FF TERRIER - ORION
Cuick Look Data

ber 1999

e 200 s of microgravity

e 105 grms

e Electronics worked well
and heat flux data was
obtained

e VCR malfunctioned so
no video.
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Re-Flight on KC-135, April 2000
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e Heat flux and video obtained using SR payload, same heater array
e Video of bubble motion
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e Raw heat flux calculated from heater voltage, resistance, and area
e Need to correct data for substrate conduction to get heat flux from

wall to liquid
e Assume heat flux from wall to fluid is

zero when vapor covers heater
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s e SR data is more regular, repeatable than KC-135 data
e KC-135 heat fluxes are slightly higher than SR
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Preliminary Heat Flux Distribution

ol = 10.000 s\

B - +0.0030 S
Images and heat flux data obtained at 60 Hz and 250 Hz

o

e Large “primary” bubble with smaller satellite bubbles
e Primary bubble moves in circular pattern
o
L

Dry spot underneath bubble
Higher heat fluxes at contact line

(Colorization of images performed by the NASA GVIS Lab)
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Preliminary Heat Flux Distribution, cont’d

Superheat=30 K

ug

: L I|
T=10.000 = ¢ ™

Superheat=20 K

Superheat=10 K

‘ﬁ_’l 0E) s II' '|r J
-

(Colorization of images performed by the NASA GVIS Lab)
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Preliminary Conclusions: Subcooled Boiling

SR environment is quieter that KC-135 environment.
Not much gravity effect at low superheats (below ~25 K).
Heat transfer is associated with small-scale bubbles.

Difference between microgravity and earth gravity heat
flux is determined by size of primary bubble.
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WETTING AND PARTIALLY WETTING FLUID PROFILESIN A
CONSTRAINED VAPOR BUBBLE HEAT EXCHANGER

Y-X Wang, J. Plawsky and P. C. Wayner, Jr.*
The Isermann Department of Chemical Engineering
Rensselaer Polytechnic Institute
Troy, NY 12180-3590
*TEL: (518) 276-6199; FAX: (518)-276-4030; E-mail: wayner@rpi.edu

ABSTRACT

Microgravity experiments using the Constrained Vapor Bubble heat exchanger, CVB, are
being developed for the International Space Station. Since the maximum attainable axial heat
flux increases with the cell width, systems based on low capillary pressure regions, which require
a microgravity environment, are emphasized. Data using a vertical axisymmetric system have
been obtained in the earth's environment. The liquid pressure field and resulting fluid flow rates
are measured optically through a microscope. Herein, liquid film profiles using a partially
wetting system (ethanol/quartz) are compared with those obtained using a completely wetting
(pentane/quartz) system.

In particular, we are concerned with the experimental and theoretical study of the
Constrained Vapor Bubble, CVB, presented in Fig.1. The liquid-vapor system is formed by
evacuating the closed container with sharp internal corners and then underfilling it with a liquid.
For an isothermal completely wetting system, the liquid will coat all the walls of the chamber.
On the other hand, for a finite contact angle system, some of the walls will have only an
extremely small amount of adsorbed vapor which changes the surface properties of the solid-
vapor interface. Liquid will fill at least a portion of the corners in both cases. If temperature
T, > T, because of an external heat source in the evaporator, (;,, and heat sink in the condenser,

Qour, energy flows from End (1) to End (2) by conduction in the walls and by an evaporation,
vapor flow and condensation mechanism. The condensate flows from End (2) to End (1) because
of the intermolecular force field which is a function of the film profile. The film profile is a
function of the thermal conditions on the surface. There is a shape dependent "pressure jump" at
the vapor-liquid interface, P, — P,, due to the anisotropic stress tensor near interfaces. The

pressure jump is given by the following extended Young-Laplace equation which includes the
effects of both capillarity (6K) and disjoining pressure (/7).

P, —F =0K+N (1)

For a completely wetting system, I > 0. Whereas, for a partially wetting system, 1 <0. Due to
the relatively large cross-sectional area for vapor flow in our system, the vapor space is almost
isobaric. The evaporation and condensation regions are connected by an intermediate region
which can be approximately isothermal and adiabatic if the system is operated so that O,
(mainly at one end in the condenser) JQ;, (at the other end in the evaporator). Otherwise, the
intermediate region is non-isothermal with an interfacial heat flux and heat losses to the
surroundings.
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A Constrained Vapor Bubble (CVB) heat exchanger was built to study the
evaporation/condensation process in a vertical orientation. Details regarding the experimental
setup can be found from Wang et al. [1]. It consists mainly of a quartz cell (square cross section;
inside dimensions, 3 mm x 3 mm; outside dimensions, 5.5 mm x 5.5 mm; length, 40 mm), a
thermoelectric heater on the top, and coolers on each side of the cell located at 20mm from the
top. Naturally occurring interference fringes are viewed and recorded using a microscope. During
the presentation, observed liquid film profiles will be discussed. For example, in Fig.2 for the
evaporator region of the ethanol/quartz system, bubbles kept generating in the liquid film in the
corner. There were no bubbles in pentane for the conditions studied (see Fig.3). In the condenser
region, dropwise condensation occurred for the ethanol/quartz (see Fig.4), whereas only film
condensation existed for the pentane/quartz system.

Oin
My yyyy

1 Region |
yDRY
Microscope RRegion I1
yEVAPORATION
Region I1I
YINTERMEDIATE
7 ™ | Region IV
= ~ yCONDENSATION
- —
-] -
= 4>Q0Mt
-] -
(2
Figure 1. A schematic drawing of the vertical Figure 2. Boiling evaporation of ethanol in Region II
v 8 g g evap g

CVB in the earth’s gravitational field.

i

Fig.3. Evaporation of pentane in Region IL Fig.4. Dropwise condensation of ethanol in Region IV.
[1] Wang, Y-X, Plawsky, J., and Wayner, P. C., Jr., Heat and Mass Transfer in a Vertical

Constrained Vapor Bubble Heat Exchanger using Ethanol, 34" National Heat Transfer
conference, Paper number: NHTC2000-12201, Aug. 2000.
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CONSTRAINED VAPOR BUBBLE HEAT EXCHANGER
(MICROGRAVITY ENVIRONMENT)
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A MULTI-FACETED STUDY

A BASIC STUDY IN INTERFACIAL
PHENOMENA, MICROGRAVITY FLUID PHYSICS,
AND THERMODYNAMICS

A BASIC STUDY IN THERMAL TRANSPORT
AND STABILITY

A STUDY OF A HIGH FLUX, PASSIVE
HEAT EXCHANGER FOR A MICROGRAVITY
ENVIRONMENT

FACETS 1 AND 2 ARE EMPHASIZED
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JUSTIFICATION FOR ug
ENVIRONMENT

—'l-'--—-—-'l-—-—--——-l--I———-—---——---.——--—-—-—---————..__——-p.-_-_-——.—.—

Ay RELATIVELY LARGE INTERFACIAL SYSTEMS
WITH SMAIL CAPILLARY PRESSURES IN
THE CONDENSER AND INTERMEDIATE
SECTIONS GIVE HIGH AXIAL HEAT FLUXES

B) STABILITY AND TRANSPORT PROCESSES
WITH SMALL CAPILLARY PRESSURES NEED
TO BE STUDIED USING AN AXISYMMETRIC
SYSTEM (SMALL BOND NUMBER})

C) TO OBTAIN A SMALL BOND NUMBER
WITH SMALL CAPILLARY PRESSURES A
MICROGRAVITY ENVIRONMENT IS NEEDED

D} THE UNAVAILABLE DATA ARE MOST
JUDICIOUSLY OBTAINED IN A
MICROGRAVITY ENVIRONMENT
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APPROXIMATE EQUATION FOR THE
THEORETICAL AXIAL PROFILE OF THE
CURVATURE IN THE CORNER:K = 1/t

[BASED ON BALANGE OF VISCOUS SHEAR
AND CAPILLARY PRESSURE GRADIENT]

3 4 Q
Q| H VAPOR > ot
= ¢ IQUID
| 3
- ]
1 1 SvkgQ(L-x)
K K C’ o hyg
v = Kkinematic viscosity
Q = axial heat flow rate
hy = heat of vaporization
¢ = surface tension
C. = shape factor = 0.43
Kp = friction coefficient
K¢ = curvature in condenser

4/{H=3mm) =1,333 m1)
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1 4| 3vkﬂQ{L-x) aK ‘anQ 4
il 3 i~ " K
K K Cl' o hy X C o hy,

1) 0.005 oo o.ms I‘J.'.DE D.E;ZE- {03
:-k' (m}

INSIDE DIMENSION, H = 3 mm, K> 1,333 m-

__._......._-._-_._.__..-____.._.___._.,_.___._.___,._..______...,__.___,.,__.__._._.._.-.____—

Curvature (m™")

g &

1 0.D0S 8.0 0015 .z 0.025 0.R3
x—l_ (mj

INSIDE DIMENSION, H = 1 mm, K > 4,000 m7,
(K for H = Imm) = 81 (K’ for H = 3 mm)’
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MAXIMUM HEAT FLUX, q,”
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Microscope
Cooler — U @)
~—Filling setup Pyrex® tubing
Funnel Holder

Stainiess steel union

-— Vacuum valve _ _
~*— Stainiess steel flexible

e— / tubing

e

Pressure transducer

The Vertical Constrained Vapor Bubble System
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Experimental Setup of the Vertical Constrained
Vapor Bubble (CVB)
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A Schematic Drawing of the Vertical CVB in the Earth’s
Gravitational Field
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Evaporation of Pentane in Region 11
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Boiling Evaporation of Ethanol in Region I1
6>0
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Microscope

Liquid
—Liquid drop

T—Glass wall

Dropwise Condensation in Region III

Ethanyl ) Q >o
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Dropwise Condensation of Ethanol (t=0 sec)
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on of Ethanol (t = 4 sec)
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Dropwise Condensa
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Dropwise Condensation of Ethanol (t =5 sec)
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T'emperature difference, 8, between the outside
surface of the CVB cell and the room, vs. the axial
distance, x, for the cell operating as a CVB heat
exchanger and as a dry evacuated cell.

"
4:5'120 O O CVB
@ 100 O O Dry Cell
O
o 80
s | 0
= 60f O
s | O
o 40 : '
& evaporator ! m] : condenser
EZOI_ OOéOOOQﬂO{)oO
@ # "
g— 0 . intermediate reg;on Y 5 -
}a_a -20;_ - - e
0 10 20 32

Distance, x, mm

DRY CELL FOLLOWS SIMPLE FIN MODEL

CVB HAS ENHANCED CONDUCTION IN
TdE INTERMEDIATE REGION
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Corner radius of curvature profiles
obtained using the IAI for both the
inclined cell operating as a CVB

heat exchanger and at equilibrium.

x 10

= Q

Y 5 = § Q §

i 53 ¢

54 ¢ °

>

- Sr

- Q

©° o}

)

= § — model

e § O ¢ isothermal
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MOMENTUM MODEL CONFIRMS
RADIUS OF CURVATURE DATA
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CONCLUSIONS

GROUND BASED EXPERIMENTS USING AN
AXISYMMETRIC VERTICAL CVB HEAT
EXCHANGER WITH WETTING AND
PARTIALLY WETTING FLUIDS ARE IN
PROGRESS.

EFFECTIVE EXPERIMENTAL AND
THEORETICAL TECHNIQUES TO
DETERMINE THE CHARACTERISTICS OF
FLUID FLOW AND HEAT TRANSFER IN A
CONSTRAINED VAPOR BUBBLE HEAT
EXCHANGER WERE DEVELOPED.

A FLIGHT EXPERIMENT IS PLANNED
FOR 2004
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A MECHANISTIC STUDY OF NUCLEATE BOILING HEAT TRANSFER

UNDER MICROGRAVITY CONDITIONS
V.K. Dhir' and M.M. Hasan®

'University of California Los Angeles, Department of Mechanical and Aerospace Engineering,
Los Angeles, CA 90095, U.S.A , e-mail: vdhir@seas.ucla.edu

’NASA Glenn Research Center, Microgravity Division, Cleveland, OH 44135, USA

ABSTRACT

Experimental studies of growth and detachment processes of a single bubble and multiple
bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft.
Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was
designed and built. Artificial cavities of diameters 10 pm, 7 pm and 4 pm were made on a thin
polished Silicon wafer that was electrically heated by a number of small heating elements on the
back side in order to control the surface superheat.

Bubble growth period, bubble size and shape from nucleation to departure were measured
under subcooled and saturation conditions. Significantly larger bubble departure diameters and
bubble growth periods than those at earth normal gravity were observed. Bubble departure
diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3
mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that

the bubble departure diameter can be approximately related to the gravity level through the relation

D, 01/4g - For water, the effect of wall superheat and liquid subcooling on bubble departure

diameter is found to be small. The growth periods are found to be very sensitive to liquid
subcooling at a given wall superheat. However, the preliminary results of single bubble dynamics

using PF5060 showed that the departure diameter increases when wall superheat is elevated at the
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same gravity and subcooling. Growth period of single bubbles in water has been found to vary as
t, 0 g%,

For water, when the magnitude of horizontal gravitational components was comparable to
that of gravity normal to the surface, single bubbles slid along the heater surface and departed with
smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a
very small horizontal gravitational component caused the sliding of bubble along the surface.

The numerical simulation has been carried out by solving under the condition of axi-
symmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the
model the contribution of micro-layer has been included and instantaneous shape of the evolving
vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is
found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found
that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The
numerical simulations are in good agreement with the experimental data for both the departure
diameters and the growth periods.

In the study on dynamics of multiple bubbles, horizontal merger of 2, 3 4, and 5 bubbles was
observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached
bubble is smaller than that of a single bubble departing at the same gravity level. During and after
bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type
bubbles.

The experimental and numerical studies conducted so far have brought us a step closer to
prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space

flight are continuing.

NASA/CP—2000-210470 187



[

LMECHANICTICSTUDY OF |
UGLEATE BOILING HEAT TAANSFER |
UNDER MICROGRAVITY GORDITIONS

V. K. Dhir

University of California , Los Angeles
Mechanical and Aerospace Engineering Department . |
Los Angeles , CA 90095 H

MM, Hasan

NASA Glenn Research Center, Lewis Field
Cleveland , OH 44135

Presented at the
FIFTH MICROGRAVITY FLUID PHYSICS AND '3
: TRANSPORT PHENOMENA CONFERENCE '
August 9-11, 2000, Clevela d Oh ( )




0L¥01C-000C—dD/VSVN

:_ 68T

=

!

yci?

OBJECTIVES

process through numerical simulations and experiments.
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|| ® Investigation of the scaling of the effect of gravity on the growth |
| and departure of single buhble froma designed nucleation snte

e




k

CAL SIMULATIONS

&g
35z




0L¥01C-000C—dD/VSVN

T61

ctA
Prediction of Nucleate Boiling Heat Transfer i
Predictive | 3
Model . |
+ 4 1 .
Heat Transfer Mechanisms: | o .::; )
® | 'ransicnt C{}ﬂ_du{:tiun ) i
¢ Evaporation at Bubble Base |- .| Bubhle Dynamics |
® Evaporation at Bubble 44— ¢ Growth ladne Active Site % - Thermal H
Boundary | | ® Merger —p|  Density [»| Responseof the li
® Thermo-capillary X Departure T ‘Heater F |
Convection
® Convection Induced by
Bubble Motion



0L¥01C-000C—dD/VSVN

261

uc®

NUMERICAL SIMULATIONS (Cont'd

LI R TR - et e T

T A A g e et R s

Supcrhcated
Liquid Layer

{older Liguid

Microlayer

B .




0L¥01C-000C—dD/VSVN

€61

ch -
| NUMERICAL SIMULATIONS (Cont’d)
. .Predlcted Bubble Growth at leferent Grawty Levels ) |
]
. ! ,_
ATsub=DOC
o1 b TuTa=80c el E
£
*E ,/ g/g,=10"
5 001 fo/if -
= :
L . S
El X Jg,=10°
0001 o |9
|
0.00G1 o — i
@1301 001 01 1 10 100 1000 ]
Time, s @@
. — W
= o



0L¥01C-000C—dD/VSVN

- V61

[ucl"

“ NUMERICAL SIMULATION (Cont'd)

L

| | Gravity Level

| Bubble Departure
Diameter (mm) |

Period (sec.)

1g.

33

0.056

10%g,

27

4.5

10, T2

257

Numerical Slmulations - Scaling wlth Respect to Gravity
" Bubbie Growth

sy

=7°C




S6T

0L¥01C-000C—dD/VSVN

ycth

-L-Im.ﬂ -

'~ EXPERIMENTS




0L¥01C-000C—dD/VSVN

96T

EXPERIMENTS
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Closed Test Chamber
Feedback control of system pressure, liquid subcooling and
superheat of heater surface.

Measurements Using Thermocouple Rakes:

_. Liquid temperature near heater surface (thermal beundary

High Speed Video Cameras:
Record the boiling process at large magmt'ieatlon and in two
orthogonal directions. S

® Low Gravity Condition during KC-135 Flight: g+0.04 g,

in the direction, z, normal to the heater surface with the acerdentai

" increase up to 0.065 g,.

Three—(-}eliiponent Accelerometer.
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Pressare
Transducer

Vapor/air
Relief Valve

Mineo Film Heater

Thermacoaple rakds” ™

High Sppéed Video (Camera

B Wilidﬂ“’

“Thermocouples

Silicon Wafer

Power wires

Heafer

Schematlc of Experlmental Set-up
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EXPERIMENTS (C___

s e

® I-Ieater Surface* |
Polished Silicon wafer (roughness <5 A).

® Nucleatmn Sites:

5 Cavmes of 100 um m depth and 10 um (one), 7 p,m (two), 4 pm (two)

Deep Reactive Ion Etc.hmg Tm:hnique

® Heating | Elemﬁnts
Fqil-llke stram gages bonded at the back of snllcon wafer and

® Nucleatlon Actwatmn S
Only at the desnred cavities before take-oﬂ' of KC-135.

® Overall Wwall Superheat and Bulk Liquid Subcooling:

Set to specified values prior to each parabola (low gravity perlod).

12
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EXPERIMENTS (Cont'd)

TEEEEREr R CTEERRSEE RRBEELE L siis i s nEEEOERREIE- DTN ihEEEE

Configuration of Heater with Designed
Nucleation Sites - |

il

Silicon wafer

Side High
Speed Camera

) MicreRoaters
¥ & (Heatily Elements)

Gavity Size;
: : F , : No.1: 10 um
S +PY:IPY Ty gt_) Ne2: :7um
N g T | Me3: 4um
MNo.4: ?pm
No.5: 4dpm

She-

¥

; S ;
Tl B . )
i —

‘Front High' . -
Spead Car_nera

13
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EXPERIMENTS (Cont'd)

Typical Gravity Level During Parabola Flight
(Run No.389, Oct.6, 1998)

AT
1.5 "

‘ x x-direction
+ y-direction

& & z-direction

Time, s
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EXPERIMENTAL RESULTS (Cont'd)
-- Single Bubble at Low Gravity in KC-135

d) =11.77s e) t=12.15 (departing)

Pictures of Single Bubble During a Growth-Departure Cycle,
AT,,;,=0.3 °C, T, -T,,~4.2°C, g,~0.02 g,

15
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Bubhle Base Diametar

EXPERIMENTAL RESULTS (Cont’'d)
-- Single Bubble at Low Gravity in KC-135

(Run No.688, Feb.23, 1999)
| | | | |
w Base Diameter --

- m Bubble Height

(Run No.8035, Feb.27, 1999}

SN

1 T,
_'_| Bubble

Delached

|

x Base Diameter
.|...— = Bubble Height __
' I : i I

0 1 2 3 4.5 & 7 8 9 10
Time, &

M

N A

[ T S Y
te — bhr B I to

(=)
|
]

& Bubble Height, cm

Bubble base Diameter

. & Bubble Height, ¢m

© o o
3 s

o K

[

DNE QDN D

————— -.:....: L A __ 1. L:..___: ::E:j"l ﬁ._:_
4 6 B 10 12 14 16 18 20
Time, s

oo
&)

=0.0°C, T,-T,=55°C  AT,,=0.2°C,T,-T,=25°C

_-_.._fﬁ'Ts_uh -

G __ '_::_Bl'jﬂbble Height and Base Diameter as Function of Time
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EXPERIMENTAL RESULTS (Cont'd)
-- Single Bubble at Low Gravity in KC-135 |

1.8

16 — ﬁble Detachment |
£14 P
o 1.2
D
Eog | Aar x T | ] x TiTg™7 °C
o - : _ o
Bgp w -T.=55°C

: % 04 - A Tw-Tsatzs's GC —

o1 2 3 4 S5 6 7 8 9 10
Time, s |

Effect of Wall Superheat on Bubble Growth in Saturated Water

- 17
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EXPERIMENTAL RESULTS (Cont’d)
-- Single Bubble at Low Gravity in KC-135 I

€

1.8
1.6
1.4
1.2

1

o o
an

o
N

O
oo

| bubbles detache:d

o

o
N

|

© X AT ,,=0.0+0.05 °C
m AT, =P.2+0.05 °C
A AT,,=D.3+0.05 °C {

4 6 8 10 12 14 16

Time, s

- Effect of L:qmd Subcooling on Bubble Growth for a Wall

Superheat T, Taat-—3 5¢C
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EXPERIMENTAL RESULTS

-- Horizontal Merger of Two Bubbles at Low Gravity

d-"l.-f

i 1

t=0.00 s =0.576 s t=3.1280 s =3.136 s t=3.140 s t=3.144 s

3

=3.152 s t=3.156s =3.160 s t=3.164 s t=3.176s  t=3.188 s

Two Bubble Merger at AT,,,=3.0 °C, T,,-T,,=5.0°C,
g,=0.0033 g, g,=0.0060 g, g,=0.0009 g,

=3.192 s

19
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EXPERIMENTAL RESULTS (Cont'd)

-- Horizontal Merger of Three Bubbles at Low Gravity

t=0.128 s

Three Bubble Merger at AT, ,=2.0 °C, T,-T,=5.5°C,
g,=0.008 g, g,=0.003 g, g,=~0.000 g,

20
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EXPERIMENTAL RESULTS (Cont’d)
-- Horizontal Merg'er of Two Bubbles at Low Gravity |
1.2 . |
° B Bubble Diameteron Cavity 4 Merger
- @ Subble Diameter on Cavity 1 i
§ L + Equivalent Diameter K B ] '4 r
[11] 0 Bubble Base Diameter on Cavity 4 )
T 0.8 | o Bubble Base Diameter on Cavity 1 ﬁ
LLaiiR
§ ; : |
E e : _ Lift off
; % . 0 & g 3 A
£ £+-d 5 1 '/( | '
& 00 P |
| a ' — |
i e 00 051 15 2 25 | § 45 5 ;
o Time, s 1
Diameter of Bubbles and Bubble Bases during Two Bubble Merger at
AT,,,=3.0 °C, T,-T,,=5.0°C, £,=0.0033 g,, g,=0.0060 g,, £,=-0.0009 g,
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Comparison of Numerical Simulation

Results with Data in Subcooled Water
-- at Low Gravity

Numerical Experimental Comparison

g=002g ,T,-T=3.8°C,AT.,=0.4°C

He TRARSFER
TOF,
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Comparison of Numerical Simulation

Results with Data in Subcooled Water (Cont'd)
-- at Low Gravity |

R I S S W e e cot ool | B e T e

I | I
— Computational
5 E # Experimental (Run 681)
© Departure
i _ | 4 Experimental (Run 688)
b} ' . ’-—/ T T
d .
Q - _—— Departure
A —
:E """:-:l"' —
o~ .
2
0
-
.00

10 12.5 1 175 20 22.5

Time, s
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2 Siegel, et al, (1964)
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10000
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SCALING OF EFFECT OF GRAVITY ON SINGLE|
BUBBLE DEPARTURE (Cont'd)

R e e
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* ExperiTnental
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EXPERIMENTAL RESULTS (Cont'd) |
-- Horizontal Merger of 2 and 3 Bubbles at Low Grawty'_
k 100 | —Prﬁ:dlcted from Eq, (l) [or Single Bubble |
- A Merger of 2 Bubble
C  Merger of 3 Bubbles
Cal:::ulated Larger Butlnble Using Same
—_ Buoyancy/Surface Tension Ratio
i, . |
o 10
5 .
i ~
= "~ . \
s g,
13
0.0001 . 0.001 0.0t - .0t 1
T a./a, S | | @
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Comparison of Numerical Simulation
Results (3-D) with Experimental Data

Experimental

0 0

~

® &

Numerical
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uoh CONCLUDING REMARKS

© Well defined and controllable nucleation sites were obtained by micro- ﬁ
fabricating cavities on the polished Silicon wafer.

| o Complete boiling process of single bubble from nucleation inception to
- departure of bubble was observed on the designed surface at low gravity.

¢ Larger bubble departure diameters (> ~20 mm) and longer bubble
growth periods than those at earth normal gravity were measured.

0L¥01C-000C—dD/VSVN

® The bubble departure dlameters and growth permds seale as .

- D, x g * and f ¢ & g "> respeetwely

-y ® Small subcooling in the liquid can lead to srgmﬁeantly prolonged bubble
growth perlods and reduced bubble growth rates. I B

'® During bubble merger, mushroom type of bubbles attachied to the heater
‘surface via vapor stems were observed to form

i ® The merger c¢aused lift-off of the vapor mass from the surface in-a-smaller 4

‘equivalent diameter than that ef a smgle bubble at departure at the same
gravrty level. Lo s

® The liquid motion durmg merger and the resulting lift foree prebably |
played a role in early lii‘t-eff of’ the merged bubbles. @:@

28
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Physics of Hard Spheres Experiment: Microscopy of Colloidal Particles

Z-D. Cheng, J. C. Ruiz, M. Megens, A. D. Hollingsworth, C. Harrison,
W. B. Russel and P. M. Chaikin
Depts of Physics and Chem. Eng. and Princeton Materials Institute, Princeton University

In preparation for the next phase of the Physics of Hard sphere experiment, an investigation of
hard sphere nucleation and growth using a specially designed microscope on the space station, we
have developed new colloidal particles, as well as some new techniques. The new colloidal
systems are flourescently dyed, index and density matched spheres with screened and unscreened
electrostatic interactions, as well as microlithographically prepared disks. Confocal imaging of the
nucleation process shows dominant surface nucleation with an amorphous first layer and then well
defined crystallite propagation into the bulk.

We have studied the nucleation and growth of colloidal crystals in the confined geometry of a 150
mthick sample between slide and cover slip in a confocal microscope. The samples were PMMA -
PHSA stabilized .956 mspheres fluorescently labeled with fluorescene using a modification of the
techniques developed in ref.1. The initially dyed and washed particles were found to be charged
when suspended in the index and density matching solvent decalin-tetralin-cycloheptylbromide .
Even in this highly non-polar solvent the coulomb interactions could be effectively screened using
the organic salt Tin(Il) 2-ethylhexanoate. The confocal images shown in figure 1 correspond to
“slices” 1, 4 and 48 mfrom the cover slip, for a sample with volume fraction 0.52, 60 minutes
after homogenization. What is striking is the low density and amorphous character of the first
layer, the crystallinity of the forth layer, and the mixed crystal-liquid character of the 50th layer.
The crystallites have clearly nucleated on the surface but the layer closest to the surface is not
crystalline. This indicates the two, not necessarily constructive, effects of the surface. One is the
wettability, the other is the constraint on particle motion. The excluded volume interaction is
repulsive depleting the layer closest to the wall and leaving it below the freezing transition. The
next layer has a higher volume fraction but still has restricted motion in the direction
perpendicular to the wall. This is where the crystal first nucleates. With confocal microscopy we
can scan the volume of the cell with an area of 200x200 msquared and a depth of 60 min a 5
minutes. We can then follow the growth of the crystal liquid front as it propagates into the bulk.
The observed front growth goes from 1 m/10minutes to 1m/min as the volume fraction changes
from .50 to .60.

In the coexistence region the nucleation proceeds incompletely leaving a metastable boundary
between the crystal and liquid phases. In the figure we show the three dimensional structure of the
crystallites in this situation. The crystal structure of each slice of the sample has been analyzed by
an algorithm which locates the particles, finds the local crystal structure and the direction of the
crystal axes and assigns the next layer to the same crystal if its orientation is within 5 degrees of
the underlying layer. (There is no distinction made here for FCC vs HCP, the structures all
conforming to RHCP). The crystals grow epitaxially from the substrate layer with the initial (2nd
layer) domain structure unannealed in the growth process. The stalagmite shape of the crystallites
indicates the dendritic growth instability.
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Fig. 1 Top) Confocal images of 1 mparticles at 1, 4 and 48 mfrom cover slip. left) 3D crystallites,
colors are different orientations. Images from top are in outlined rectangular prism. right)
Colloidal PMMA disk/donuts 4mdiameter x 0.4 mthick produced by photolithography.

Since the design of the flight microscope incorporates sample cells with submicroliter capacity,
our initial experiments showed that extensive investigations of colloidal systems could be done
with miniscule (by conventional standards) quantities of material. It then became practical to
design our own non-spherical, colloidal particles using variations of optical lithography. On a
three inch wafer it is possible to make ~ 2 microliters of colloidal particles at volume fraction 0.5.
Depending on the size and shape this amounts to ~ 300,000,000 particles, well beyond numerical
simulation capabilities. The example presented in the figure is a suspension of 4 x 0.4
mdisk/donuts made of PMMA. Using this technology virtually any two dimensional shape, disk,
rod, banana, etc. can be made readily. Three dimensionally shaped colloidal particles can be
prepared but with more difficulty.

REFERENCES

1. E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, and D.A. Weitz, Science 287 627-31
(2000)
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Physics of Hard Spheres Experiment:
Microscopy of Colloidal Particles

Hard Spheres and p gravity:
Some previous flights

Angle (degree) o

Confocal Microscopy: a9
Diffusion and 3D Crystal Growth N\ f\l

New Particles: s
Designer Colloids from Lithography PMMA Disks
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Princeton - Chem Eng.

* Bill Russel

» Jesus Carlos Ruiz (also Mexico City)
» Andrew Hollingsworth
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24 RANDOM CLOIE PACKING 87

Figwa 2.9 Siephen Hales (1727) was a highly gifted binlogiat whose interess incuded
the uptaic: of water by plants. The disgram on the beft thowa the apparaun he used 10
nemonsoate the submtantial Rwce exerted by dilating peas. However, when the lid (T
wits eeweerad with & weight grest caough m peevent its lifting, the dilated peas deformad
inty ihe Wigre-Seitz celly of the rop struchire. The pens in tive boile a1 righe, used by
Hules in & refated experrment, woudd por have rerved so well ta illustrale random close
packing becauss of the prevence of the cr o allinity-inducing planar walls.
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gravitational height
mgh=k,T

Ball bearings h~ 108 cm
Colloids h~1u
N, Molecules h~ 10 km

h<diameter, gravity dominates
h>container, neglect gravity
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Phase Diagram by 1g Experiment

325 nm PMMA/decalin/CS2

_-
[ e -

0.637 _0.621 0.595 0578 0.553 0.528 0512 0.502 0.478
Crystal Coexistence  Liquid
Heterogeneous

Pusev & van Megen, Narture, 320 (1986) 340
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Bragg Scattering

Time in Seconds

Just after meltin

160 FCC{111} ‘ 4y ®
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Angle (degree)
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Chapter 5: Crystallization Kinetics 2186

Structure evolution of sample 4 (¢=0.552)

#
Coarsaning & Growthin I p H-H'ﬁ
I, 15 \ rowh i mardy
| [\ . -
1 \ - o
3 I I'lll “‘:

Growth Timae in Seconds
—e— A3
— 4T

p ——qg574

——a— dﬁg‘

—ao—— JBi0)

al1zah

Figure 5.31: The structure evolution of sample 4 in 45 and 1g.

————-———_—ﬂ
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Fully crystallized Sample ¢ = 0.552

S . - Number of Crystallites
Size of Crystallites/2R 10°F . z i
100 | : A
[ N i A 2
¥ 0.2420.01 I A v
c| T e 10°F :"”‘”"-mh .
X C iy :
[ o "fc 0}
tu.15=u. * Hg 2 g g S 0y 0222002
A A L ~—
10 i A 1g 10 m 1, Sy 2. ket 3 Saand 4 aaaiaid 5 !‘.1 E. i
10 10 W 10
10" 10? goﬂ 10° 10° 00| 10 1O
econds
Crystallinity ~ Volume Fraction
¥ W FRRE .
2.2420.08 (I) ' \gysmf *
01 e T 0 56 | . e
A p * tﬁ
_--.:n,?ztu,ua 0.52 _ 4 Liquid
0.01~% . ' Ll— . @

10' 10* 10° 10* 10° 10°

10' 10° 10° 10* 10° 10°

» Compressed and Expanding lattice : Gibbs-Thompson effect

* Nucleation at constant rate

» Growth : (1) diffusion limited < 300s

(2) intermediate stage

(3) coarsening non-classically

» Effect of gravity : (1) more small crystal,
(2) suppress coarsening
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Some Concoctions for PMMA-PHSA Spheres

Density Index
PMMA 1.192 1.489
Decane 0.73 1.411
Decalin 0.896 1.475
CHB 1.289 1.508
Tin 2-ethylhexanoate 1.251 1.4930
Tetralin 0.9662 1.5391

Charged Spheres:

PMMA 0.956um + PHSA 10nm, Tetralin 4%, Decane 10%, CHB 87%,
Fluorescein Dye, crystallizes at ~ 10% volume fraction
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Speed of Growing Fronts
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0 — Tokuyama & Oppenheim Theory
-~ @ Silica in Eg/Gly/NaCl
< wigs O Segre, PMMA, 1995
o ~  Stokesian dynamics simulations, Phung 1993
* D,/D, PMMA, (van Megen 1995) JI
1E-4 4 van Blaaderen 1992
—@— Ottiwell 1987 é
@ van Veluwen 1988 I|
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Figure 3.3: Long-time self diffusion. Previons data: Ségre et al., 1995 [22]: van Megen
& Underwood, 1994 25): van Blaaderen. 1992 (26]; van Megen & Underwooed. 1989
[27]; van Veluwen & Lekkerkerker, 1088 [28]; Ottewill & Williams, 1987 [29],



Fabrication: Spin Coating

photoresist

— P11 OV

sacrificial layer
Substrate A )

Spin at
at thousands
of RPM

* Polymeric layer spin coated
» Solvents chosen such that each

coating does not remove layer
underneath
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Fabrication: Exposure
? Hg Lamp

i =
Mask

Wafer with
Photoresist

* After exposure and developing, the pattern is

“written” into the photoresist.

photoresist
PMMA
sacrificial layer
substrate

NASA/CP—2000-210470 250



Fabrication: Pattern Transfer

O, Plasma

¥V ¥V ¥ Vo

photoresist
PMMA
sacrificial layer
substrate

PMMA disks
sacrificial layer
substrate

* Reactive ion etching (RIE) transfers pattern
from photoresist to PMMA

* Colloidal particles ready to float off
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This talk will present recent results from ground-based research to support the “Physics
of Colloids in Space” project which is scheduled to fly in the ISS approximately one year
from now. In addition, results supporting future planned flights will be discussed.
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Confocal Microscopy

rotating

i screen with
| \ laser pinhole
detector (PMT)
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Confocal microscopy for 3D pictures

Scan many slices,
reconstruct 3D
image

2.3 um diameter PMMA particles
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Microscopy and Tracking

Microscopy:

*30) images/s (512x480 pixels, 2D)
mm)p ~one 3D “cube” per 6 s
*67 X 63 x14 um?
*]00x 011 / 1.4 N.A. objective
Identity particles within 0.03 um (xy)
0.05 um (2)

Paruicle tracking:

*Follow 3000-5000 particles, in 3D
*200-1000 time steps = hours to days
== 4 (GB of 1mages per experiment
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PMMA particles:

*made by Andrew Schofield (Edinburgh)
*fluorescent (Andrew Levitt, U. Penn)
*monodisperse, can crystallize

*density matching solvent

*3D samples: look >30 um from wall
(>10 diameters)

(not to scale)

slide
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| Experimental Details |

2.3 um diameter PMMA colloids
*density matched solvent

*act like hard spheres
ecquilibrium is random HCP

*confocal microscopy to take 3D pictures
*look 30 pm in from cover slip

single 2D image 3D reconstruction
from many 2D slices
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Brownian Motion

(2 um particles, dilute sample)

b E 1'6 1'5 J’O 25

time (s)
Leads to normal diffusion:
(Ax?) = 2Dt

oo kT

AN

viscosity 1 particle size a
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Diffusion: dilute samples

Mean square displacement:

T S T
At (8)
Displacement distribution function:
ln-i ................ - e
10 /\ | 5
P(M) 10-5: ;f "ﬁ‘ . .
o] »  |Gaussian
-2 0 2
Ax (um)
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Mean square displacement

Volume fraction ¢=0.53,
“supercooled fluid”

0.1

T [

(x*) pm?

T

0.01

NASA/CP—2000-210470

lag time At (s)
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Cage trapping:

*Short times: particles stuck in “cages”
*Long times: cages rearrange

$»=0.56, 100 min (supercooled fluid)
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Displacement distribution function

Volume fraction ¢=0.53,

“supercooled fluid” .

() pm? |

0.01 :

P( AX)
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Time scale:
Ar*  when nongaussian parameter o,

largest

Length scale:

Ar*  on average, 5% of particles have
Ar(Ar¥) > Ar*

=~ cage rearrangements

top 5% = tails
of Ax distribution

(0=0.53, supercooled fluid)
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Number N, of fast neighbors to a

fast particle:

T T T | 1 L 1 ’ T T T I | [ | T

: l‘—‘é\‘l‘ 5 ¢=0.56

P(N') A : L.; {:r \
$=0.60 A O
A @,
O
| 1 | | L | | | l | | | | 1 Q
0 4 8 12 16
N,

Fractal dimension:

1 T 1 % K N

P

/s

Y
a

N |

Ll I|II||

10 ¢ -
1 S [N - L_.J—' _
1 3 10
Rg (um)
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Dynamical Heterogeneity:
possible dynamic length scale

LR

Adam & Gibbs: “cooperatively rearranging regions
(1965)

NMR experiments:

*Schmidt-Rohr & Spiess (1991, polymers)
*Tang, Johnson, et al (1998, metallic glasses)
Sillescu et al (1992, o-terphenyl)

Photobleaching:
*Cicerone & Ediger (1995, o-terphenyl)
Simulations:

*Glotzer, Kob, Donati, et al (1997, Lennard-Jones)
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Nucleation and Growth of Colloidal Crystals
by Small Angle Light Scattering

PMMA (d=700nm) decalin/tetralin (ooo0127)

280,- - 12606 s :
240 -+ 156058 .

-=- 186108 +

;3200_- ~ 216095 1
;wn-
@120-
£ oof
40k
N
0 500 1000 1500
q(cm™)
0% et
"é '
o
e
103 104
t(s) t(s)
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Local crystallization
order parameter:

P. R. ten Wolde, M. J. Ruiz-Montero,
D. Frenkel: J. Chem. Phys. 104, 9932 (1996)

e[_ennard-Jones simulation

*Find nearest neighbor
connections r;;

*Resolve connections in
spherical harmonics:

q;m(i)=<Yzm(r;j)>j

*Examine /=6
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local bond order parameters:
Aim(i) = 1/Ni Zin.n.) Yim(rij)

rotationally invariant form:
Qi) = [ 4n/(21+1) Zem [qim(i)[2 ]172

crystal-like bonds:
ae(i)-a6(i) = Zm qem(i) G*6m(j) > 0.5
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Gelation:
Non-Equilibrium States

Aggregation in colloid-polymer mixtures
fluid

Polystyrene polymer, r,=37 nm
+
PMMA spheres, r,=350 nm

Depletion attraction
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(image is
20 diameters

thick)
” (image is
=8.
s 40 diameters
(gel) thick)
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Reconstructions of 3D images

& i

¢,=5.0
(“fluid-
cluster’)
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Gel morphology

—o— U=62k,T
—a— U=8.5k,T
—a— U=114Kk,T

5 6 7 8 9 10
of bonds, n,,

¢=0.03
R,=0.35 um
images are 2 um thick

“IZh old

U=11.4k,T
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Gel morphology - chains

e Define chain, determine
its length

e Find particles in chain
(red)

e Shortest-path length, L
elL=23xR
(for all samples,
U=5-11 kgT)

R (pm)

o Chemical dimension, N_, o< Rchem

® measured d ., = 1.0 £.1

e Chain cross section = N_,/(Lxsphere diameter)
e 1.5 particles (U= 5.6 kgT)
e 1.0 particles (U= 11.4 kyT)
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COLLOIDAL ASSEMBLY IN ENTROPICALLY DRIVEN, LOW-
VOLUME-FRACTION BINARY PARTICLE SUSPENSIONS

S. Sanyal, J. Zhang, W.J. Work, K-H Lin, and A.G. Yodh, University of Pennsylvania

We describe entropic depletion-induced assembly experiments to synthesize novel colloidal
crystals. Our samples are typically a mixture of large and small species suspended in water or in
an organic liquid. The larger particles are spherical colloids with diameter ranging from 0.4 to 3
microns, and its type range from polymer-based spheres such as polymethylmethacrylate
(PMMA), polystyrene (PS) and silica, to semiconductors such as ZnS, to novel polymer-based
spheres that have hollow interiors. The small species can be a polymer (e.g. PS polymer), a
micelle (e.g. SDS micelles), a dendrimer, or a very small colloidal particle. Typically an optical
grating template is bonded to one wall of our microscope slide cells to select particular colloidal
crystal types.

We have investigated the entropic self-assembly of colloidal spheres on periodic patterned
templates [1,2]. A variety of two-dimensional structures with quasi-long-range order are
observed to form on templates with one- and two-dimensional periodic structure. In particular,
on a template commensurate with an FCC (100) plane, entropic forces induced by non-adsorbing
polymers form an FCC crystal more than 30 layers thick without random stacking defects [3].

We have also begun particle synthesis experiments to achieve samples of monodisperse colloidal
suspensions of the types mentioned above. So far our successes in this endeavor are as follows.
(1) We could modify a published technique [4] to synthesize 140 nm and 400 nm ZnS particles
with size-dispersity < 5%. In principle this same procedure can be applied to synthesize a range
of similar sulfides, e.g. CdS, SnS, PbS, MnS. (2) We have prepared monodisperse particles that
have a water-swollen core (precursor to hollow sphere particles) with particle sizes in the 550-
650 nm range [5,6]. Initial success of their assembly by depletion techniques has been achieved
in our laboratory [7]. (3) We have also succeeded in synthesizing 100 nm, 200 nm, and 600 nm
monodisperse (<10%) magnetic particles following a literature technique [8,9].

We will describe experiments to measure the photonic bandstructure of some of these crystals
using a spectrophotometer set up in our laboratory, which can perform angle- and wavelength-
resolved reflection and transmission experiments on our colloidal crystalline samples.

References

[1] Sanyal, S., Zhang, J., Lin, K-H., Work, W.J., Yodh, A.G., Using Depletion Force to
synthesize PBG crystals, Bulletin of the American Physical Society, 45 (1), 768, 2000.

[2] Lin, K-H, Crocker, J.C., Yodh, A.G., Prasad, V., Weitz, D.A., Schofield, A., Entropically
Driven Colloidal Crystallization on Patterned Surfaces, Bulletin of the American Physical
Society, 45 (1), 698, 2000.

[3] Lin, K-H, Crocker, J.C., Prasad, V., Schofield, A., Weitz, D.A., Yodh, A.G., Entropically
Driven Colloidal Crystallization on Patterned Surfaces, Submitted to Physical Review
Letters, November 1999.

[4] Sugimoto, T.et al, Journal of Colloid & Interface Science 180, 305-308 (1996).

NASA/CP—2000-210470 278



[5] Kowalski, et al, Sequential heteropolymer dispersion and a particulate material
obtainable therefrom, useful in coating compositions as an opacifying agent, US Patent
4,469,825, September 4, 1984, Assigned to Rohm and Hass Company.

[6] Yanase, N., Noguchi, H., Asakura, H., Suzuta, T., Preparation of magnetic latex particles
by emulsion polymerization of styrene in the presence of a ferrofluid. Journal of Applied
Polymer Science 50, 765-776 (1993).

[7] Zzhang, J., Work, W.J., Sanyal, S., Lin, K-H, Yodh, A.G., 3-Dimensional Colloidal
Crystals from Hollow Spheres, Bulletin of the American Physical Society, 45 (1), 631,
2000.

[8] Ugelstad, J., Ellingsen, T., Berge, A., Helgee, O.B., Process for preparing magnetic
polymer particles, US Patent 4,774,265, September 27, 1988, Assigned to Sintef.

[9] Ugelstad, J., Ellingsen, T., Berge, A., Helgee, O.B., Magnetic polymer particles and
process for the preparation thereof, US Patent 4,654,267, March 31, 1987, Assigned to
Sintef.

NASA/CP—2000-210470 279



Entropic Effects in Suspension

Anthony Dinsmore, John Crocker, Ritu Verma,
* Keng Hui-Lin, Eric Weeks, Peter Kaplan Jennifer
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General Motivations

0L¥01¢2-000Cc—dD/VSVN

« Difficult, but desirable to create patterned nano- and micro-scale materials that
are ordered in three-dimensions.

SMART MATERIALS FOR

NEXT GENERATION TECHNOLOGIES.

Lithography
Holography
*Self-Assembly of mesoscopic constituents

* Colloidal particles ranging in size from ~10 nm to
~3 micron can be assembled into ordered crystalline phases.

*Equilibrium Thermodynamics
Gravitationally-driven
Convectively-driven
Electrohydrodynamically-driven




Depletion Force: (HARD SpHeqes

inaccessible
to
small spheres

— Moving 2 large spheres together increases
volume accessible to small spheres

'

increases total entropy
AF=0M-TAS

Q,+Qg

Free energy, F

Free-energy gradient <= Force

e S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
e A, Vrij, Pure and Applied Chem. 48, 471 (1976).
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Fluid Phase: ® ©%6 ¢ ¢ ® ®

* Gas of Large hard spheres + Gas of Small hard spheres.

Gas Pressures derived from the Carnahan-Starling Equation of
State; Volume fractions of the Large (Small) spheres are increased
_as a result of the vul ucced by the Small (Large) spheres.

RI%

Solid Phase:
» Close-packed lattlce of Large Hard-spheres permeated by
hard-sphere gas of Small spheres.

Critical Feature Emerging from the Solid Model
Since the Large sphere excluded volumes already overlap in

the solid, the entropy of the Small spheres increases as the
crystal becomes more tightly packed !

Equate Osmotic pressures of phases, and chemical potentials
of large and small spheres within each phase=PHASE DIAGRAM
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Phase Diagram

‘a=0.825um/0.069um=12.0
(c) !

Fluid + Solid




Depletion force at surface: (HARD Spieres)

—= Moving large sphere to walldacreases
the Free energy even more!

Forcesphe,e= 2Xx Forcesphere

-wall -sphere
d = %

~ SagdgT s i
(afew kgl in strength)

Pavhieles

* P. D. Kaplan, J. L. Rouke, A. G. Yodh, and D. J. Pine,
Phys. Rev. Lett. 72, 582 (1994).

e P. D. Kaplan et al, Phys. Rev. Lett. 73, 2793 (1994).
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RANGE OF COMPOSITIONS WHERE “EQUILIBRIUM”
COLLOIDAL EPITAXY IS POSSIBLE!
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Surface Crystallization

Wall + Attractive Particle Interactions offer:

* Possibility for Surface Nucleation and subsequent Growth
without substantial Bulk Nucleation

* Different from more typical “space-filling” crystallization
processes that arise in most colloidal systems




" Entropic effects with Structure in the Walls
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" Entropic repulsion from a step edge:
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Less excluded-
volume
overlap

here

'Free-energy
barrier = 2kgT

at edge of terrace

05 0 05 1 )
Position (um) Maximum force —
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VESICLES
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(PARTICLES PUSHED TO WALLS AND REGIONS OF HIGH CURVATURE)




Attractive Depletion Interaction PLUS
Topographically Patterned Substrates
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Example: How does the template help?

0L¥01¢-000C—dD/VSVN

Why do we need a template?

Under certain conditions, colloids self-assemble into random close-packed crystals.

If we have a template such as FCC 100 plane,
there is no stacking faults and also we can
reduce the grain boundary.
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“How to” Manual: PMMA templates

1. Line grating templates:

- ﬁ.-ﬂ'ipmmah layer

(=200 nm thick)

Remove grating when cool

2. Cross grating templates:



Imprint Scheme

d i grating MMA layer (‘Hlennoplasi'.q

(>200 nm thick)
glass substrate

Press a grating onto PMMA layer while
heating PMMA above its glass temperature.

b

Commercially available
grating pitches range
from 0.3 micron to 10 micron.

Remove the grating after
PMMA is cool.

pitch~0.46 micron pitch~0.83 micron

Refls T Vae. Soc. Tech B 15 2897 ((297)
Steve Chou ef al
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“How to” Manual:

Coverslip

PDMS templates

PMMA cross t:{[*;l[ing

L

on microscope slide

PDMS pre-polymer

4 curing agent

10O

Plasma treat

oxidize PDMS

[emoving

PMIMA mold
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Our System

PMMA Colloids (0.65~1.1um) stabalized in organic solvents
polystyrene polymer to depletion. (Rg~15nm, 2~3% volume fraction)

solvents: closely index matched with PMMA beads (<0.01 difference
in index of refraction) good for 3D microscopy.

density matched for 2D study (decalin/cycloheyl bromide)
non-density matched for 3D growth (decalin)



LLine Grating Crossed Grating

Z
>
7
<
@)
I
[\)
S
S
P
=
S
~
3
S

p= 0.833um, 1.2pm, 1.667um

Steven Chou. J. Vac. Sci Tech: B 15 No.6 Nov/Dec '97
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Pair correlation function along groove

8
a(r)
Exact Solution
¢ Experimental
Data
. PL=5%
ar [ps]=2mg/ml

interparticle distance

Most likely interparticle distance = 0.93 micron
Hard sphere diameter = 0.86 micron
radius of gyration of polystyrene = 0.015 micron

Toaniy famn
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BCC 100 Plane
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Micromechanics and Dynamics in Magnetorheological Suspensions

Alice P. Gast and Eric Furst
Department of Chemical Engineering, Stanford University, Stanford CA 94305-5025,
USA

Magnetorheological (MR) suspensions are composed of paramagnetic colloidal particles
that acquire dipole moments when subjected to an external magnetic field. At sufficient
field strengths and concentrations, the dipolar particles rapidly aggregate to form long
chains. Subsequent lateral cross-linking of the dipolar chainsis responsible for arapid
liquid-to-solid-like rheological transition. The unique, magnetically-activated rheol ogical
properties of MR suspensions make them ideal for electrical-mechanical transducers.
Additionally, the ability to experimentally probe colloidal suspensions interacting through
tunable anisotropic potentialsis of fundamental interest.

In thistalk we will describe our work toward a microscopic understanding of
magnetorheological behavior. Much of the rheological behavior arises from the cross-
linked structure caused by defects and L andau-Peierls thermal fluctuations of dipolar
chains. We used the light scattering technique, diffusing-wave spectroscopy, to
investigate the fluctuations of dipolar chains. We have prepared monodisperse neutrally
buoyant MR suspensions allowing us to probe the dynamics of the dipolar chains using
light scattering without complications due to gravitational forces and polydispersity.

Optical gradient force trapping techniques, or laser tweezers, have become increasingly
important tools for studying the microscopic structure, mechanics, and interactionsin
biological, colloidal, and macromolecular materials. We also present our study of the
micromechanical properties of dipolar chains and chain aggregates in a magnetorheol ogical
suspension. Using dual-trap optical tweezers, we are able to directly measure the
deformation of dipolar chains parallel and perpendicular to the applied magnetic field. We
observe the field-dependence of chain mechanical properties, such astensile strain, chain
reorganization, defect-annealing and rupture. We discuss the role these forms of energy
dissipation take in the yield stress and rheology of MR suspensions.
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Microstructure and Rheology
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Gast and Zukoski, 1989.
— column formation or Klingenberg and Zukoski, 1990.
0.1-10um cross-linking Bonnecaze and Brady, 1992.
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Experimental Systems

1. Ferrofluid emulsion 2. Polystyrene (PS) particles - Bangs Lab.

_ _ Fe;O, grains embedded in polymer matrix
monodomain Fe;O, grains (~10nm) « polydisperse: a = 0.2-0.43um
a = 0.65um » Magnetic heterogeneity

ferrofluid |
TEM of PS particles
sodium dodecyl sulfate solution

Fractionated - monodisperse
J. Bibette, J. Coll. Int. Sci., 147,474 (1991)

Micrograph of emulsion droplets
-
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Gradient Optical Trapping

Ray-optic regime:

radiation pressure
net gradient force

A
\p
IN
OuT

Ashkin,Science, 210, 1081 (1980)
Ashkin, et al., Opt. Lett., 11,288 (1986)

focused laser

Trapping force calibration:

U
— » Micromanipulation and
F —
drag F — force measurement

= 6manU
* Forces ~ 0.1 -10 pN
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Laser Trapping “Tether-handle” System

~ Strong scattering and absorption
@ pushes MR particles out of laser trap

paramagnetic
bead handle
3.5 um polystyrene
bead fether held
by trap
Biotin-X-NHS
_qﬁ/\/\/
2um

W Ty Streptavidin

Paramagnetic emulsion droplets Ka ~ 10" M-
attached to “tether-handle”
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Micromechanics Experiments
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E. Furst and A. Gast
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Calculating the Particle Interaction

1. Self-consistent point dipole:

Ar [A(m.-f'l])—m].]
] m, = 3 aHO%{HZ+Jz¢'l 471_”01]

] m, m, —3( sz, )

4, 7

y

U. =

y

2. Repulsive double layer:

Derjaguin approximation,
Vi i _940_4525:\/ = 0.3nm-1 U,(r)=2nee, l//(fa ln{l + exp [— K(r — Za)]}

» Mutual induction and chaining effects
 Solve analytically for linear chains
» Numerically for arbitrary particle configurations (defects, etc.)
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Emulsion Chain Bending Micromechanics
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Lateral Deformation of Emulsion Chains

Emulsion chain bending in field Monodisperse emulsion
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« Agreement with calculated rupture
tensions
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Bending of defective PS chains
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rupture tension (pN)
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Lateral Deformation of PS Chains

PS chain rupture tensions

PS chain bending in field - defects
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A
» Greater variability in individual chain behavior.

» Size polydispersity and magnetic heterogeneity
chains rupture at lower tensions
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Emulsion Chain Extension Mechanics
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Defect Annealing During Extension

|  Strain increase during extension
Double cruciform

ofs due to defect annealing

Applied tension

: . rupture ¢
Extensional annealing of double 4 -
cruciform and corresponding tension -
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Mechanics of Chain Defects

Characteristic defects

Local rupture tension near defect
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Cruciform
000000000CEHO00000000

Double cruciform
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Lateral interactions with optical traps
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Regimes of Suspension Coarsening

Fluctuation time
>> coalescence time )
(modified Halsey-Toor)

%
i

cross-linked
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defect

equilibrium

rigid

Defective chains,
kinetically pinned

Particle size, shape
and magnetic
inhomogeneity

Applies: flexible chains,
close separation
(high concentration)

000 P00 000

Fluctuation time << coalescence time
(Halsey - Toor)

Applies: flexible chains,
far separation (low concentration)

000cP00000cEAE000

>V

Inflexible, short chains

Halsey and Toor, 1990.
Martin et al., 1992.
Martin et al., 1999.
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Rigid Chain Interaction, A = 610

Results
» Short, rigid chains free Chain/—\
* Ends interact strongly - i o
. £ : stationary |
Far fl_eld repulsion chain i
chains repel -'
* Near-field attraction
Chain separation Lateral interaction energy
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Flexible Chain Interaction, A = 340

Results Chain separation and lateral force

« Uniform, defect-free chains
 Long-range attraction

- [\freechain s e A B L
—— *_ﬂ e y 0 40 80 120 160 200
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Summary

« Magnetorheological suspension - tunable rheology
— Unique rheology coupling forces and microstructure

« Optical tweezers - manipulation, dynamics and force
measurements

— Chain rupture and reorganization
— Chain defects play a key role
— Coarsening governed by fluctuations and defects
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FREELY SUSPENDED SMECTIC FILAMENTS
AND THE STRUCTURE OF THE B7 PHASE OF MHOBOW

N.A. Clark, D.R. Link, and J.E. Maclennan
Department of Physics, University of Colorado, Boulder, CO 80309

Abstract

Our recent discovery of the spontaneous formation of chiral domains in

fluid smectic phases of achiral bow-shaped molecules [1] opens up a
wide variety of possibilities for new liquid crystal phases and phenomena.
The basic, spontaneously chiral layer structure of the highest temperature
fluid smectic phases, the B2 and B7, are shown in Figure 1. One of the
most intriguing aspects of this structure is the plethora of possible phases
coming from different stacking sequences of the polar ordering and tilt
directions. The four possibilities of next-nearest neighbor alternation are
shown in Figure 2. In the original material studied, NOBOW, the ground
states found are antiferroelectric, either the racemic SmC.P, or the chiral
SmC,P,. We are currently studying MHOBOW, synthesized by D. Waba
and shown in Figure 2, which, by virtue of its methyl hexyloxy tail has a
tendency to form anticlinic layer interfaces, in the hope of finding a

A Racemic B Homogeneously

chiral

£=qa Ec-f, E= &y £=qa [

’f
(]

Y, Ty Y, Mg Yy Mg Y, Teg Yy
P A e e
AW i N

/
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‘ \ # ) chirality ‘

15500 I
X S B2 = SMOP =z 1m0

Anticlini
Ferro

o rac
=m CAPS

k¥

Anticlinic  Synclinic
Artiferra Ferro

SmGFR BmCH’

phase with a ferroelectric ground date,
either SmC,P; or SmC,P,, which can
be obtained in NOBOW only by ap-
plying afield [2].

Preliminary observations of MHO-
BOW have made its study, from the
point of view of understanding novel
L C structures, extremely high priority.
The following truly remarkable char-
acteristics have been revealed: (i) The
smectic phase grows out of the iso-
tropic in the form of helical ribbons.
The resulting planar aligned textures
of focal conics with layers normal to
glass plates exhibit bizarre modula-
tions, including stripes and checker-
boards (Figure 4). These have aso
been seen in other materials suggest-
ing that thisis a new phase (tentatively
called B7), which is a fluid smectic

Figure 1: Basic structure of
spontaneously chiral layers
found in fluid smectic phases
of bent-core molecules. Two
broken  symmetries, polar
ordering of the "arrows' and
molecular tilt about the ar-
rows, make the layer chiral.

Figure 3: Freely suspended

filaments  of MHOBOW.
These filaments are roughly
20 pm in diameter. X-ray
diffraction from the filaments

a a
|
c D)LUJQU;LE:L
o o

with some kind of in-layer structure.
(i) It is virtualy impossible to make
freely suspended films of MHOBOW.

indicates that they have the
nested cylinder layer structure
shown.

07 NOBOW fpy

eaaaach

anc@ MHOBOW \E:I\CG;CMCHS]CEH.,
Figure 2: Simplest fluid smectic
structures that can be made from the
spontaneously chiral layers of Figure
2. The B2 phase of NOBOW exhibits
both antiferroelectric structures at zero
field. MHOBOW has a similar layer
structure but a much more complex 3D
structure.

aCgHy

NASA/CP—2000-210470

Rather it makes the freely suspended filaments shown in Figure 3,
which preliminary x-ray scattering experiments reveal to have the
nested cylinder layer structure indicated; (iii) The powder x-ray
diffraction exhibits four resolution-limited smectic layering peaks,
very close in layer spacing as indicated in Figure 5, which vary
continuously with T.. This is further evidence for a more complex
three dimensional structure than NOBOW, which as Figure 5
shows has a typical single layering reflection. (iv) The x-ray
structure factor of the layering peak of the filaments is extraordi-
narily complex and rich, as shown in Figure 6. Varying in g, (the

337



scattering vector component along the filament axis) from a double dlit-like pattern to modulated
layer-like patterns, as g, (the scattering vector component normal to the filament axis) is varied over
the range where the four powder peaks are located. These results suggest some kind of mosaic
structure, perhaps with different layer spacings corresponding to the different stacking sequences in
Figure 4. Recent x-ray diffraction experiments show that the peaks in Figure 5 are modulated in
intensity upon transglation along a filament, in domains of several hundred microns dimension.

These preliminary experiments suggest that the B7 is a fluid smectic with extremely unusual and fas-

cinating structures. Of all of the many hundreds of fluid smectic materials we have attempted to

study in the freely suspended film geometry over the years, only a few have failed to form films, and

none showed any great tendency to form filaments, although this clearly should be a possible freely

suspended smectic LC morphology. On severa occasions in the past we have intentionaly tried to

make filaments from a variety of smectics without success. Thus the smectic filament formation
property makes the B7 phase unique. It seems quite likely that
the stability of filaments is related to the in-plane structure.

” ﬂ'““ 9, The filaments exhibit other interesting structural and optical
feayurea They are birefringent With a local optic a_xis which is
el oblique and which can vary continuously along filament and
Al {0182 which can be manipulated with an electric field applied normal
— e :
0161 | aese AR o00A MHOBOW |

—e— T=127.7°C
—e— T=129.2
—e— T=132.3

—e— T=: ]
8.23 A 135.3
—e— T=138.1

0.00 —
0.1700

0.153

0.350

0.300

0.250 +

0.200

0.150

0.100

0.050

0.000 ! L
0.155 0.160 0.165 0.170

WAVEVECTOR ()

Figure 6: X-ray scattering geometry and
intensity from a MHOBOW filament in
the B7 phase vs. ¢, the scattering vector
component along the filament axis, and
g,,, the component normal to the filament
axis, both in A™. The q, range is roughly
that of the multiple peaks in Figure 5.
This pattern is indicative of a complex,
3D modulated smectic structure that is

currently not understood.
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Figure 4: Focal conic texture of
r-MHOBOW, showing the com-
plex in-layer modulation of the
B7 phase, and helica B7 fil-
mants growing from the iso-
tropic.

Figure 5: Powder x-ray diffraction
peaks showing the unusua multi-peak
of MHOBOW and the typical single
peak of NOBOW. The NOBOW peak
and the individual MHOBOW peaks are
resolution limited corresponding to
smectic domains > 3000A in size.

to the fiber, asif the field were causing a rotation of the optic
axis about the fiber axis. Rapid displacement of the ends of the
fiber toward one another causes a macroscopic helixing at low
T and causes thick regions to transiently appear at high T, a 1D
analog of island formation on a rapidly compressed film.
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THERMOCAPILLARY-INDUCED PHASE SEPARATION WITH COALESCENCE

R. Davis, M. Rother, and A. Zinchenko
Depatment o Chemical Engineeing, University of Colorado
Boulder, Coorado 80309-0424

robert.davis@cdorado.edu, 303-492-7314

ABSTRACT

Understanding the behavior of dispersions of one liquid immersed in a seand, immisable
liquid is important in both tradtional engineeing applicaions, sud as separaions and molten
materials processing, as well as more fundamental problems in the general sciences. This work
examines the interadions of two dmops wder conditions that vismus forces @minate inertia,
focusing on the role of interfacial deformation. The parwise information may then be usel in
the gudy of dilute dispesions, where the probability of threebody interadions is low. Two
regimes of deformation are wnsidered: small deformation, whee the diops remain spherical
except for a small flattering or dimpling béween the diops? and moderde or large
deformation, wherethe interfaces of both drops dstort gobally>® The effects of deformation
are significant, becaus small deformation inhibits diop coalescence, whle global deformation
promotes alignment of the dops? which may lead tocoaescence>* break-upof the smaller

drop,** or even more mmplicated coalesence-breakup penomena*8

This paperis focusedon the interadion of two drops of different size which experience
buoyancy and/or thermocepillary relative motion. Small deformations are onsidere first,
followed ty moderde and large @formations. Using methodology from matched asymptotic
expansions and a local boundary-integral appoad, coupling the lubricaion flow in the ggp to
the internal flow within the drops, the critical horizontal offset demarcating trgjedories which
leadto coales@nceor separton of the diops with small deformations is found. Figure 1shows
the resulting collision efficiencies for slightly deformable (solid curves) and spherical (dashed
curves) drops of ethyl salicylate (ES) in diethylene glycol (DEG) in gravitational motion.! The
collision efficiency of slightly deformable drops is approximately the same for sphericd drops
until a paticular value of the average rdius atwhich the collision efficiencies for sphericad and
sightly deformed dops rapdly diverge. Wth a further increase in the average radius, the
collision efficiency for dlightly deformed dops quckly appoades zero, asthe flattening and
dimpling in the near-ontactregon slows the film drainage and reduceshe malescence rde. In
Figure 2,population dynamics simulations of droplet growth due tocoalescence are shown for
the same ES/DEG system, but now in thermocapillary-driven motion,? at volume fradion ¢ =
0.05. Although the two dstributions for deformable diopsin frames a ad b begin with different
initial conditions, they bemme nealy indistinguishable later as arewlt of the retardation of
coalesaence by small deformations. Ghalexence may also be inhibited by appiopriated anti-
parallel alignment of the graity vedor and temperaure gradent.®

Turning to larger deformations, computational results** have been complemented by
experiments with glycerol/water diops wndergoing gravitational motion in castor oil.2 A
patticularly interesing phenomenon observedin the experiments is cyclic capure-breakup,in
which the head of asmaller diop doesnot coalesce with a larger dop after bre&ing. Instead,the
head of the smaller diop passeghrough the larger dop, moves back aound it and is again
cagured and breaks. Figure 3 shows a typical cyclic process, with we have alled
‘suckhrough,’ for visaosity ratio unty.
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Figure 1. The collision efficiency for
sedimentation of drops as a functioh o
the average drop radius for an ES/DEG
system for drop size ratios 0.2, 0.5, and
0.7. The dashed lines are for spherical
drops, and the solid lines are for slightly
deformable drops, both in the presente o
van der Waals forces.

Figure 2: Time evolution of the drop-size
distribution for thermocapillary coales-
cence of an ES/DEG dispersion composed
of spherical (dashed lines) and slightly
deformable (solid lines) drops with (a)
dimensionless standard deviation= 0.1
and initial number-averaged radias= 25
um and (b)o = 0.5, = 100 um.

Figure 3: Experimental images of the drop

shapes for a trajectory leading to cyclic
suckthrough for two glycerol/water drops

in castor oil with size ratio 0.87, drop-to-

medium viscosity ratio 1.0, and Bond

number 7.1. The Reynolds number is 0.16,
and the time scale is 1.2 s.
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Thermocapillary-induced Phase
Separation with Coalescence

Robert H. Davis, Michael A. Rother
and Alexander Z. Zinchenko

Department of Chemical Engineering
University of Colorado
Boulder, CO 80309-0424

Outline

1.Spherical drops and bubbles
2.Small deformations

3.Large deformations
4.Concentrated emulsions
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Phase Separation
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Spherical Drops — Collision Efficiencies
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Small Deformations
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Large Deformations
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Simulation without Coalescence
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Simulation with Coalescence if Spherical
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Buoyancy Experiments — Separation

A |

B2
=

Al iy
e

t=0U0s 128 104 s 13.6s 19.7 s 26.7 s

t=0s 7.2 s 104 s 13.6s 19.7s 26.7 s

Glycerol-water drops in castor oil
al/a,=0.8 1=0.002 Bo=1.8 Ax/a =22
Kushner, Rother & Davis (2000) JFM (submitted).
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Buoyancy Experiments — Entrainment

] o
il iyl

"\ e LIES A
i S TR

e
.......

t=0s 22s 4.2 s 6.2s 8.2s 104 s

t=0s 2.2s 42s 6.2s 8.28 9.2s

Glycerol-water drops in castor oil
ala,=08 =01 Bo=58 Ax/a,=25
Kushner, Rother & Davis (2000) JFM (submitted).
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Buoyancy Experiments — Coalesence
(1) (2) 3) (4)
at20.5s

(3) (6) (7) (8)

Glycerol-water drops in castor oil
a/a,=0.8 {'=0.002 Bo=0.7 AxJ/a, =0.2
Kushner, Rother & Davis (2000) JFM (submitted).
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Buoyancy Experiments — Breakup

t=0s 6.0 s 11.6s 2138 27.8s

® l

t=0s 6.0s 11.6s 149s

Glycerol-water drops in castor oil
al/a,=07 ©=10 Bo=56 Ax/a =0.8
Kushner, Rother & Davis (2000) JFM (submitted).
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Buoyancy Experiments — Suckthrough

Yo g k-

43

® o
“
® @

°w &

t=0s 2.7s 56s 8.1s 10.6s 119s

163s 19.2s 23.0s 254s 28.0s

Glycerol-water drops in castor oil
aja,=09 =1 Bo=7.1 Ax/a,=1.9

Kushner, Rother & Davis (2000) JFM (submitted).
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Sedimentation of Concentrated Emulsions

0.5 I T | 1 |
Bo=Apga®/0=1.75, n=1
c=0.35, N=200, N,=960 4

=
e
T

=
o

=
o

sedimentation rate, U/U,

0.1 + -
c=0.4, N=100, N,=1280
--- ¢=0.4, N=100, N,=1280
------- c=0.4, N=200, N,=1280
'D'D | | 1 1 |
0 20 100 150 200 290 306
time, t

Zinchenko & Davis (2000) J. Comp. Phys. 157: 539.
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Simulation of Concentrated Emulsions

4.5

4.0

3.9

3.0

2.9

2.0

shear viscosity, /.

1.5 :
0.00 0.05 0.10 0.15 0.20 0.25

Capillary number, Ca

Zinchenko & Davis (2000) Proc. 13" I. Cong. Rheo.
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Conclusions

e Phase separation enhanced by coales-
cence

e Nonzero collision rates possible for
spherical drops without attractive forces

e Small deformations retard coalescence

e Large deformations unlikely in thermo-
capillary motion

e Large deformations in buoyancy motion
may cause

- entrainment

- coalescence

- breakup

- suckthrough & cycling
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FLUID DYNAMICSAND SOLIDIFICATION OF MOLTEN SOLDER
DROPLETSIMPACTING ON A SUBSTRATE IN MICROGRAVITY

C. M. Megaridisl, D. Pouli kakosz, K. Boomsma and V. Nayagam3

iDepartment of Mechanical Engineering, University of Illinois at Chicago, cmm@uic.edu
3I nstitute of Energy Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
National Center for Microgravity Research, Cleveland, Ohio

ABSTRACT

This research program investigates the fluid dynamics and simultaneous solidification of molten
Sn/Pb solder droplets impacting on flat, smooth, unyielding substrates. The problem of interest
combines a fundamental investigation of fluid transport and heat transfer, with the development
of the novel technology of on-demand dispension (printing) of microscopic solder deposits for
the surface mounting of microelectronic devices. This technology, known as solder jetting,
features on-demand deposition of miniature solder droplets (30 to 120um in diameter) in very
fine, very accurate patterns using techniques analogous to those developed for the ink-jet printing
industry. After gjection, the molten metal droplets collide, spread, recoil and eventually solidify
on the substrate. This solder application technology has shown great promise in microelectronic
packaging and assembly, therefore, the development of a good understanding of the pertinent
fundamental fluid dynamics and solidification phenomena is essential for its successful
commercia implementation.

The study consists of a theoretical and an experimental component. The theoretical work uses
Navier-Stokes models based on finite element techniques to elucidate the fluid dynamics, heat
transfer and solidification phenomena, and in turn, improve fundamental understanding of the
miniature solder deposition process. The experimental component of the research tests the
numerical predictions and provides necessary input data (contact angles) for the theoretical
model. The experiments are performed in microgravity (2.2s drop tower of the NASA GRC) in
order to allow for the use of larger solder droplets which make feasible the performance of
accurate measurements, while maintaining similitude of the relevant fluid dynamic groups (Re,
Fr, We, Ste). The work aims to create a science base and identify the influence of the dominant
process parameters in solder droplet dispensing. These process parameters are: droplet size and
velocity; droplet, substrate and ambient gas temperatures; and contact angle between solder and
substrate before and after solidification. The sensitivity of the solidified-droplet (bump) shape
and size to variations in the above parameters is critical because solder bump volume, position,
and height variation are key metrics for solder jet technology. Through a combination of
experiments and numerical modeling, the effect of the dimensionless groups Re, We, Fr and the
physics these parameters represent are systematically documented [1].

The axisymmetric impingement of solidifying molten solder droplets onto smooth metallic
substrates was investigated to provide fundamental information relating to the apparent
(macroscopic) contact angle and free surface behavior during fluid spreading, and to determine
which parameters govern the process. Molten eutectic 63%Sn—37%Pb solder droplets of
approximately 1 mm in diameter were used in simulation of microcasting in normal gravity. In
addition, mm-sized droplet impact events in reduced gravity were employed for scale-up
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modeling of the impingement of picoliter size droplets used in electronic chip packaging.
Experiments were conducted in both norma and reduced gravity with technically relevant
impact velocities of ~1m/s and ~0.2m/s, respectively, defining the domain of the dimensionless
groups believed to govern the droplet spreading, recoiling and solidification behavior. In normal
gravity, the conditions investigated correspond to Re = O(1000), We = O(10), and Fr = O(100).
In reduced gravity of 5x10™g (characteristic of the levels attained at the 2.2s drop tower), the
impact conditions correspond to Re = O(100), We = O(1), and Fr = O(10000). In both cases
Ca=0(0.001). Figure 1 below displays the experimental apparatus employed in the drop tower
experiments. The results, as reported in [2], showed the spreading velocity of the droplets to
decrease with time after impact. The apparent contact angle decreased with increasing contact-
line speed, contrary to the classic behavior established using creeping flows or rolling droplets.
Using previously defined relations for droplet impingement, it was reported in [2] that for the
current experimental matrix, viscosity, capillarity, solidification, and surface tension all influence
the spreading of the metal droplet and must be simultaneously considered in modeling efforts if
accurate results are sought. The results provided a clear demonstration of the effect of the free-
surface dynamic motion on the instantaneous value of the contact angle during spreading and
recoiling of the bulk fluid. These results do not follow established trends from studies of slow
spreading or rolling droplets.

Contral sys -
ol Fig. 1: Photograph of the experimental apparatus

. %
e L designed and constructed for the 2.2s drop tower
-1 experiments conducted at the NASA Glenn
Research Center. The experiment rig consists of
five magor components. droplet generator,
environmental chamber, visualization system,
power distribution module (PDM), and control
system. This apparatus was used to perform the
experiments reported in [2].

assembly

i Droplat generator h
bl

The first phase of the program has investigated the axisymmetric impact of liquid-metal droplets
on flat stationary substrates. The second phase, which is about to commence, will examine
obligue (non-axisymmetric) impact events, which are necessary in high-throughput
configurations. The offset impact introduces an array of new scientific challenges and constitutes
the main goal of the new generation of this technology.
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Factors Affecting Solder Microdroplet Deposition,” ASME, J. Heat Transfer, Vol. 120, pp.
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e PROBLEM DESCRIPTION

Fluid dynamics and simultaneous
solidification of molten solder droplets
impacting on a flat substrate

Draplet z
dy
0 r
Multi-layerad
Substrate

(a) Pre~-impact {b) Impact

e TYPICAL CONDITIONS STUDIED

63%8Sn-37%PDb eutectic solder (T,=183°C)
Solder injection temperature ~210°C
Droplet diameter S0-100pm

Droplet injection velocity 1-3m/s

Ambient (N;) temperature 20-150°C -3
Flight distance 1-5mm Bo=000)
Re = 0(100), We =0(1), Fr=0(1000) oh-0(10")
Multi-layered smooth substrate Ca ___0(10-3)

Substrate temperature 20—150°C

361



Demand Mode Solder Jet

1440 pad microprocessor test vehicle, 60um bumps
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¢ OBJECTIVES

1. Investigate fluid dynamics and simulta-
neous solidification of molten solder drop-
lets impacting on smooth flat substrates.

2. Create science base and identify influence
of dominant process parameters in solder
microdroplet dispensing, These are:
droplet size and velocity; droplet,
substrate and ambient gas temperatures;
contact angle between solder/substrate
before and after solidification.

3. Through a combination of experiments
and numerical modeling, document syste-
matically the effect of the relevant
dimensionless groups (Re, We, Fr, etc.)
and the physics they represent.
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e WHY MICROGRAVITY?

RG=M Wﬂfz)DVG'EQIGP Fr = V;}z
v y dyg

Typical operating conditions in solder micro-

droplet dispensing correspond to:
Re = 0(100), We = 0O(1) and Fr = 0(1000)

To achieve similitude (based on Re, We and
Fr) with mm-diameter droplet experiments,

one should:
- reduce injection velocity by O(10)

« reduce surface tension coefficient of solder

by O(10)
. reduce gravitational level by O(1000)

Thus, the microgravity environment is neces-

sary to maintain relevance when performing
large solder-droplet impact experiments.
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¢« METHODOLOGY

Experimental:

Performed in microgravity (2.2s drop tower
of NASA LeRC) to allow for the use of large
(mm-diameter) solder droplets, which make
feasible the performance of more accurate
measurements, while maintaining similitude
of the relevant fluid dynamical groups (Re,
We, Fr).

Theoretical:

Axisymmetric Navier-Stokes models based on
finite element techniques and detailed free-
surface tracking. Its goal is to provide
fundamental understanding of transport
phenomena in miniature solder deposition
process.

Experiments test the numerical predictions
and provide necessary input data (such as
wetting angles) for the numerical model.
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Control system

PDM

Droplet generator
assembly

Chamber

Visualization
L system
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' | mm .

V,=0.23m/s, d,= 1.1mm

Re = 740, We = 1.3, Fr = 25000,
Ty =208 °C, T, = 25 °C (st. steel)
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Effect of thermal contact resistance
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(d) Bij=1.05, Bi;=0.07
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e CONCLUSIONS

Experiments in reduced gravity (2.2s drop
tower) have been performed successfully for
axisymmetric impact. A numerical mode] has
been developed to investigate the
fundamental phenomena.

Conditions investigated:
Re = O(100), We = O(1), Fr = O(10%),
Ca= 0(10 %), Bo = 0(10 %), Oh = 010 %)

Large number of frozen ripples formed on
droplet surface. Despite complexity of
transport and solidification processes, model
captures well the main features of the
experimental data.

Contact angle vs. contact line speed data
showed a clear dependence of contact angle
on free-surface deformation dynamics. The
measured trend contradicts the classical one
established for creeping non-solidifying
flows.
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FLUID FLOW IN A ROTATING CIRCULAR CYLINDER

Z. Liut, W. Schultz?, and M. Perlint

'Naval Architecture and Marine Engineering
2Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor, M1 48109

ABSTRACT

We study the motion of a fluid layer confined by a horizontally oriented, axially rotat-
ing, circular cylinder. This physical system facilitates a simple framework for investi-
gating the dynamics of a viscous flow with a fluid-fluid interface or that of a free-
surface that makes a trijunction with a solid, all in the presence of gravity. The period-
icity of the boundary conditions simplifies the analysis. Surface tension is included,
and disjoining pressure is applied to avoid a contact line. Two simple limiting cases
exist for zero and for infinite rotation speed, and represent that of a fluid pool on the
cylinder bottom and that of a uniform film experiencing solid-body rotation, respec-
tively. Two dimensionless quantities are introduced and used in perturbation analyses:
d, the ratio of average film thickness to cylinder radius that represents the fullness of
the cylinder; and T, the ratio of the Reynolds number to Froude number that therefore
represents the ratio of gravitational to viscous forces. Three sets of approximations and
their analytic/numeric solutions are presented: steady and unsteady lubrication approx-
imations through three orders in §; steady high-speed flow approximations through two
orders of small T'; and steady creeping-flow approximationsin the limit of large I". Also
a draining, thin film for zero rotation speed will be presented.

Lubrication theory is used with perturbation expansion of dependent variables in terms
of & to study athin film for steady and unsteady flow. I" is assumed order one, and the
expansion is conducted and solved through second order (i.e. zeroth, first, and second
orders) for the first time. The lowest-order, thin-film thickness profile is evaluated
numerically for varying I', and the results for the steady solution agree with previously
published results. Evaluating the expressions at the next order in 6, some differences
are apparent. In figure 1 we present the results for the time invariant case and first
order. Although the profile steepens (and exhibits an asymmetric dimple due to surface
tension for I'=0.47) in the vicinity of the maximum thickness with increasing I, the
position of the maximum remains at 6=90°, in contrast with experiments. At the same
order, with the initial condition of a uniform film, we present the temporal evolution;
however, as can be seen in figure 2 for I'=0.47, the unsteady profile exhibiting a dimple
evolves until a singularity occurs, and the solution becomes indeterminate—and never
achieves a resemblance to the steady solution. Prior to this, the maximum thickness
position can be seen to differ significantly from the steady case, and is around 30° grad-
ually shifting in time toward 45°. The last surface is presented for dimensionless time
2.25 (scaled by rotation rate). Solutions for increasing rotation rate (i.e. decreasing I')
exhibit smaller maximum thicknesses with position shifting from 30° toward 90° (not
shown). Results with and without surface tension display interesting differences and
will be presented through second order.
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We next abandon the thin-film assumption, include inertial effects, and investigate the
steady system for I"«1, a cylinder rotating at high speed (or equivalently in reduced
gravity or with increased viscosity). This case represents the departure from solid-body
rotation. We solve through order T" by the method of Frobenius. Twelve coefficients are
determined to complete the series solution, and the results are presented in figure 3. As
I' is increased, initially the position of maximum thickness tends toward the cylinder
bottom consistent with physical experiments, goes through a uniform thickness solu-
tion, and as I' is increased further proceeds to a solution with maximum thickness

around 270°.

Our final investigation concerns slow rotation speed (equivalently large gravitational
to viscous force), or flow where T" is large. In this case we define a small parameter,
y=T"1. Physically, a small pool of fluid is located symmetrically along the bottom of
the circular cylinder in the limit of vanishing y. Solutions are obtained through the first

two orders of .

06 L L L 06 L L L
0 1.57 3.14 a7 6.28 0 1.57 3.14 4.71 6.28

Figure 1. Steady solutions for lubrica- Figure 2. Temporal surface evolution for
tion theory through first order with lubrication theory through first order with
6=0.03 and varying I. 0=0.03 and I'=0.47.

'=0.18, Re=Q.0268

I'=0.12, Re=0.040:

T=0.11, Re=0.0439

L L L
1.57 3.14 4.7 6.28

Figure 3. Steady solutions for small T.
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Fluid flow in a rotating circular
cylinder

Z. Liu, W. W. Schultz & Marc Perlin

The University of Michigan




ty

v, =
Ny

Motivation

6.=T1U2 + tan’'(n,)

n(n,t)
?

HMIMLIMIDII

’p=0

Simplifying:

« 2D

* Vertical wall

« Stainless steel wall not glass
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Contact line models

Hocking (1987)
Miles (1989)
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Dussan (1979)
a, DeGennes (198)5)
Tanner (m=3,0,=0,)
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Stick-Slip behavior
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With frequency and amplitude
dependence
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Simplitying further

 Spreading behavior of liquid

 Lubrication theory possible

Liquid /‘
Q O

. Re]ieYing .thin film assumption; - RO’pg ] <_<1

* Two limiting cases; - LQ 'h“ﬂ_‘
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Experimental Setup

Spherical lens

Cylindrical lens

Servo motor

Liquid with dye

Cylinder size: 660 mm * 33 mm Resolution: 45 count/deg

Liquid volume: 15cc
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Lubrication assumption

Scaling

r=r"R ,h=h h, u=u/®Q, v=Vv/RQ, p=p/(1Q/Jd), t=Qi,

Parameters
A 2
5="cc1, T=R22 00, ca=27 ~ou)
R vQ UQR

Zero-order film profile equation

oh, |

oh, r Johnson, 1988
ot 6

(1-Th; cosB) 30 —;hé’ sin@

Wilson, 1993
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First-order film profile equation

oh 0h . oh
a—zl+ Q_ rhl cos@)ﬁ+ @'hg sin@ — 2l h, a—eocosegh1

.. oh, 0°h, . h :
:ghgsm9— 3 h3a—6c 9——h§ Fﬁsm@—ﬂ'héé%@sm@

2
_Ca,sd’K _ . >0 dK

3 7d6’ " 06 d6

where K 1s the curvature.
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Comparison of different order solutions
h=h, +0h +38°h,
7

1.4

1.27

0.8

0 | A | 0 | T
(2) 6 (b) 6

Solid curves: 4, , dash curves: &, + 0h, , dot curves: hy +0h, + 52h2

5=0.014, T =0.486 (a) Ca #0,(b) Ca =0.
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Comparison to experimental results

021 symbols: experimental data;

04r 1 red-dot curve: lubrication solution;

061 1 green curve: including £ =Re atorder (5 ;
emax . . 0

08 1 blue curve: including g =ge,? at order O(0);

JAN . . .
ap A 1 red-solid curve: including 7, =rev? at 0() .
o yAN
12+ AL A
-1.4

1 1 1 Il 1 Il 1 1 Il
0 0.05 0.1 0.15 0.2 025 03 035 04 045 05

r

Dimple appears in the second order solution.
- Unlike experimentsmaximum" thickness always occurs at 8 =0.
Including surface tension, symmetry no longer exists at 8 =0.
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Numerical solutions for unidirectional rotating cylinder
Q >0Q,>0,

Experiments
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Unidirectional rotating cylinder

,

Draining flow, static cylinder
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Lubrication approximation correction

Pressure rescaling: p = pI(p3RQ?)

Including constant centrifugal force: F_ =Re

3 2
Oh, h 0“h Oh oh Oh
~0_"0 %(65 O+FCOSGH—h20 %656604_ Msin@0F —Y =0

o 3 962 0 96

Including centrifugal force: F. =Rev]

2
Oh, [T 0h oh 0“h
%+5Reh2 Og O_Fc059h3_5Rchos9h3 0_5Reh3 0

096 H or 3 0 3 096 3 0452
2
O Relsinf 4]:?}’0 252 Re? 4@1’10 dRelsinf 50 hO
- hO + hO + hO
3 Hoo 3 Hoo 3 362

oh h oh
T2 Ogin@+6Reh? 00 +_0 =
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Conclusions

Centrifugal term 1s important but has not
been added formally

Location of maximum film thickness 1s
highly dependent on expansion technique.

Expansion and 2D assumption fail for small
rotation rate (large [')

We have more work to do ...



USING NONLINEARITY AND CONTACT LINESTO CONTROL
FLUID FLOW IN MICROGRAVITY
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AN INTERFEROMETRIC INVESTIGATION OF CONTACT LINE DYNAMICSIN
SPREADING POLYMER MELTSAND SOLUTIONS

David G. Fischer', Ben Ovryn,* Pirouz Kavehpour? and Gareth H. Mckinley?

National Center for Microgravity Research on Fluids and Combustion,
NASA Glenn Research Center, MS 110-3, 21000 Brookpark Road, Cleveland OH 44135.

*Department of Mechanical Engineering, M.I.T., Cambridge, MA 02139.

INTRODUCTION

The objective of this research is to apply interference microscopy to systematically measure
the spatial and temporal evolution of surface profilesthat develop in the near-contact line region
of Newtonian liquids, weakly elastic dilute polymer solutions, inelastic shear thinning fluids
and entangled polymer melts. Moving contact-line problems in polymeric materids are
encountered in many coating flows, gravity-driven drainage and in spin-coating operations
where spreading arises from the combined action of gravitational and/or centrifugal body forces
on a deposited droplet. Examples of industrial processes where spreading of a viscous liquid
over aflat dry substrate is important include: dip-coating of sheet metal; gravity drainage and
drying of colloidal paints; spin-coating of photoresists on silicon substrates and coating of inks
on paper. In the latter examples, achieving a spatially uniform coating requires careful control
and understanding of the mechanisms that influence the spreading dynamics of a fluid droplet.
As the mass fraction of solvent progressively decreases, the viscoelastic properties become
increasingly important. The interface profile is therefore governed by a dynamic baance
between surface tension and viscous and elastic stresses, and pronounced differences in the
shape of the interface between Newtonian and non-Newtonian droplets have been predicted and
observed experimentally.

The dynamics of the near contact line region governs the feasbility and stability of future
microgravity containerless materials processing operations that might involve spin- or dip-
coating of barrier materials or photoresists. In order to investigate such phenomena, it is
essentia to develop an instrument that can non-invasively and quantitatively image the evolution
of the surface topography of fluid layers with high spatial and temporal resolution.

EXPERIMENTAL RESULTS

A phase-modulated laser feedback interferometer has been developed that alows high-
resolution measurement of changesin surface height for static and dynamic liquid surfaces [1].
To ducidate the significance of rheological behavior near the contact line, experiments are
focusing on a single solid substrate (polished silicon wafers) and four distinct classes of fluids;
a smple viscous Newtonian reference standard, a dilute polymer solution, an inelastic shear-
thinning fluid and a weakly entangled oligomeric melt. Access to a microgravity environment
may ultimately be important since the ‘inner scale’ region over which elastic, viscous and
capillary effectsare al important will be physically enlarged as the gravitational driving force is
reduced. Present ground-based experiments are proceeding in two parallel efforts:

(i) Analysis of Optical Path Distortionsin Transparent Samples

A modd has been developed that predicts the effective optical path through a thick refractive
specimen on a reflective substrate (e.g. a silicone oil droplet on a silica substrate) as measured
by a scanning confocal interference microscope equipped with a high numerical aperture (NA)
lens [2]. If the effective pinhole of the confocal microscope is infinitesmally small then only
one ray (the ‘magic ray’) contributes to the measured differential optical path length, OPL.
However for a pinhole of finite diameter, rays within a small angular cone contribute to the
measured OPL as shown in Figure 1. With an a priori estimate of the loca surface shape, an
iterative algorithm can be used that alows the measured phase to be corrected for refractive
effects. In figure 2 we show a scanned image of astatic PDMS drop with contact angle 68° and
contact radius 18 pm as measured using the laser feedback interferometer.
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Fig. 1 Ray tracesresultingwhen a high-NA beamis Fig.2 Two-dimensional phaseiimage of the droplet

scanned from left to right into a droplet surface before phase-unwrapping. Insets are ()
forming aspherical cap. The 2 rays marked by the visibility (max. = 0.3) and (b) the phase
the arrows are the ‘magic rays'; see text. aong the delineated region.

(i) Development of Instrumentation and Apparatus for Soreading Drops

A temperature-controlled apparatusis being assembled, a MIT, on an x-y scanning stage to
permit rasterized imaging of viscous ‘gravity currents flowing down an inclined plane. The
resulting profiles will be compared with theoretica predictions for Newtonian and non-
Newtonian congtitutive models [3,4]. The loca shape of the advancing front depends on the
boundary condition a the advancing contact line In Figure 3 we show two representative
profiles of the local surface profile for a silicone oil (1 = 10* cPoise) quasi-statically advancing
on (a) adry and (b) awet horizonta silicon substrate.
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Fig. 3 Evolution in the optical path length (OPL) as a viscous silicone drop slowly spreads under gravity
fromright to left over (a) adry silicon wafer and (b) a silicone film that pre-wets the substrate.

In future work, we plan on using this technique to image the spatio-tempora evolution of
surface topography in two important commercial processes: (i) the evolution of a solidifying
drop [5] and (ii) the drying and cracking of colloidal films coated on glass surfaces.
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AN INTERFEROMETRIC INVESTIGATION OF
CONTACT LINE DYNAMICS IN SPREADING
POLYMER MELTS AND SOLUTIONS

David G. Fischer, Ben Ovryn, H. P. Kavehpour,
and Gareth H. Mckinley
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Introduction

 Obective:

0 Apply interference microscopy to systematically measure the spatial and
temporal evolution of surface profiles that develop in the near contact line
region.

» A phase-modulated laser feedback interferometer has been devel oped
that allows high resolution measurement of changes in surface height for
static and dynamic liquid surfaces.

« Applications

0 Moving contact line in polymeric materials

0 Gravity-driven drainage

0 Spin-coating operation of photoresists on silicon substrate
0 Dip-coating of sheet metal
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Interferometer

» Division of amplitude Interferometer (Michelson)

Mirror
bt
E, E,
Laser \Y\
™~ Beam splitter
h 4
Detector
_l(p
E;=a,e ™
_ -1,
E,=a,e

>

Object

I=|E1+E2|2 =1, (1+ mcos (¢)) — Intensity

P=G"¢

» Phase

m=2(a,a,)/(a,;*+a,?)

. Visibility
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Laser Feedback Interferometer (LFI)

e LFI system with multiple reflection:

7 7 7

Photo ) é L é ) L R é

detector g g n g
Ml M2 M3

I (m,b,@) =1, { 1+ mcos(q) Z(-b)'cos(j@)}
@=@lmA)nL, m=y R31/2

« With only a single reflection (j= 0), behaves like a two beam
interferometer:

I(m, @) = Iy 1+ m cos(@) }
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Phase shifting interferometery applied to LFI

* Measurethe changein intensity for a series of experimentally controlled
phase changes to eectro-optic modulator

fi(m, @, W)= I, {1 + mcos (¢ + Uy);

Optical path length: o= [n ds
Phase: = (41UA) O

* Example: P.={0, /2, 11, 311/2}
1,=1, {1 + mcos (@)} 1,=1, {1 -mcos (¢)}
1,=1, {1 - mcin (@)} ;=1 {1 -mecin (@)}
then:
tan(@)= (L-L)/(L,+1) m:2((11_13)2+ (14‘12)2)0'5/ (I, I+ 13+,
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Determination of the accuracy of LFlI

« Cantilever bending of a piezoelectric bimorph

detector I IF

| DC motor |
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Measurement of static contact angle of drops of PDMS on
fluorinated silicon wafer

1) Wipe single crystal silicon wafer with toluene
2) Dip silicon into FC-723 surface modifier and allow to dry
3) Place 60,000 cS PDMS drops using

~an atomic force microscope cantilever tip

36 um diameter drop
Data Collection

1) Wafer on closed-loop, two dimensional
translation stage (100 um x 100 um)

- 2) Image with 50 x 0.8 NA objective

3) Collect two-dimensional image data
sample with at least 125 nm/ data point

Do calculation on-line
Scanning times are long
~50 msec/data point (not yet optimized)

VIDEO IMAGE
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Measurements with LFI

* Raw visibility and phase
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Two dimensional scan of etched silicon wafer
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Confocal microscopy results

e Scanning a drop during the wetting process

L aser beam

—> 1 mm/s

A

h

vy ¢

> R

Spreading of a silicon oil
drop (h=0.1 Pa.s)on a
silicon surface.

Scanning speed 1s 1 mm/s

100

Sy (=0

A 4
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Confocal microscopy results (cont.)

e Scaledformof drop spreading

1.2 . | . | . T

" Ca=10 "

10 F oh=04
_ y(x,1) '
¢ = 08 |
he (1) D
Z _ R(X,t) 06 r
Rc(t) 04 +
02 F
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Confocal microscopy results (cont.)

e Comparison of spreading results with theoretical results

e Ohnesroge number ,
Oh=11/(pRa)

. 1fOh>>1 thenZ~t

. 1fOh<<1 thenZ~t

25

33

10¢

0.1

=  DMS-T41 if=10',, Oh=50)

e DMS-T21 rf=10'n,, Oh=0.5)
+  DMS-T11 f=10'n,, Oh=0.05)

10

1000
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Confocal microscopy results (cont.)

e Comparison of spreading results with theoretical results
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Confocal microscopy results (cont.)

« Evaporation of a coffee drop on a silicon surface

(The Coffee Ring problem)

* Ring formation at the
contact line

e Scanning speedis
250 pm/s

| t=765s — i
L \ -
100F { - t=1862s

£
jso
sol L= 12198 t=2300s|

O‘ @
-20 -15 -10 -5 0 5 10 15 20
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Conclusion

« Laser feedback microscopy has better spatial and vertical
resolution as compared to other optical methods (e.g. two
order of magnitudes better than confocal microscopy).

 LFI is a non-invasive method therefore it is an excellent
tool for measurements close to the contact-line.

« Other applications of LFI are surface profiling of MEMS,
measurement of very low amplitude vibrations, and
characterization of nano-scale cracks and surface defects.




COALESCENCE AND NON-HYDRODYNAMIC FORCES ACROSS
THIN FILMS BETWEEN TWO FLUID INTERFACES

Tonya Kuhl, Charles Park, Hong Yang, Fabio Baldessari, Jacob Israelachvili
and L. Gary Leal
Department of Chemical Engineering
University of Calif. at Santa Barbara

This project represents a combined “macroscopic’ and “microscopic”
investigation of coalescence between droplets in a flow. The macroscale studies are
being carried out in a very small 4-roll mill that is designed to allow us to work with
drops of O(100 microns) or less in diameter. We have obtained comprehensive data on
coalescence conditions for two equal size drops in the plane of the various flows that can
be produced in the 4-roll mill, both for head-on collisions and for glancing collisions. The
data shows quantitative agreement with the expected hydrodynamic scaling behavior for
two Newtonian fluids with a contaminant free interface. However, it suggests an
unexpected dependence of the critical film “thickness” at coalescence on the drop size, as
well as a currently unexplained dependence of the same quantity on the molecular weight
when the suspending fluid is a polymeric liquid (though with bulk rheological properties
that are still Newtonian under the conditions of the coalescence experiment. We have also
recently initiated macroscopic studies of the role of different types of surface forces in
setting the conditions for coalescence (e.g. van der Waals forces versus hydrophobic
attraction). The microscale studies are being done using the surface forces apparatus
(SFA). Initially, these studies were focused on the origin of hydrophobic forces across
thin films where, for the first time, the full force-law (force versus distance, F vs. D) has
been measured from D > 50 nm. To D=0. More recently, we have begun to investigate
the use of the SFA as a means to directly investigate the film thinning and instability
problems-under conditions that directly relate to the macroscale coalescence experiments.
We have obtained preliminary data that explores the conditions and details of the film
collapse process at the moment of coalescence for conditions of very small capillary
number (approx. .00001), as well as the separation when the coalesced interface is pulled
back apart.
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Coalescence and Non-Hydrodynamic
Forces across Thin Films between
Two Fluid Interfaces

Tonya Kuhl, Charles Park, Hong Yang, Fabio

Baldessari, Jacob Israelachvili and L. Gary Leal
Department of Chemical Engineering
University of Calif. at Santa Barbara

Outline:

* AIM - experimentally based understanding of
flow induced coalescence of drops and bubbles

* Macroscale vs. Microscale Experiments

e Numerical Simulations

e OUTCOME - develop realistic models of the
interactions between deforming liquid-liquid and
vapor-liquid surfaces in coalescence and related
processes
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Macroscopic Measurements - 4 Roll Mill
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Microscopic Measurements - Surface Force Apparatus
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Drop Collision and Separation — Cg > Cc¢
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Drop Collision and Coalescence

Ca < CC
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coalescence breakup
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Drainage Time
(PB in PDMS, =1.0, offset/2R=0.0)
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Coalescence scaling law

0.1
Cac = 0.42D%
Cac 0.01 E
Cac 1l D5/6
0.001
10 100 1000
D( m)

PB5000/PDMS60000, =0.9
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Scaling Law Behavior

:
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Critical Film Thickness, hc vs. drop size

h. , angstrom
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Static Force Measurements —
"solid" PBD across liquid PDMS
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Hydrophobic Interactions

Low solubility
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Hydrophobic Interaction Force Profile
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Summary:

* Experimentally based understanding of flow
induced coalescence of drops on the Macro and
Microscale

h. ~ R+1/3
Intriguing h, ~R™"* ??

e Numerical Simulations match well and more
improvements in the future

» First direct measurement of the hydrophobic
interaction as a function of distance to contact

F ~exp(-D/D,) for D>150A
F~D! for D< 200A

Macro — L. Gary Leal, Charles Park, Hong Yang, and
Fabio Baldessari

Micro — Jacob Israelachvili, Tonya Kuhl

This work was supported by the Microgravity
Science Program of NASA via Grant #NAG 3-2115
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Modeling of Transport Processes in a Solid Oxide Electrolyzer Generating Oxygen

G. Tao, K.R. Sridhar , and C.L. Chan
Department of Aerospace and Mechanical Engineering
The University of Arizona, Tucson, AZ 85721

Abstract

Carbon dioxide, the predominant atmospheric constituent on Mars, can be used to produce
oxygen using Solid Oxide Electrolyzer Cells(SOEC). The extracted oxygen is of interest for
propulsion and life support needs. Several studies have shown that using local resources, ISRU
(in-situ resource utilization), can reduce both the launch mass from earth and the landed mass on
Mars, thereby providing significant cost savings and reduced risks for future human missions to
Mars.

SOEC works on the principle of oxygen ion transport in certain ceramic oxides. The
electrochemical cell is made of a solid nonporous oxygen ion conducting electrolyte, such as
fully stabilized Zirconia doped with Yttrium(Y SZ), that is sandwiched between two porous
electrodes. An external DC power supply is applied to the electrodes. The porous electrodes help
to form the triple phase boundary (TPB) or electrochemical reaction sites (ERS) that facilitate
oxygen transport. TPB or ERS is a location of an interface where an oxygen bearing gas such as
carbon dioxide, an electron conductor such as the electrode, and the electrolyte with oxygen ion
vacancies intersect. There are several transport processes occurring in a SOEC generating
oxygen from carbon dioxide. At cathode side, for example, CO, gas impinges on the electrode
surface from the bulk flow and then diffuses through the porous electrode. A CO, molecule
dissociates into oxygen atom and CO. The oxygen atom picks up two electrons from the
electrode to become a doubly charged oxygen ion. The oxygen ion, forced by external applied
voltage, transports through the vacancies in the crystal lattice of the electrolyte to anode side.
The whole process consists of gas diffusion, adsorptive dissociation, electrochemical reaction,
and ion migration. Associated with these irreversible processes are three kinds of overpotentials
which contribute to the degree of deviation of the cell voltage from its thermodynamic open
circuit voltage. The three overpotentials are concentration, activation, and ohmic. Quantification
of the different overpotentials is essential to understand the reaction mechanism and to develop
efficient SOEC for space applications.

The ohmic overpotential and activation overpotential can be measured by the current interruption
method in conjunction with a recording oscilloscope. As the current cut off, the potential
differences begin to drop. The voltage drop curve consists of linear and nonlinear parts. The
initial linear drop within couple of microseconds corresponds to ohmic losses followed the
nonlinear drop which lasts couple seconds account for activation overpotential.

The typical performance characteristics of a SOEC at 800°C is shown in Figure 1. In the
beginning, the current density increases with the CO, electrode (cathode) potential. Then the
current saturates, reaching a plateau for a range of cathode potentials. After the CO, electrode
voltage exceeds a threshold value, the current density increases sharply. While the CO, electrode
potential is increased, the anode and cathode activation overpotentials also change as shown in
Figure 2. The measured overpotential is the sum of the activation overpotential and ohmic losses.
By using the current interruption method at high voltage, we can measure the characteristic
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resistance of anode and cathode electrodes and thereby the ohmic overpotetial. From these two
measurements, the activation overpotential can be calculated. From the characteristic shapes of
the curves shown in Figure 1 and Figure 2, we can classify a cell’ s typical performance into three
regions, namely small current region, constant current region, and high current region.

In region I, the current increases gradually from negative to positive as the CO; electrode voltage
potential increases in magnitude. The activation overpotential also increases on both sides. The
current is caused by the impurity content (O,, 0.107%) in CO, gas source.

In region Il, the cell’s current stays at a nearly constant level although the CO, electrode
potential increases in magnitude. The anodic activation overpotential at the oxygen side remains
unchanged, while the cathodic overpotential increased sharply. At this point, all O, taking part in
electrochemical reaction comes from O, impurity of CO,. There is no CO, dissociating into CO
and O. Because of limited O, source, the cell is in a mass limited flow condition. All the increase
in applied potential is utilized at the cathode, while the activation overpotential on anode side
remains unchanged. The overpotential at the cathode side is still not sufficient to provide the free
energy required to crack COs..

In region 11, the cell’s current increases with applied voltage, after the CO, electrode voltage
reaches a certain threshold value. The activation overpotential at CO, side drops sharply, while
activation overpotential on the anode side increases. The magnitude of the threshold is a function
of temperature. It can be determined by the CO, energy of formation and is termed the Nernst
potential. In region |11 the activation overpotentials fit the Tafel plot well. The data on exchange
current density and charge transfer coefficients obtained from the Tafel plots can be used to fit
the well known Butler VVolmer equation.

SOECs have been used in a CO, environment to produce O,. The current-voltage characteristics
and overpotentials associated with the process have been measured. Three distinct regions are
observed, and been analyzed.

IV Characteristics L .
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Overview

* Introduction

* Principle of Solid Oxide Electrolysis (SOEC)
« Experimental Set-up

 Experimental Results and Discussion

« Conclusions

 Future Work
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« Certain ceramic oxides conduct oxygen ions at elevated
temperatures
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Crystal Structure of Yttria Stabilized Zirconia (YSZ)
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Three Phase Boundary (TPB and ERS)

YSZ YSZ
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Flight Hardware MIP/OGS for Mars Lander

ISRU End-to-End payload for 2005
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Basic Repeating Element of a SOEC Stack
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A Plausible Mechanism of Oxygen Transport

B ulk Diffussion
of CO2
|
I I
Adsorption of CO2 Adsorption of CO2
on Electrode on Electrolyte
Surface Diffusion alon c S urface Diffusion on
Electrode to near TPB Electrolyte to mnear TPB
i |
Dissociation of CO2
Nnear TPB
|
lonization at ERS I
O2- conduction Iin YSZ I
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Reactions on the Cathode Side

The Overall reaction on the cathode side
i} 2-
coz(g)+ 2¢” =) CO(,)+ O

Plausible Steps:
CO (g (bulk gas) LI COyy) (boundary layer) 2]

COz(g) (electrode outer surface) [ COyy) (diffuse into Pt micropore)  [3]

COy, (Pt mircropore) L CO, (ads) (adsorbed on Pt particle) [4]

COyads) (on Pt particle surface) L COy,qs) (transported near TPB) [5]

Coz(ads) (near TPB) U CO@) + Oads)y (near TPB) [6]

10 K.R. Sridhar, (520) 621-6111
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O (ags) (near TPB) L O (ags) (at ERS) [7]
2¢” (Pt) O 2e (transport to ERS) [8]
Vo (Zr0,) 0 V5 (transport to ERS) [9]
O (ag5) (ERS) + 2¢ (ERS) * V_ (ERS) U O, (ERS) [10]

Where V, is a doubly ionized oxygen vacancy, O, is an oxygen ion
on normal lattice site, and e- is an excess free electron from

electrode.
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Overpotentials

 Activation overpotential
« Concentration overpotential
« Ohmic losses

,71_ nohmic ncon + nact [11]

Quantification of the different overpotentials is essential to
understand the reaction mechanism and to develop efficient SOEC

for space applications
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Activation Overpotential Measurement

« Current interruption method -- in conjunction with a recording
oscilloscope to measure ohmic overpotential and activation overpotential

« The voltage drop curve consists of linear and nonlinear parts
» Linear drop represent ohmic loss, while

« Non-linear drop account for activation overpotential

13 K.R. Sridhar, (520) 621-6111
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Experimental Setup

Relay (fast response)

1 1 1
1 1 1
1 1 1
Anode Electrode : : :
| Pt | R.E,a | | "
@ | vSZ |
@ Pt | R.E,c | .
Cathode Electrode : I
! :
! I
) ' !
storage
oscilloscope

Activation Overpotential Measurement by Current Interruption Method
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Arrangement of Electrodes

WE

Four - Electrode Arrangement
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Electrolyte -- 8% mole YSZ with 300 micrometers thickness

Electrode -- Pt, ~6 micrometers thickness

Working Electrode (WE) area -- 1.98 cnm?

Reference Electrode (RE) area -- 0.02 cm?

Distance between WE and RE is ~20 times larger than YSZ thickness

18 K.R. Sridhar, (520) 621-6111
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Experimental Equipment

« HP 6641A system DC power supply to provide constant cell voltage

« Tektronix TDS 420 digitizing oscilloscope to record voltage drop signal
* Fluke with high input impedance to monitor steady state potential

« Solid state relay (SSR) for quick response switch

« Tektronix differential preamplifier to eliminate noise

« MTI gas chromatography to measure reaction gas composition

19 K.R. Sridhar, (520) 621-6111
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Experimental Results and Discussion

Current-Voltage (I - V) Characteristic

60
- |
: : ! CO,, Pt/YSZ/Pt, Air
50 | . - Temperature = 800 °C
o 20T | | 2
= L Electrode Area 1.98 cm
o B | n
E 40 * Refer to Air electrode
> B
-a 30 .
c B
0 L —e FV
a B
'E 20 T
w -
= ¥
S 10+
0 - -
-5%0 -2000
-10

CO, Electrode Voltage* (mV)
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50 -

40 -

Current Density (mAIcm")

CO,, Pt/YSZ/Pt, Air

Temperature = 850 °C
Electrode Area 1.98 cm 2

* Refer to Air electrode

-1000 -1500 -2000

CO; Electrode Voltage* (mV)
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Activation Overpotential

2R

r]act +1

(<)
\=/

V1= Eapp]jed =2

YSZ

W.E.c

V2 :nact,a2+ IR
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V1= Eapplied = zr]act+ IZR;

V2 =Nyera ¥ IRy **
V3 = Naeres * IR3;
V3 = Nyeras + IRs;
VB = Ngeres * IR

V1 is input potential by HP DC power supply (constant voltage control)

V2, V3, V5 and V6 are overpotential directly measured by Fluke, which
count ohmic loss and activation overpotential.

R, is ohmic loss between W.E.a and the equipotential line of R.E.a.

R, is calculated from ** and the current interruption method results.

23 K.R. Sridhar, (520) 621-6111
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Activation Overpotentials at 800 °C

CO,, PY/YSZ/Pt, Air
111 Temperature = 800 °C

—a— V2 (Anode, Measured
Overpotential)

—— V2' (Anode, Activation
Overpotential*)

—* V3 (Cathode, Measured

\\\\\\\\\\\\\\\E\\

Overpotential)
— V3' (Cathode, Activation

Overpotential*)

*\2=1N,=v2-IR,
v3=MN3=Vv3-1R;

Current Density (mA/cm 2)
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600

Activation Overpotentials at 850 °C
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CO,, P/YSZ/Pt, Air
Temperature = 850 °C

Activation Overpotential (mV)
-

LA B B I R B

110 20 30 40 50 60 70

—4— V2 (Anode, Measured

Overpotential)
—=— V3 (Cathode, Measured

Overpotential)
- V2' (Anode, Activation

Overpotential*)
— V3' (Cathode, Activation

Overpotential*)

Current Density (mA/cm 2)

* V2 = r]2=V2—|R2
V3= N3=V3-IR3
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Activation Overpotential Results

A: Region I -- Small Current Region
Air, Pt/ YSZ / Pt, Air

B: Region Il -- Constant Current Region

Current is limited by impurity of O, diffusion at cathode side
(0.107% of O,)

C: Region Il -- High Current Region

Charge transfer limits reaction rate

26 K.R. Sridhar, (520) 621-6111
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4.4 Butler Volmer Equation and Data Fitting

Oa,aFN act a_ a

TUCSON ARIZONA

AN

| =g aEexp( exp
"] RT

For anode side, where i >0, andn,,,>0

aa, CFr] act c . ) an/

FIt a Eact A0
RT (]

=i CEXP(
¢ 5 RT

For cathode side, where i <0, andn,, . <0

FIt Eact G13]
RT (]

27
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Where R is universal gas constant, F is Faraday’s constant, T is the cell
working temperature.

| is cell's current density, 1, is activation overpotential obtained by
current interruption method.

I, 2» and iy . are exchange current density.

Uaar Ooa and a
respectively.

ac O are transfer coefficients of anode and cathode

+0. =2

Bockris model: a, , +a., = 2; a 6.

c,a a,C

28 K.R. Sridhar, (520) 621-6111
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Two approximations Eq. 12 and Eq. 13:

« Smalln:

linearize Eqs. as

I _ a +CXC)Fr7 [14]
i RT @t
« Largen:
Tafel plots
RT l
nact — aF ln(l._) [15]
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Butler Volmer Equation Fitting Experimental Data

400 | I | : CO,, Pt/ YSZ / Pt, Air
~ T S SN ¢ s ¥ = Temperature = 800 °C
E 200 7 #7 + V2'(Anode, Activation
= T . Overpotential)
é 0 [ENL | NI T S TS S — V2! (BUﬂer Volmer Eq.
% Fitting Region I)
= -10 10 30 >0 — - - V2' (Butler-Volmer Eq.
2200 - Fitting Region I1I)
2 I- = V3'(Cathode, Activation
S 400 - "o - Over potential)
s I' i S - - - - V3' (Butler Volmer Eq.
o = Fitting Region 1)
< 600 - . — - - V3' (Butler Volmer Eq.
r Fitting Region 1I1)
|
-800 . vy =", vz =",

Current Density (mA/cm )

Butler Volmer Equation Fitting Experimental Data ( 800 °C )
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400 — CO», P/YSZ/Pt, Air
= : Temperature = 850°C
% 200 — + V2'(Anode, Activation
%/ i Overpotential)
R= 0 L. .| 7 V2' (Butler-Volmer Eq.
% - Fitting Region I)
& -10 70 —_ = '
5 i V2' (Butler-Volmer Eq.
5 -200 -+ Fitting Region III)
= - - - = V3'(Cathode, Activation
‘% 400 E E"" e T Overpotential)
% i - . - STt e - - - - V3' (Butler-Volmer Eq.
< - - Fitting Region I)
-600 + L‘ — - - V3' (Butler-Volmer Eq.
- . Fitting Region III)
800 - 11 *v2'=N,, v3 =",

Current Density (mA/cm 2)

Butler Volmer Equation Fitting Experimental Data ( 850 °C )
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Region |

oa MAGT)| 0 | O icmiom) | % | O
800 C (0354 1 [1 -0 678 |
850 C | 0363 1 1 0319 1 |1
Region Il

oz (mAvern) L Uea | log (mAJen) 0 Joe
800 C [3.031 0886| 1114 D129 079 121
850 C | 5667 1l168 0831 -0.084 |0532 1468
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Conclusion

Successful measurement of activation overpotential and ohmic
losses.

Three regions of cell's performance:
In region | the charge transfer steps control the reaction rate.

In region Il, the gas surface diffusion in the electrode/electrolyte
interface is the rate determining step.

In region Ill, charge transfer steps control the reaction rate.

Butler Volmer Equation can describe the reaction rates and also to
predict SOEC performance and O, production.
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Future Work

Analyze electrode structure to model different transport processes in

these three regions

Improve electrode and electrolyte to increase ERS, decrease
activation overpotential and increase O, production rate.
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PRODUCTION AND REMOVAL OF GAS BUBBLES IN
MICROGRAVITY

H.N. Oguz
Johns Hopkins University
Department of Mechanical Engineering
Baltimore, MD 21218

ABSTRACT

This study focuses on two topics relevant in many microgravity applications: formation
of gas bubbles from orifices in tubes and removal of individual bubbles from liquids.
Bubble injection from an axisymmetric slot is investigated experimentally and
numerically. Three dimensional boundary integral simulations of bubble injection from
multiple holes along the axial direction of a tube have also been carried out. Several
difficulties encountered in the numerical modeling of these flows have been overcome
and a stable method has been developed. The main difficulty is the tendency of a growing
bubble to touch nearby solid surfaces. An artificial force is introduced to keep bubbles
away from the walls and continue the computations without affecting the main
characteristics of the problem. It has been observed that downstream bubbles detach
earlier when all bubbles start growing at the same time. This is expected because the
average flow rate seen by downstream bubbles is higher than the ones seen by upstream
bubbles. Bubble shapes obtained from normal gravity experiments are shown in fig. 1.
Simulations under similar flow condition (fig. 2) [1] reproduce this flow.

Figure 1. Images of bubble formation from two needles of 0.4-mm radius embedded in a
tube of 1.6-mm radius. The average water velocity is 21 cm/s.

i~ e

Figure 2. Three-dimensional simulations of multiple bubble formation in a tube. The
average velocity is 20 cm/s.

A series of experiments have been carried out to investigate gas injection from an
axisymmetric slot in a tube under normal gravity conditions. Three distinct regimes of
operation as a function of the gas/liquid flow rate ratios are observed. At high gas flow
rates, the injected gas completely fills the tube and blocks the liquid flow. A Taylor
bubble is generated in this regime. When the liquid flow rate becomes comparable to the
gas injection rate, axial symmetry is broken and a regular single bubble forms. This is

NASA/CP—2000-210470 462



identified as the second regime where the liquid flow is not interrupted by the gas. At
even higher liquid flow rates, turbulent conditions and chaotic multi-bubble formations
are observed. This is the third regime. Illustrative pictures for these regimes are shown in
fig 3.

(a) (b) ()
Figure 3. Three regimes of bubble injection from a slot: (a) Taylor bubble, (b) single
bubble, and (c) chaotic.

An axisymmetric boundary integral code is employed to simulate this flow. Because of
the imposed symmetry the range of validity of the simulations were somewhat limited but
the results are useful in understanding the basic dynamics of the problem. Simulations
suggest the existence of a stable liquid column inside the bubble. Assuming that the
bubble front moves with the same velocity as the liquid column, an equilibrium condition
that admits one stable solution is derived [2].

Although there have been many investigations of the formation of bubbles from an
underwater orifice, the opposite case, i.e. removal of bubbles by an orifice, has received
very little attention. The dynamics of a bubble entering a capillary tube is studied. A
stream of sparsely spaced bubbles generated from an underwater orifice is positioned just
below a capillary tube that is connected to a vacuum reservoir. Sufficiently small bubbles
are captured in the capillary. In some cases, a small bubble detaches from the back of the
main one as a result of severe surface deformation near the entrance of the capillary.
Larger bubbles, on the other hand, break in two while being drawn into the capillary. A
boundary integral technique is employed to simulate this process. An artificial repulsive
force is introduced to form a thin layer of water around the bubble in the capillary tube.
With this scheme, it is possible to simulate bubble motion both outside and inside the
capillary. Numerical bubble shapes are found to be in very good agreement with
experiment.

REFERENCES
[1] Development of a three dimensional boundary integral method and its application to
bubble formation from submerged orifices" Jun Zeng Ph.D. Thesis Department of

Mechanical Engineering, Johns Hopkins University 1999.

[2] “Gas bubble injection from an axisymmetric slot in a tube" H.N. Oguz, APS Meeting,
New Orleans, LA. November 21-23, 1999.
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Using Surfactantsto Control Bubble Coalescence in Nucleate Pool Boiling

Kathleen J. Stebe, Department of Chemical Engineering, Johns Hopkins
University, 3400 North Charles Street, Baltimore, MD 21218 kjs@jhu.edu

R. Balasubramaniam, NCMRfc/ NASA Glenn Research Center, 21000
Brookpark Road, Cleveland, Ohio 44135 bala@Ierc.nasa.gov

Nucleate boiling is the preferred mode of heat transfer in heat exchangers operating not only
on the earth, but also in reduced gravity conditions, where the size of the heat exchanger is
constrained. In nucleate boiling, large amounts of heat are transported with small changes in the
system temperature as consequence of the latent heat of vaporization. For efficient operation in
this regime, the dynamics of the vapor bubbles must be understood and controlled. It has been
established experimentally that vapor bubble dynamics are strongly influenced by surfactant
additives in that greater heat fluxes are realized at smaller superheat. This effect, however, is non-
monotonic in surfactant concentration and depends strongly on the degrees superheat, which
determine the rate of bubble growth and detachment.

The aim of this work is to understand the mechanisms behind the non-monotonic heat flux
improvement caused by the surfactant additives, and to identify regimes which promote improved
heat flux. Surfactants adsorb at fluid interfaces, where they reduce the surface tension and give rise
to Marangoni stresses when the rate of surfactant mass transfer is slow compared to the prevailing
surface convective flux at the vapor-liquid interface. Surfactant also adsorbs at solid substrates,
changing the balance of surface tensions and interfacial energies that determine the wetting
conditions on the solid substrate. As bubbles grow, they create liquid-vapor interface. If surfactant
transport to these interfaces is far slower than the rate of bubble growth and detachment, surfactant
will be ineffective in changing the bubble dynamics. If the mass transfer rates are comparable,
reduced surface tensions and Marangoni stresses both favor the formation of smaller bubbles which
detach more easily, and hence higher heat flux. If surfactant mass transfer is far faster than the
bubble growth rate, the surface tension will be reduced, but no Marangoni stresses will occur.
Therefore, it is imperative to understand the surfactant mass transfer kinetics and the hydrodynamic
behavior of the growing vapor bubble as a function of surfactant concentration in order to control
this process.

We propose to study the dependence on surfactant concentration of the bubble formation,
growth and detachment both numerically and experimentally. Ground-based, drop-tower and flight
experiments are proposed. In the laboratory, the wetting conditions on the solid surface will be
varied independently in a controlled manner using self-assembled monolayers (SAMs). The
equilibrium and dynamic surface tension for surfactant systems will be studied for temperatures of
interest, where data are extremely scarce. The dynamics of individual vapor bubbles will be studied
both in the laboratory and in drop tower experiments. Bubble coalescence will be studied as a
function of surfactant properties by creating two neighboring nucleation sites of the substrates. In
the numerical modeling of this process, the surfactant effects on the stress conditions at a strongly
deforming bubble interface will be studied for a single bubble growing on a heated surface. Thisisa
problem in which the surfactant mass transfer, the temperature field and the momentum equation
are coupled. The surfactant data obtained in the laboratory, including the surface equation of state
which relates the surface tension to the local surface concentration and the surfactant mass transfer
kinetics, will provide the material parameters required in the numerical model.
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Surfactants and Heat Transfer
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Surfactants : Non-monotonic changes in
Heat Transfer

25

—a0 = 200 kW/m2

...o...q =400 kW/m2

0 500 1000 1500 2000
Concentration, ppm

. 2qs reduces up to C ~ 700 ppm
* Roughly constant for C > 700 ppm

What surfactant-related mechanisms may cause non-monotonic
behavior ?

* Surfactants and strong deformations : V .o & break-up

highly dependent on coverage
* Surfactant mass transfer rates ] surface dilatation rate

— Highly dependent on bulk concentration
—(Remobilizing surfactants)
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I. Numerical Study of Rapid Vapor
Bubble Growth

* 1st Generation : Growth of an injected bubble at
finite Re
Aim : Surfactant effects on rapidly growing
interfaces |

¢ 2nd Generation : Vapor Bubble Growth by
Evaporation
Aim : Incorporate evaporation from microlayer,
Coupling of bubble dynamics with heat
transfer

I1. Experiments
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Surfactants May Alter Bubble Detachment

|
[Ty

Wong et al., 1998

* Neck Formation : Complex flow, redistribute
‘surfactants

* Surfactants alter neck formation -
* A related problem studied by Eggleton, Tsai & Stebe
~ | - strong &u‘f&f&ﬁrﬁ
| = bubbf detatchmd
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Surfactants and the Taylor extensional flow
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Low coverage: large gradients ~ A=0.05

. .:. : 3_}'” E',x%f;'l
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Steady state profiles for x=0.1 largest Ca=0.06
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Evolution of drop shape x=0.1 _ Z ‘
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x=0.1

Evolution of xI”
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Mass Transfer Rates

/ Affacion

Cw Affusion /1 T
U

a : .
—+V,(r7)+2HV,L - DYT =-7-VC,D

length ~ a F~1

eq

T bt B
U cy(/ﬁ

f o
In non-dimensional form r A
/\__.,___,4-’—\

a 1 aC,
5 (FV)+2HVF—EVZF-—YZ v, \/—£ }

L.

- highly dependent on surfactant physical
chemistry & concentration

NASA/CP—2000-210470 478




Adsorption Depth

A T
h Cn |
I, dd=C,hdd
)
-
_h__c

on

* NUMerics: mass ‘HW- 1o SIM"FG.CI.: ML&}W ﬂl.. -'f\-

* Can select surfactants with highly differing h values
and similar surface tensions

gt g,  gaeeen e

'.. 'tb s ‘g-z < (:—.'1 " @uiesa.‘t S!isﬁ:m

o Surfyrel 104 $m1! f + AoT ¢ M_'k
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I1. Experiments

* Tab-based
— Single bubble growth & detachment
— Two-bubble studies with coalescence

— Two surfactants with differing h similar o,
— SAMs : Contact Angle

Pendant Bubble Method
Pendant Bubble Apparatus |
)
[ ] . ﬂ'mu‘
SS—
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Surfynol 104 Pendant Bubble Data
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Best Fit for Diffusion Controlled Dynamics
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AOT: Equilibrium and Dynamics by Pendant Bubble

70

60 [

I_=2.15x 10" mol/em?

B/oe = 5.4 x 10! cm*/mol
~77.2 A%/molecule

Lu et al. report 78 A2/molecule
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Dynamic Surface Tension:
Diffusion Control Model, D = 6.5x10-°cm?/s

51
C,. = 1x10°mol/cm’
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55 ¢

50
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45— : S
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50|
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t(s)

L
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Microgravity Experiments

*  TUse experimental hardware similar to that used by Prof.
Merte in his space shuttle experiments

» Tests will be conducted in drop towers and KC-135 aircrafi
* Test liquid is water

* Goal is to obtain the nucleate boiling curve, systematically
changing the amount of surfactant added to water

* Dynamics of bubbles will be observed by video or motion
picture cameras
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THE PHYSICS OF BOILING AT BURNOUT

T.G.Theofanous, J.P. Tu, T.N. Dinh, T.Salmassi, A.T.Dinh, and K.Gadljevic

Center for Risk Studies and Safety
University of California, Santa Barbara, CA 93106, USA

ABSTRACT

The basic elements of a new experimental approach for the investigation of burnout in pool
boiling are presented. The approach consists of the combined use of ultrathin (nano-scale)
heaters and high speed infrared imaging of the heater temperature pattern as a whole, in
conjunction with highly detailed control and characterization of heater morphology at the
nano and micron scales. It is shown that the burnout phenomenon can be resolved in both
space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of
over 1 MW/m? are demonstrated. A separation of scales is identified and it is used to
transfer the focus of attention from the complexity of the two-phase mixing layer in the

vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-
disruption processes within it.
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Fifth Microgravity Fluid Physics and Transport Phenomena Conference
August 9-11, 2000, Cleveland, Ohio, U.S.A.

THE PHYSICS OF BOILING AT BURNOUT

Theo G. Theofanous

T.G. Theofanous, J.P. Tu. T.N. Dinh,
T. Salmassi, A.T. Dinh and K. Gasljevic

Center for Risk Studies and Safety
University of California, Santa Barbara
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e

Center for Risk Studies & Safetyl
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Outline

0 Nucleate Boiling Crisis
0 BETA Pool Boiling Experiments

0 Infrared Thermometry of Nucleate Boiling
Heat Transfer

o Critical Heat Fluxes Quantification

o0 Visualization and Characterization of
Burnout

o Physical Insights and Future Plan

[ J(
e

Center for Risk Studies & Safetyl
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Nucleate Boiling Crisis

. As the Limit of Coolabllity in Power and
Thermal Management Equipment

. Featuring Complex Two-Phase Flow at High
Heat Fluxes

. Involving Interactions of Processes Occurring at
Multiple Scales

. Mechanism(s) of CHF were Observed and
Investigated Indirectly using

v Time- or Space-Average Measurement
v" Integralor Local Measurement

[ J(
e

Center for Risk Studies & Safetyl
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Nucleate Pool Boiling Crisis

. Hydrodynamic Concept

Kutateladze (1948), Zuber (1959)
Lienhard & Dhir (1973)

q"chr = G pv?Hig[og (PL-pv)1,

C.=0.15 (0.131 ... 0.168)

. Macrolayer Evaporation Model
Katto (1968, 1983)

. Thermal (Vapor-Stem) Model
Dhir (1989)

. Controversy due to

v Remarkable Effect of Heater's Surface on CHF
v' Lack of Direct Observations and Measurement
Required to Qualify Theoretical Concepts

NEED FOR NEW FUNDAMENTAL EXPERIMENTS

Wi
I

L

Center for Risk Studies & Safetyl
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BETA Pool Boiling Experiments

Aim: Fundamental, Direct Identification of the
Boiling Crisis Phenomenon

Saturated Pool Boiling on Horizontal Upward-
Facing Heaters

= Eliminate End Effect with a Heated Area o
20 x 40 mm (Infinite Flat Plate Behavior

= Minimize Heater Thermal Capacity Effect:
140 nm Titanium Heater Vapor-Deposite

on 130pum Glass

o

= Cavity-Free Heater Surface:
AFM-measured rms roughnesdnm

KEY OBSERVATION AND MEASUREMENT:

THE HEATER'S THERMAL PATTERN
AND

THE DYNAMIC FINGERPRINT OF BOILING

Using High Speed Infrared Thermometry

Wi
I

L

Center for Risk Studies & Safetyl
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BETA Pool Boiling Experiments

Center for Risk Studies & Safetyl
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IR Images of Nucleate Boiling (Fresh Heater A)

56 kW/nf

29 kKW/nft

557 kW/nf 635 kW/nf

303 kW/nt

UCSB

" _a
Center for Risk Studies & Safetyl
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Thermal Footprint of &egular Bubble

in Nucleate Pool Boiling
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Thermal Footprint of &egular Bubble
At 95% of CHF
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Thermal Footprint of ahlrregular Bubble

At 95% of CHF
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Thermal Footprint of a Large Bubble
with Formation of Hot Spot near Boiling Crisis
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Thermal Footprint of a Large Bubble
with Formation of Hot Spot near Boiling Crisis
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Nucleate Boiling Heat Transfer Observations
Pool Boiling Processes were Experimented

- On Ti Heaters with Different Thickness:
140 nm, 270 nm, 500 nm and 1000 nm:;

- Using DC and AC (30...1000 Hz, sine and sqpare
waves);

- Fresh and Aged Heaters

The Heater's Ageing Degree was Found as the
Primary Factor that Affects Boiling Characteristics
and CHF

For a Fresh Heater, Nucleation Site Density is Loy,
and Characteristic Length of Bubble-Induced Colg
Spot is Relatively Large.

Regular and Irregular Bubbles were Identified.
Formation of Hot Spot in Irregular Bubbles at HigF
Heat Fluxes were Observed.

For an Aged Heater, the Heater’s Surface is Coolér
and Covered with Numerous Small-Sized Cold Sgots
(i.e. Significantly Higher Nucleation Site Density).

i
I

L
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116 kW/nf

FRESH HEATER A

635 kW/n7

AGED HEATER G

620 kW/nf

Burned Out

1062 kW/nf

UCSB
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AVERAGE SUPERHEAT ANDNUCLEATION SITE DENSITY

|deally Fresh and Clean Heater
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- Superheat Reached Saturation (27 K) at 300 KW/
- Nucleation Site Density Increases Linearly with g”
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AVERAGE SUPERHEAT ANDNUCLEATION SITE DENSITY
Aged Heater
2700 A01
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- Nucleation Site Density and Superheat Increase
Linearly with Heat Flux q”
- At CHF (1.5 MW/nf) Superheat is Still Low (20 K)
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NUCLEATION SITE DENSITY

For the First Time, Direct Identification of Active
Nucleation Site in a Broad Range of Heat Fluxes lip to
CHF was Possible

Measured Values are Found Significantly Lower than
Values Reported in Literature, Leaving a Significahnt
Fraction of Heater’s Surface be Cooled by Liquid
(recall the Constant Heat Flux in the Nanoscale
Heaters)

A Well-Wet Surface with a Small Contact Angle
(B = 15°) Features Higher Nucleation Site Density than
on a Fresh Heater with a Larger Contact Angle (also Iin
Contrary to the Literature)

The Reason May Be Related to The Vapor-Depodited
Nanoscale Heaters, where No Micron-Size Cavitigs
Exist

The Dependence of Nucleation Site Density on
Superheat was also Not Confirmed

[ J(
e
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NUCLEATION SITE DENSITY
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TRANSIENT TEMPERATURE RESPONSE
UNDER BOILING BUBBLE

FRESH HEATER — REGULAR BUBBLE

q” = 90 kwW/nt- Average Bubbling Period ~100 ms

120,

Temperatre (C }
=
3_
=§~=-
e ——
—— t-:_
—i____
E___I‘-_‘

lns. I I 1 i |
] 0.2 0.4 0.6 0.8 1
Time (5}

- Bubbles are Identified from the Heater’'s Cold Spots
- Gradual Heat-up of Liquid up to a Superheat of 15K
Followed by Rapid Cooling under a Nucleating Bubljle
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q” = 200 kW/nf- Average Bubbling Period ~ 25 ms
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TEMPERATURE across a COLD SPOT
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BOILING BUBBLE with a HOT SPOT

q” = 200 kW/nf- Average Bubbling Period ~120 ms

s || /! W | f r} Hn:f |

: { i "*‘ | Wr A

= | ”#w Hi#ﬁ'f‘. I'f‘l‘.’! iu'\i‘;‘ W 1_*. i
110

Time (%)

A Hot Spot is Observed to Form within a Cold Spot
Induced by the Nucleating Bubble

The Transient Temperature in the Hot Spot is Coupled
with the Dynamics of Cold Spot
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CRITICAL HEAT FLUXES

The Limit of Coolability of the Ti Thin-Film Heaters wefe
Achieved at High Fluxes Ranging from:

600 kW/nt for Nanoscopically Smooth and Fresh
Heaters Surface, and up to

1.5 MW/nt for Aged Heaters

For the First Time, High Heat Fluxes (1.2 ...1.5 M\&yn
were Achieved in Pool Boiling on such Thin Heaters, in
Contrary to CHF Data Reported in Literature

For the First Time, Origin of a Boiling Crisis Process was
Unambiguously Detected by IR Direct Imaging

The High Speed and High Resolution IR Thermometry
Enabled Identification of Nucleate Boiling Heat Transfgr
Pattern and Flow Behavior under Boiling Crisis

Burnout (lrreversible Dry Spot) was Observed to Fornj in
Areas Not Covered with Cold Spots

Dry Spots are Not Necessarily Associated with Hot Sgots
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SURFACE TEMPERATURE RESPONSE

TRADITIONALLY, LOCAL TEMPERATURE
MEASUREMENT HAS BEEN USED
AS THE BOILING CRISIS DETECTOR

21':' 1 1 1 1
200 [ i
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Temperature Measurement on the ULPU Downwald
Facing Heater during a Burnout Event
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VIDEO VISUALIZATION OF BURNOUT

Time=0.00s Time=0.05s

Time=0.20s Time=0.25s

Dry-out on a Downward Facing Heater
(mini-ULPU Experiment)
UCSB
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BURNOUT UNDER GAS BUBBLES (200 kW/mZ)
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BURNOUT IN DEGASSED WATER POOL BOILING

Temperature History of at the Center of a Dryspot

(Fresh Heater Til0Oa)
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Burnout occurs in areas not covered by regular cooling
sites, when heater’s superheat typically reaches 5C-6(

Liquid film evaporation preludes a rapid overheating
(3000-4500 K/s at heat flux 1...1.5 MWAm
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BURNOUT HISTORY
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IR IMAGING OF BURNOUT SEQUENCE

WATER DEPLETION TEST

B

1
o o 2

a) b) c)
J heater, run at 730 kWnTime interval 100 ms

POOL BOILING TEST

a) b) c)

K heater, run at 756 kW/mTime interval 30 ms

Center for Risk Studies & Safetyl
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ORIGIN OF THE BOILING CRISIS PROCESS

Heater Til0a — g” = 900 kW/m

0O ms

1000 ms 1500 ms

- Formation and Growth of Areas with Rapid Heating

- Thermal Stress Associated with Overheating May Have
Caused The Thin Heater and Glass to Break

-
'®

h _

£ T
I LD

Center for Risk Studles & Safetyl
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CHRACTERIZATION OF HEATER SURFACE

Using

Optical Microscope (x1000)

Optical Microscope with a Nomarski Prism
(small depth of field)

Scanning Electron Microscope (SEM)

Atomic Force Microscope (AFM)

AFM Picture of a Fresh Heater, Before and After Boiling |n
Chemically Clean and Degassed Water

(scan area 3.5 x 3jm, roughness rms4 nm)

r i
4
L  J»

i’ -

Center for Risk Studies &'Safetyl
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AGED HEATER MORPHOLOGY (CHF 1.5 MW/A)

Digital Instruments NanoScope
Scan size 10.00 pm
Scan rate 1.001 Hz
Humber of samples 512
Image Data Height
Data scale 803.2 nm

X 2.000 pm/div
Z 803.198 nm/div

wene_crs. 001
Image Threshold hist. Execute Cursor Erode Dilate Zoom

Bearing area %
0 50

Correlation
0.50 1.00

0

Substrate depth 348.16
Threshold height 0 nm
nbsThres. height 356.57 Depth Cnnl
Bearing Percent 0O

Particle height 348.16

0 1.002.00

gene_crs, 001
File: default Normal Image Bnd. Grains off Morm. Threshold Box Cursor

i’ —

Center for Risk Studies &'Safetyl
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AGED HEATER (After CHF, 1 MW/rf)

2.50Digital Instruments NanoScope
Scan size 5.000 pm
Scan rate 0.3264 H=z
Number of samples 512
Image Data Height
Data scale 50.00 nmM

kaz0y.001

Cursor

iy II,\‘
“‘”MVH‘”

Center Line Offset Clear

Section Analysis

Marker Spectrum Zoom

”ﬂ
I

Spectrum

Surface distance
Horiz distance
Uert distance
Angle

Surface distance
Horiz distance
Uert distance
Angle

kaz0g. 001
Cursor: fixed Zoom: 2:1 Cen line: Off Offset: Off
UCSEB
Center for Risk Studies & Safetyl
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AGED HEATER SURFACE MORPHOLOGY

Cursor Marker Spectrum Zoom Center Line Offset Clear

Section Analysis

Spectrum

Surface distance
Horiz distance
Uert distance
Angle

Surface distance
Horiz distance
Uert distance
Angle

gene_crs. 001
Cursor: fixed Zoom: 2:1 Cen line: Off Offset: Off

The Aged Heaters have Nanoscopically Rough Surfages
(rms >x50 nm)

The Heater’s Surface Includes Protrusions of 100 nm [Scale

The Coverage is Microscopically Non-Uniform.

r i
4
L  J»
_o-"--'-- _o—"'-'--
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CLOSE-UP VIEWS OF THE AGED HEATER

Image Threshold hist. Execute Cursor Erode Dilate Zoom

Grain Size

Correlation

“
0.25 0.50

“Hist.

1]

Depth Cnml

Substrate depth 132.26 nm
Threshold height -1.010 nm
Grain height 78.243 nM

2700a1-1
File: default Normal Image Bnd. Grains off Norm. Threshold Box Cursor

600.0 nM

I:":'Digital InstruMents NanoScope
Scan size 2,196 pm
Scan rate 1.001 Hz
Number of samples 512
Image Data Height
Data scale 600.0 nmM

i’ —
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CHRACTERIZATION OF HEATER SURFACE

The Degree of Heater Ageing Significantly Affects the
Wetting Characteristics and Nucleation Behavior

In Addition to Static Contact Anglg3), Advancing Bapv)
and Recedingfzec) Contact Angles were Determined

Heater B Baov Brec
Fresh
Before Experiment | 60-65 | 70-80 | 30-40
After CHF 65-8C¢ | 80-100 | 25-4C
Aged 90-110| 90-106 | <10

(Israelachvili, 1985)

Center for Risk Studies & Safetyl
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CONCLUDINGS REMARKS

» Vapor-Deposited Ultrathin Heaters were Used In
Combination with High-Speed IR Thermometry to
Study Nucleate Boiling and Boiling Crisis

» The Technique Enables High-Resolution Visualization
of Nucleate Boiling Heat Transfer with Incredible
Details

» Ultrathin Heaters Feature CHF Similar to Thick
Heaters

» High Heat Fluxes (over CHF Values Predicted by the
K-Z Correlation) were Achieved on Aged Heaters

» High-Flux Nucleate Boiling and Boiling Crisis werg
Realized with Significantly Lower Density of Active
Nucleation Site on both Fresh and Aged Heaters

| =4

» Nucleation Occurs on the Ultra-Smooth Surface fgr
Liquid Superheat As Low as 20-36

» The Nucleation Pattern is Highly Regular at High Heat
Fluxes

Wi
I

L

Center for Risk Studies & Safetyl
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CONCLUDINGS REMARKS (contd.)

» Formation and Growth of Hot Spots within Nucleafion
Sites were Observed, particularly in Fresh Heaters at
Relatively High Fluxes

» The Depletion Experiments Show that Bubble
Continue to Nucleate in the Thin Microfilm

» Very Thin Liquid Film Persists to Wet the Heater’s
Surface Until Dry Spots Form Simultaneously in Few
Locations and Avalanche

» The Degree of Heaters’ Ageing (partly Representg¢d by
Receding Contact Angle) was Found to Determing the
Nucleation Site Density and Maximum Heat Fluxep

» The Nucleation Site-Related Hot Spots Did Not Sg¢rve
as the Source for Irreversible Dry Spots (Boiling
Crisis)

» Origin of Boiling Crisis was Found to Relate to Ar(las
of Superheated Liquid in Between Nucleation Sit

» The Technique Developed Opens Unique Window to
Study the Physics of Boiling and Examine in Detalls
Related Surface Phenomena

i
I

L

Center for Risk Studies & Safetyl
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MARANGONI EFFECTS ON NEAR-BUBBLE MICROSCALE
TRANSPORT DURING BOILING OF BINARY FLUID MIXTURES

C. Sun, V. P. Carey
Department of Mechanical Engineering, University of California, Berkeley, CA 94704

B. Motil
NASA Glenn Research Center, Cleveland, OH 44315

ABSTRACT

In earlier investigations (see Ahmed, et al. [1]), Marangoni effects were observed to be the
dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity
conditions. In this investigation we have examined the mechanisms of binary mixture boiling by
exploring the transport near a single bubble generated in a binary mixture between a heated
surface and cold surface. The temperature field created in the liquid around the bubble produces
vaporization over the portion of its interface near the heated surface and condensation over
portions of its interface near the cold surface. Experiments were conducted using different
mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions
aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower
concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near
the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to
strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-
propanol and water mixtures. In the experiments in this study, the pressure of the test system
was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling,
critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and
visual documentation of the bubble shape were extracted from the experimental results.

In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into
a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The
shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the
heated surface. At low superheat levels for the heated surface, several active nucleation sites
were observed, and the vapor stems from them merged to form a larger bubble. The generation
rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In
some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the
top of the bubble became larger, apparently to provide more condensing interface area adjacent to
the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface,
with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more
stable bubble was observed when the system attained the minimum heat flux (for film boiling). In
this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling
sometimes occuring around the contact perimeter of the bubble at heated surface. Figure 1 shows
a typical bubble in this regime.
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Fig. 1. Bubble profile for 2-propanol mole fraction of 0.015, with gap =6.4 mm,
pressure =4.04 kPa, AT, =2.73°, AT, = 99.79°, Tp,k = 27.5° C, q” = 728.7 kW/m?.

Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of
the experiments were examined to determine parametric effects on the boiling process and to
determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was
found to have a minor impact on the CHF. However, reducing the gap between the hot and cold
surface was observed to significantly reduce the minimum heat flux for fixed molar concentration
of 2-propanol.

In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm
gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface
superheat increased. In reduced gravity experiments, dryout of the heated surface under the
bubble was observed to occur at a lower superheated temperature than for 1g conditions.
Observed features of the boiling process and heat transfer data under reduced gravity will be
discussed in detail. The results of the reduced gravity experiments will also be compared to those
obtained in comparable 1g experiments.

In tandem with the experiments we are also developing a computational model of the transport in
the liquid surrounding the bubble during the boiling process. The computational model uses a
level set method [2] to model motion of the interface. It will incorporate a macroscale treatment
of the transport in the liquid gap between the surfaces and a microscale treatment of transport in
the regions between the bubble interface and the solid surfaces. The features of the model will be
described in detail. Future research directions suggested by the results to date will also be
discussed.

REFERENCES

[1] Ahmed, S. and Carey, V.P., 1998, "Effects of Gravity on Boiling of Binary Fluid Mixtures,"
Int. Journal of Heat and Mass Transfer, VVol. 41, pp. 2469-2483.
[2] Sethian, J. A., 1996, Level Set Methods, Cambridge University Press, Cambridge, U.K.
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Marangoni Effects on Near-Bubble Microscale Transport
During Boiling of Binary Fluid Mixtures

C. Sun, V.P. Carey
Department of Mechanical Engineering, University of California at Berkeley

B. Motil
NASA Glenn Research Center, Cleveland, OH

Outline
Background
Experiments
Results
Conclusions and Future Work



0L¥012-000C—dD/VSVN

(03]

Heat Flux, ‘J‘.«U’u:m2

300

§

S

- x =0.015
= VAN
r O g<0.01g , P 5.5 kPa ;
[ A g=g,P=55kPa A o
W 18g <:g<2og,P 95kPa AQ
D 18g <g<20g,P=55 kPa 20 |
™ The last boiling curve is ___.j/_\ B
" plotted after applying the = Jli[] @
. expected correction to "
the wall superheat for the
change in pressure.
i 80> — CHF reached at the peak
s /A heat flux for normal and
[ - reduced gravity but not
I A - for high gravity
A
: Na— NPT — S — . |
0 20 40 60

o 0
L 8 pr(P), C

Effect of gravity on the boiling of water/2-propanol mixture for xp=0.015.

80



0L¥01¢-000C—dD/VSVN

TeS

Marangoni Effects on Near Bubble Transport

cold plate

vapor bubble

A ALY

Multiphase Transport Laboratory, August 2000
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Marangoni Effects on Near Bubble Transport

Test section with stationary bubble

Multiphase Transport Laboratory. August 2000
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Marangoni Effects on Near Bubble Transport

e Test system

Multiphase Transport Laboratory, August 2000
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Marangoni Effects on Near Bubble Transport

pure water at 4 kPa,

wall superheat = 34 °C, coldplate subcooling = 15 °C

Multiphase Transport Laboratory. August 2000



day 3, manuever 21
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water and 2-propanol
propanol mole fraction = 0.025
spacing between hot and cold surface: 6.4 mm
open symbols: P=7.3109.3kPa, g=150t01.89g,
filled symbols: P =7.310 9.3 kPa, g =-0.0511t00.083 g,
200
100
*
oy
g &
=
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E
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large bubble with partial surface dryout
nucleate boiling f—or—
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Transition from low g to high g, day 3 maneuver 21

Gap = 6.4 mm, water and 2 propanol at x = 0.025

t=18.485 s
t=21.018s
t=22.026s

t=23414s
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t=25974s
t=26.690 s
t=27.150 %
t=27.848 s

t=28.078 s
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t=33.598 s

t=34.508 s

t=35.508 s

t=37.508 s

t=38.506s

t=39.494 s
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Results of Experiments

Two boiling modes observed:
— Nucleate boiling

— Large stationary bubble with partial surface dryout

Dz

Phase morphology and heat transfer characteristics determined for each type
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Subsequent Work

Development of model of near-bubble transport including
—  Wall conduction
— Bulk fluid motion
— Microlayer transport between interface and walls
— Marangoni effects

Comparison of experimental data with model predictions for 1g and reduced g
results

Analysis of parametric effects using model

Experiments with other aqueous mixtures



THERMAL CONTROL AND ENHANCEMENT OF HEAT
TRANSPORT CAPACITY OF TWO-PHASE LOOPS WITH

ELECTROHYDRODYNAMIC CONDUCTION PUMPING
J. Seyed-YagoohiJ. Didiorf, J.M. Ochterbeck and J. Allef\

Department of Mechanical Engineering, Texas A&M University,

College Station, Texas 77843-3123
*Thermal Engineering Branch, National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt, Maryland 20771
*Department of Mechanical Engineering, Clemson University
Clemson, South Carolina 29634-0921
“National Center for Microgravity Research, c/o NASA Glenn Research Center
Mail Stop 110-3, 21000 Brookpark Road, Cleveland, Ohio 44135

ABSTRACT

There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force:
induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping
relies on the generation of induced charges. This charge induction in the presence of an electric
field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be
caused by aon-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a
two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous
liquid. In order to generate Coulomb force, a space charge must be gendria¢ed are two

main mechanisms for generating a space charge in an isothermal liquid. The first one is
associated with the ion injection at a metal/liquid interface and the related pumping is referred to
as ion-drag pumping. lon-drag pumping is not desirable because it can deteriorate the electrical
properties of the working fluid. The second space charge generation mechanism is associated
with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge
layers result from dissociation of the neutral electrolytic species and recombination of the
generated ions. This type of pumping is referred to as pure conduction pumping.

This project investigates the EHD pumping through pure conduction phenomenon. Very limited
work has been conducted in this field and the majority of the published papers in this area have
mistakenly assumed that the electrostriction force was responsible for the net flow generated in
an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction
pump for a two-phase loop to be operated in the microgravity environment. The pump is
installed in the liquid return passage (isothermal liquid) from the condenser section to the
evaporator section. Unique high voltage and ground electrodes have been designed that generate
sufficient pressure heads with very low electric power requirements making the EHD conduction
pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and
heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase
loop under various operating conditions in the laboratory environment. The simple non-
mechanical and lightweight design of the EHD pump combined with the rapid control of
performance by varying the applied electric field, low power consumption, and reliability offer
significant advantages over other pumping mechanisms; particularly in reduced gravity
applications.
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OBJECTIVES

Electrohydrodynamics Laborato

M theoretical and experimental work to
understand the EHD driven liquid flow

B EHD pump based on conduction
phenomenon

B ground and microgravity environment
® with and without bubbles
B optimum electrode design

B EHD pump performance in single-phase and
two-phase systems
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BACKGROUND

Electrohydrodynamics Laborato

N

M past microgravity studies with EHD dealt for
example with bubble growth

B no work carried out to study an EHD driven
flow in microgravity

B fundamental understanding of an EHD pump
In microgravity needed

M pave the way for development of EHD
technologies for heat transfer and mass
transport systems in microgravity
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EHD PUMPING

Electrohydrodynamics Laborato

N

M interaction of electric fields and free charges
in a dielectric fluid

B Coulomb force main mechanism of this
Interaction

M electric field and free charges required
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EHD PUMPING ADVANTAGES

Electrohydrodynamics Laborato

B simple design

M lightweight

B non-mechanical

M rapid control of performance
M low power consumption

N
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ELECTRIC BODY FORCE

Electrohydrodynamics Laborato
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Coulomb Force Polarization Force

Note: In an 1sothermal liquid, only Coulomb force can

sustain a permanent EHD motion.
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ELECTRIC CHARGE GENERATION

N

Electrohydrodynamics Laborato

M direct injection, not desirable
B induction, not feasible in isothermal liquid
B conduction



0L¥01¢-000C—dD/VSVN

0SS

CHARGE GENERATION -

CONDUCTION

Electrohydrodynamics Laborato

- heterocharge layers of finite thickness in the

vicinity of electrodes

diffuse layer

non—equilibrinum layer
(heterocharge layer)

-------

) ey S o Y. T
oooooooooo
.........

high voltage electrode
(positive polarity)

equilibrium region
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EHD CONDUCTION PUMPING

Electrohydrodynamics Laborato

N

B Atten and Seyed-Yagoobi (1999) presented a
theory in point/plane geometry

M Jeong, Seyed-Yagoobi, and Atten (2000)
experimentally investigated the phenomenon

B theory indicates F_[JeE?
B high electric field and permittivity are desirable
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STATIC EHD CONDUCTION PUMP
APPARATUS ~}

Electrohydrodynamics Laborato

pressure measurement

940

EIID pumping section

to ground
to power supply —

(Unit : mm)
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PRELIMINARY ELECTRODE
DESIGN

Electrohydrodynamics Laborato

239 F—-—-—+ 13.67 15.3%

320 1|R12.2974 1.52

{(Unit : mm)

hollow tube (high voltage) electrode
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ASSEMBLED HOLLOW-TUBE HIGH

VOLTAGE ELECTRODE AND RING GROUND

ELECTRODE

Electrohydrodynamics Laborato

—2.64

9.75 22,

56

Note: two pairs shown

(Unit :

mim )
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PRESSURE GENERATION

Electrohydrodynamics Laborato

Pressure-Voltage (R123, TAMU 1 pair electrode)
8¢o0--—— " - — = = = — = — = — — — = |

600 — —| ™ new electrode - — — |- — — — — \
- ° hollow-tube

400

dassn a Ye (

200

Voltage (kV)
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CURRENT CONSUMPTION

Electrohydrodynamics Laborato

Current-Voltage (R123, TAMU 1 pair electrode)
0=~~~ - i e |

B " new electrode
15 —| ® hollow-tube | _ _ _ _

on pupy (

Voltage (kV)
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LONG TERM OPERATION

Electrohydrodynamics Laborato

Pressure-Time (R123, 5 pairs hollow tube & ring electrodes)
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o
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Current-Time (R123, 5 pairs hollow tube & ring electrodes)

LONG TERM OPERATION (con

Electrohydrodynamics Laborato

Time (hours)

)




0L¥01¢-000C—dD/VSVN

T9S

PRESSURE GENERATION -
NEW ELECTRODE DESIGN

Electrohydrodynamics Laborato

Pressure-Voltage (R123, TAMU 1 pair electrode)
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CURRENT CONSUMPTION -
NEW ELECTRODE DESIGN

Electrohydrodynamics Laborato
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Current-Voltage (R123, TAMU 1 pair electrode)
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SIMPLIFIED NASA-GODDARD
EHD TEST LOOP SCHEMATIC

Electrohydrodynamics Laborato

N

DP Cell #1
M

T -/

Test Section 1 SH 1
Metered Valves DP Cell
#3
Test Section 2 SH2

Condenser & Sub-cooler _
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SIMPLIFIED TEST LOOP
SCHEMATIC

Electrohydrodynamics Laborato

EHD pump liquid

N
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CONCLUSIONS

Electrohydrodynamics Laborato

M several electrode designs considered
B EHD conduction pumping confirmed
M significant pressure head generated

N
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Slide Conveying of Granular Materials - Thinking out of the Glovebox!
J. D. Goddard, A. K. Didwania & P.R. Nott?
Department of Mechanical and Aerospace Engineering
University of California, San Diego

Abstract

The vibratory conveyor, routinely employed for normal-gravity transport of granular
materials, usually consists of a continuous open trough vibrated sinusoidally to induce ax-
ial movement of a granular material. Motivated in part by a hypothetical application in
zero gravity, we propose a novel modification of the vibratory conveyor based on a closed
2d trough operating in a ”slide-conveying” mode, with the granular mass remaining per-
manently in contact with the trough walls. We present a detailed analysis of the mechanics
of transport, based on a rigid-slab model for the granular mass with frictional (Coulomb)
slip at the upper and lower walls. The form of the vibration cycle plays a crucial role, and
the optimal conveying cycle is not the commonly assumed rectilinear sinusoidal motion.
The conveying efficiency for the novel slide conveyor will be presented for several simple
vibration cycles, including one believed to represent the theoretical optimum.

Background - Vibratory Conveying

Granular media represent an interesting class of materials that can exhibit a spectrum of complex
flow behavior, ranging from solid-like to gas-like. Understanding and describing their mechanical
behavior poses a scientific interesting and technologically important challenge, since a many
processes involve handling and processing of granular solids. One particular interesting class
of mechanical processes are those involving vibratory excitation or ”fluidization” of granular
masses. Following a long-standing scientific fascination with the wave-like patterns on the surface
of vibrated powders and grains, dating back to the celebrated work of Faraday (1831), there has
been a resurgence of activity in recent times, accompanying the growth of theoretical interest
in pattern formation in non-linear dynamical systems (See, e.g., Bizon et al. 1999). There is
an almost completely disjoint body of engineering literature on vibratory conveying of granular
materials.

Vibratory conveyors, routinely employed in industry for transport of granular materials, gen-
erally consist of a continuous trough vibrated sinusoidally in time to induce axial movement of
the granular material. Fig.1 presents a schematic cross-sectional view of a vibratory conveyor.
Key process variables are inclination «, amplitude A , frequency f and direction § of vibration,
along with frictional /mechanical properties of the conveyor surface and the granular material. In
recent works, Nedderman & Harding (1990) extend the earlier analysis of Booth and McCallion
(1963) and present optimization studies for horizontal and inclined sliding. In most applica-
tions, vibratory conveyors work in one of two distinct modes, slide conveying or flight conveying,
accordingly as N < 1 or N > 1, respectively, where N is the nondimensional throw number

N =Tsinf8/cosa, with I' = Aw?/g, (1)

!Partially supported by grants from the National Aeronautics and Space Administration
2Permanent address: Indian Institue of Science, Bangalore, India
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Figure 1: Definition sketch of a vibratory conveyor

in which the various symbols are defined above and g denotes gravity. Assumptions common to
most existing models of vibratory transport are: 1.) The granular mass can be treated as a single
rigid slab, 2.) side-wall friction and air drag are negligible, 3.) the granular mass interacts with
the trough wall as a rigid body with Coulomb friction, and 4.) the trough executes a rectilinear
sinusoidal motion (A in Fig. 1), This engineering model corresponds essentially to the lowest I'
states discussed in basic scientific studies (Bizon et al. 1999).

Present Work

It is evident that pure slide conveying and/or a closed trough would be required in a zero-g
environment, and the intial phase of the current work is concerned with the theoretical analysis
of the closed 2d trough with parallel walls, completely filled with a granular mass. As a starting
point, we adopt the first three of the assumptions listed immediately above but consider a
more general periodic motion than 4.). The basic equations (nonlinear ODEs) are but slight
modifications of those given elsewhere (Nedderman and Harding, 1990) and are not repeated
here. They lead to an interesting optimal control problem, involving the maximization of axial
transport subject to constrained periodic forcings. The present talk will discuss a few preliminary
results, including some numerical simulations for simple periodic cycles and a conjectured form
of the theoretically optimal cycle.

References
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Background and Outline of Talk

e Work described is part of a program of research
on the mechanics of vibrated granular layers,
with objectives:

1. Development of fluid-mechanical models to
explain complex (” Faraday”) patterns on
vertically-vibrated layers, and

2. Connection to engineering models of vibra-
tory conveying, with a view to possible variable-
g application (e.g. heat transfer)

e Focus of this talk is on results from recent ef-
forts on Item 2, including

— Review of current modes and models of
conveying (”throw” and ”"slide”) and lim-
itations in reduced g

— Analysis of closed-channel slide conveying,
with discussion of optimal vibration cycles
and discussion of recently discovered exact
solution to the problem

— Future work
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"Throw” Conveying
e (a) Layer in flight - normal gravity g,

e (b) "Solid-block” model - basic equations:

dv(t)

—— = f() +g(1), with g(t) = go — Ve(t)

relative to plate, where

— g(t) is virtual gravity

— f(t) is specific plate-contact force
(frictional-elastic, generally impulsive).

e Without a "lid”, the plate-displacement ampli-
tude and frequency A, w give unbounded
[ = Aw?/go in zero-g.

(b)
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" Slide” Conveying

Employed for fragile materials.

Layer in permanent contact with surface and
active contact force f(¢) is purely frictional.

In-line (8 = 0), unsymmetrical v.(¢t) can provide
transport.:

Tilt (8 > 0) enhances efficiency but amplitude
Is limited by magnitude of g
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Closed-Conduit Slide Conveying

e A, w not limited by gravity - device can work in
Zero g.

e "Ideal” cycles with zero frictional dissipation
exist.

e A simple theory arises - with constant wall fric-
tion u, length scaled by A and time by w1, the
x-velocity u(t) satisfies

du
— = T@®) - uN@®Isan(u), for |T(t)] > ulN(1)|
u = 0, otherwise

with 27-periodic coefficients:
T = —(gosina+u.)/Aw?, N = —(gocosa+v.)/Aw?

where pressure "’ head’”’ should be added to ggsin a.
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Optimality

e Present effort;:

— establish optimality criteria and ideal cy-
cles

— investigate optimal real cycles (e.g. el-
liptical cycle in Fig. above)

Lack of wu-differentiability of ODE for u
rules out standard variational methods (mit-
igated by exact solution below)

e As, e.g., simplest type of optimality, max-
imize net cyclic displacement:

21
max X, where X =/ w(t)dt
T,NeC 0

where C denotes constraint class of T'(t), N(t)
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Solution

With intervals of sliding in (0,27):
F@@) = |T®)| —uN@)| =0, t; <t <

1 =1,2...,the exact solution is ? S

u(t) =3 Si(t)u(t)

where 0

ui(t) = R{IID )} — R{-I7(0)}

190 = 106 F pINE

Si(t) = H(t —t;) — H(t — 7;)

R(u), H(u) = R'(u), and S; denote ramp, Heaviside-
step and window functions, and J(E) are right-
and left-directed "impulses”, with J(=) > J(+)
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Ideal and Elliptical Cycles

Exact solution has been employed to:

e establish ideal cycle for bounded forcing,

N|N(t)|max < |T(t)|ma>< < 1Im,

found to be square waves, with X=1
T(t)=Tm UN(D)

___________

e work out (complicated!) two-parameter al-
gebraic expression for X for the elliptical
cycle. The optimal parameter values have
as yet not been determined.
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Future Work

e Work out details of optimal elliptical cycle for
slide conveying with view towards simple ex-
periment

e Consider partially full channel and throw con-
veying, in conjunction with our other work on
stability of vibrated layers



Shaken Granular Systems and the Effects of Gravity

R. Behringer
Department of Physics and Center for Nonlinear and Complex Systems
Duke Universit y
Durham, NC 27708-0305

ABSTRACT

I describe two types of studies that probe the nature of granular systems under the
effects of gravit y: a) ordinary granular materials such as sand or glass beads contained in a
rectangular box and subject to horizontal shaking; and b) spherical particles on a smooth flat
substrate. The first type of work involv es experimets and MD simulations with collaborators
L. Kondic, G. Metcalfe and S. T ennakon. The second set of studies are in collaboration
with M. Dutt L. Kondic, and B. Painter.

Horizontally Shaken Sand This set of studies is intended to probe the transition
between granular solid and granular fluid that occurs when the effects of shearing are strong
enough to overcomethe effects of a gravitational load. Thus, there are in terestingparallels
between the present system and avalanhes. The basis setup is a box with a rectangular
horizontal cross section that is subject to horizontal shaking along the long direction and
of the form # = Asin(wt). When the strength of the horizontal shaking, as measured by
the dimensionless acceleration, I' = Aw?/g exceeds the friction coefficent, 1, Mohr-Coulomb
models of granular failure predict that the material will start to deform. In fact, we observe
the formation of a fluid layerof material at high enough I'. Howev er,the Mohr-Coulomb
picture does not describe this fluid-like state. T oour knowledge, very little is known about
the properties of granular systems near this transition, which is the focus of the present
studies.

We hav e carried out a series of experiments' and MD simulations to remedy this lac k
of knowledge. We find that with increasing ', the failure of the granular solid occurs at a
well defined I'., = i, as one might expect from the Mohr-Coulomb picture. At this point, a
fluid lay erof non-zero thickness H forms. This layeris n ucleated locally and then spreads
across the top surface of the remaining solid. Unlike what one might expect from the case of
frictional failure for solid-on-solid friction, the transition is h ysteretic;if I' is reduced from
['cy, the fluid lay er persists uttil [" reaches I'.; < 'y, at which point, H falls discontin uously
to 0. This is true for a variety of materials, with the size of the h ysteresisloop reflecting
the frictional properties of the materials. Within the fluid layer,there is flow both in the
direction of shaking and in the horizontal direction transverse to the shaking. F or the in-line
direction, the flow is generated by the sloshing of the fluid layerand by the opening and
refilling of a gap at either end of the container. Flow is induced in the transverse direction
b yshearing with the walls.

Associated with the transition are divergent time scales for the formation of the fluid lay er
as [ increases, and with the disappearance of the lay er as I' decreases. If € = |[I'—= Ty, 4| /T cu s
then a time 7, = A/e™! is required to nucleate the fluid, following a step upward in T" of size
€ past [e,. An identical power la w,7y = A/7~! applies following an € step below ',y for the
time associated with the vanishing of the fluid.
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The nature of the transition is substantially affected by a nunber of changes to the
system. If the layeris weakly dilated by a fluidizing air flow, the h ysteresisis remov ed.
When we add a thin freely moving strip of plastic that covers the surface of the material and
has a mass comparable to half a lay er of grains, the hysteresis is also remov ed. If we add an
‘in truder’ particle on the top surface of the fluid, it dramatically changes the times for the
fluid to vanish when I' falls below [',4.

Thus, the solid-fluid transition under the influence of gravit y preserts a host of modeling
challenges. The symmetry of the divergent relaxation times, 7, and 7; suggest an underlying
theoretical structure that is identical for both phases.

Spherical Particles of a Flat Substrate Systems of particles on a substrate represent
an opportunity to observe particle motion in detail, since 3D systems are byand large not
visualizable. Thus, one might hope that systems of spherical particles, rolling with low
coefficient of rolling friction, pu,, might be very valuable for studying 2D granular gases and
for testing preditions of clustering due to inelastic effects. We have carried out a series of
experiments in this vein, begining with an experiment to observe clustering—i.e. the formation
of spatial structure in a granular gas due to inelasticity of the collisions. These experiments
show that when spheres collide on a substrate, the collision induces a period of slipping that
leads to high energy dissipation. Consequently, the effective restitution coefficent is muc h
higher than it would be in the absence of the substrate.

Indeed, collisions are now moderated through the substrate, and such systems represent
a new class of granular materials. We have set out to characterize the properties of this
nov el fluid state. Necessarily, energy must be contin uously supplied if such a system is to
be maintained in a dynamic state. We do this by shaking the substrate in the horizontal
plane. It is also possible to control gravit y, since the releant component of §is set by the tilt
from horizontal of the substrate. The dynamics of the system are strongly affected by the
relative orientation of the direction of shaking and of ¢ If these directions are coincident,
a collection of grains undergoes a transition from solid to fluid as the shaking strength I'
increases. Below this transition, the system exhibits subharmonic instabilities to standing
waves,such as those seen in thin vertically vibrated 3D layers. The resulting patterns are
often chaotic, and this may represent an in terestingway to probe spatio-temporal chaos. If
the directions of shaking and of gare not coincident, large scale conv ective flow occurs. This
flow is reminiscent of granular convection in vertically shaken systems. Howev er,now the
relevant control parameter is the velocity of shaking, Aw rather than I', as it is in the 3D
verticashaking case.

This type of system offers an astonishingly rich phenomonology that is accessble to ex-
periment and is a likely candidate for MD simulations. We are pursuing both of these
approaches.

IS. T ennakon, L. Kondic and R. Behringer, Europhys. Lett. 45, 470 (1999).

F or images of these and related studies please see: www.phy.dule.edu/ bob, and the links
to web pages of other group members.
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OUTLINE

3 Horizontally Shaken granular materials

A. Nature of the fluid-solid transition
B. Divergent time scales
C. Changing the nature of the transition

II. Systems of particles on a flat substrate
A. Sliding as a result of collisions
B. A novel form of convection
C. Cooling of a granular sample on a substrate
D. Subharmonic waves
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Shaking as a Means to Probing Granular Friction,
Failure, and Phase Transitions
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Qutline

1. Introduction: S=HF shudied F»87?
solid-fluid phase transition in granular materials

2. Horizontal Shaking—fluid-solid transition is

« hysteretic
» sensitive to a small number of surface particles

» hysteresis is eliminated by various simple modifications

* transition shows interesting time-scales
» contrary to naive friction model

3. Vertical and Horizontal Shaking
Novel tests of friction laws

4. Conclusions
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Introduction & Motivation

. Horizontal shaking of a granular material may
look at the:

e change from solid-like to liguid-like motion

e sensitivity to shearing failure under own weight
-—___

e role of dilation in failure
#
e role of bulk surface activity in failure

B ——

e onset of avalanches
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Experiment

C

Electro-magnetic R :
shuker 1% Granular medium

— T - |

— Porous base

Linear bearings

% = Acod e

|—=Aw2

g
A shaki litude
W ssh:kil::g ?r?qpu:excy 5 r/ I_ — 0 q. 1 %
g acceleration of gravity

w = 2n(5 Hz), A varied; lNmaz >~ 2
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Sand and Cell

Ta@l‘:.u\ wosecal
Ottawa sand: average particle size 0.6 mm

average particle mass 0.5 mg
Cell size: 202 x 32 grains

121 x 19 mm

3 x 43 in

cell depth ~ 200 grains

- srau.s«. Qame\,
SL“S sp\ul.m‘
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Backwards Bifurcation/Hysteresis
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Different Material Roughness

rough sand glass beads
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The convective flow parallel to the shaker plane is due to the
avalanching of grains at the end walls during the sloshing

motion of the liquefied layer.

The convective flow transverse to the shaker plane is due to the
side wall shearing, which has not, to our knowledge, been previously
characterized, but it is likely to occur generally when a 3D material

is sheared in the presence of gravitational field.
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tlevable

Sidewall > X= A sin ot } ""'x
Cell with movable sidewall. We find that oscillation of the

wall at essentially any G or A leads to a convective flow =
where grains fall at the sidewall, and then pushed inward,
and upward within a shearing layer of 5-10 grains.

0.04

®i=2.0hz
A (=3.0hz
mi=50hz ]

Downward average speed Vz has linear dependency with velocity
amplitude Ao .
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Sliding Surface Grains

"Slider" grain
= diameter, d

*
et
"E“u"h‘
.h.“.!-ﬂ.

Sliders begin when

(ﬁm;})2 ~ ogd o~ 1

E———

(Not frictional) | ivue 8cole
/
c A ( .%.\!?. n ©.0\ S

.18 £ T = ghaling pevee

NASA/CP—2000-210470 594

4



e DVerevrwine wnstalale lovaunc\ o'g
H us. O

e Derevrvaive nue\ earon Kwie 8cales

Dilake sowple = wlak v effect
ow rawnsg:ewn

s
e Twcrease oVer ‘ood CSQE:ES

e« G\ ! t‘mpuwih\u‘

NASA/CP—2000-210470 595



Unstable Branch
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Transistion Timescales
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88

Figure 5.1: Top: Original image of middle section of 2-D pile. Bottom: Same image
with center marks found by combination of manual and software methods. Notice
that we distinguish large diameter (0.90 em) and small diameter (0.73 cm) particles.
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Timescales are Powerlaws
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Same result for changing A: All observations
well-fit by a powerlaw with g = —1, 7* ~ 0.5 sec.
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Sloshing Nucleation and Decay

Turn-On Turn-Off
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Key Points so far:

Transition to liquefied surface layer

— IS hysteretic—exact points may depend on
static/kinetic friction

— has same powerlaw timescales for up and
down transition—seems robust against changes

iIn material and driving
Modifying the Bifurcation

Fluidize
Suppress Sliders
Add Single Particle Impurities
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Air Fluidization
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Suppressing Sliders
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Impurities Change Exponent
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Powerlaw Exponent Correlates to
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Block Model
(with D.G. Schaeffer, Duke Math Dept)

frictional
block
oscillating bed
—— i

static friction

kinetic friction

Coulomb friction relaxing friction

Introduce timescale o to relax between static
and dynamic friction

-
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Relative velocity y‘/..HM usual Coldewle

teliow
Bt y = f4+ Asin(t) S
"“fﬂa“-" § = 1—9(1 R £l )
coet. V@.E,“g"..)’ = W + |yl
Frictional force f is
y#0 { f=—sign(y)6
—Asin(t) if |Asin(t)| < 6

_ f
y=i {f —sign(sin(t))e if |Asin(t)| > 6
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C'oulomb
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Model Bifurcations
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Max(v); Median(8)
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W= 10" 7= 10* T, = 1000
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Conclusions for Initial Transitions

of Horizontally Agitated
Dry Granular Materials:

Transition to sloshing is via a backwards bifur-
cation

Small number of surface particles seem to first
stabilize then destabilize the layer

Transition starts locally and spreads
Time scales for the transition follow powerlaws

Powerlaw exponent is strongly affected by sin-
gle particle impurities

Simple block model with frictional relaxation
Captures several facets of the experiment
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Figure 6.1: Experimental apparatus for wave system.
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Figure 6.3: The method of creating time series pictures: (a) shows the raw picture,
(b) the height profile of the picture, and (c) the corresponding brightness profile,
which will become a single row of a time series picture (as, e.g., Fig. 6.4.
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(a) (b}

{c) {d)

(g} {h)

Figure 6.2: Images of the granular system, as viewed from above, through two
complete driving cycles. Shown is a stable single wave, located near the center of the
system. The frames proceed from (a) to (h), and each is taken 90° out of phase from
the previous.
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Figure 6.5: Phase space for granular system, showing the regions in parameter
space in which (A) no patterns form, (B) induced patterns are stable but do not form
spontaneously from the flat state, and (C) the flat state is unstable.
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Figure 6.4: Sample time series picture, consisting of the height profile every second
driving period for 600 periods (approximately 300 sec.). Shown is a single, unstable
wave, which breaks into two waves.
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127

(a)

(&)

(b)
(c) (d)
(f) _

Figure 6.7: Some different states of the system. The states are (a) split, (b) one wave,
(c) decaying wave, (d) spontaneously forming two waves, (e) disordered (chaotic)
state, (f) disordered state at higher driving. These states are driven at 2.002H z, with
acceleration I' = (a) 5.42, (b) 5.63, (c) 5.99, (d) 8.49, (e) 10.55, and (f) 13.01.
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FIGURES

K
X

FIG. 1. Positions of in a experiment. The s approximately 35 particle

diameters wide, and the system contains 800 particles. Also shown are the # (driving) and §
directions, as well as the approximate directions of the normal to the free surface (i) and the
component of gravity tangent to the substrate (§).

o
x

:
:
¢

A

o .\um‘-\\\{\\

o

FIG. 2. Velocity field at fixed phases with respect to the driving (at maximum driving velocity

to the right (a) and to the left (b)), averaged over 136 driving periods. Here w = 2.0Hz, I' = 0.09
(defined as I' = Aw?/gesys), and Aw = 10.1em/s. The direction of motion of the substrate is also
indicated.
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FIG. 2. Sample trajectories over the course of an experiment, with system size N = 150
particles. The concentric dotted circles represent the approximate radial positions of the majority
of particles at times ¢ = 0.1,0.2, and 0.3 sec. All particles come to rest without escaping the

collisional surface.
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(a) {b)
10d
"P ". ,"-‘
I . i ik
N=50 N< 160

(e) (d)

nNE 200 N= 8GO

FIG. 3. N = (a) 50, (b) 100, (c) 200, and (d) 800 particles in their final states. In all except
the 50-particle case, all particles have come to rest in the field of view. The cross in (a) is provided
for scale; each arm is 10 particle diameters long.
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FIG. 4. Autocorrelation function C(r) for a system of 400 particles over a broad range of time
containing the collapse. The particles meet in the center at ¢ = 0.44sec.
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FIG. 6. Position of the peak in the spatial autocorrelation function C(r) in a 400-particle

systern versus time, for £ < £..
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FIG. 5. Autocorrelation function C(r) during collapse for a system of 400 particles. We focus

on the time near the collapse.
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FIG. 7. Autocorrelation function C(r) of final states for different system sizes N. The thin

solid line is a least-squares gaussian fit to the N = 400 case.
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FIG. 9. Gaussian width o of autocorrelation c(r) normalized by Rpep, the radius of a
close-packed system of N particles. The dotted line represents ¢ for a computer-generated hexag-

onally close-packed system of N particles.
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FIG. 10. Autocorrelation function C(r) of a system of N = 400 particles at small radius r.
The solid curve represents experimental data. Vertical lines are the computed autocorrelation
for a set of 397 hexagonally close-packed particles represented by delta functions, and the dashed
curve is a smoothed fit to the computed autocorrelation. The distance between the experimentally

determined peaks is greater than that of the computed peaks by a factor of approximately 1.04.
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FIG. 23. Fluctuation speed distributions for a 400-particle system, for times (a) 0.12sec., (b)

0.28sec., (c) 0.44sec, (d) 0.52sec, (e) 0.68sec, and (f) 0.88sec. The solid lines are least-squares fits
of the data to the Maxwell-Boltzmann speed distribution. In each of (e) and (f) the lowest-speed
point, representing stationary particles in the condensed state, is disregarded for the fit.
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PARTICLE SEGREGATION IN COLLISIONAL SHEARING FLOWS
J. T. Jenkins and M. Y. Louge
Cornell University, Ithaca, NY 14853

ABSTRACT

During the past four years, we have worked to insure the success of a flight experiment on
particle segregation in energetic grain flows. The experiment is meant to test theory and
numerical simulations as they apply to shearing flows of colliding grains in micro-gravity. The
experiment involves a binary mixture of spheres that differ in diameter and/or mass. A steady,
fully-developed flow of the mixture is established between parallel, bumpy boundaries that are in
relative motion. Because the energy transferred and dissipateliisiorto between the flowing
spheres and the boundaries is different from that transferred and dissipated in collisions among the
flowing spheres, the energy of the particle velocity fluctuations in the mixture varies across the
flow.

The frequency of collisions among and between the two types of spheres depends upon
the spatial gradient of this energy and upon the spatial gradients of the concentrations of the two
types of spheres. Consequently, the balances of momentum across the flow require that gradients
of concentration accompany the gradients of mixture fluctuation energy. In the experiment, we
measure how the energy of the velocity fluctuations and the concentrations vary across the flow.
The object of the experiment is to determine how well these measured fields compare with those
predicted by theory and observed in numerical simulations and to understand why any differences
between them occur. The activities of the past four years involved physical experiments,
computer simulations, and theory.

We carried out physical experiments on five flights in the KC-135. This involved the
design and construction of a prototype shear cell in the shape of a racetrack. We also developed a
way to obtain images of flowing spheres made of plastic, ceramic, and metal through the cell side
wall and a means for computer interpretation of these images. We then measured profiles of
mixture velocity, mixture fluctuation velocity, mixture volume fraction, and species number
density in the shear cell during episodes of micro-gravity on the KC-135. The comparison of these
profiles with those measured in computer simulations and the predictions of theory led to
adjustments in the operating conditions of the shear cell and gave indications of the advantages
and disadvantages of each material.

We developed discrete particle dynamics simulations for the full racetrack cell and for a
section of fully developed flow that was periodic in the flow direction. The full computer
simulation was used to design the racetrack shear cell and to study the properties of the flow in it.
We also tested the results of the fully developed simulation against the measurements made in the
shear cell during flight and predictions of theory. The latter were obtained in a numerical scheme
that we developed to solve the full equations and boundary conditions for the mean mixture
velocity, fluctuation velocity, and mixture volume fraction in steady, fully developed shearing
flows over the cross section of the shear cell.

Finally, we derived a simplified theory for segregation for mixtures in which the diameters
and/or the masses of the two spheres are not too different and a new theory for segregation of
disks in planar shearing flows. We extended existing boundary conditions for bumpy frictional
boundaries to include terms that are nonlinear in the ratio of the mean slip velocity to the strength
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of the velocity fluctuations. We developed simple approximate differential equations with
analytical solutions to describe segregation between bumpy boundaries with the influence of the
side walls taken into account in an averaged way.

Future research will involve the evaluation of a new cell design. Computer simulations of
the full racetrack shear cell indicate that the flow along the straight sections never achieves a fully-
developed state. In earlier studies, we were led to believe that a fully-developed flow was attained
because, near the ends of the straight sections, the profiles of mixture mean velocity, fluctuation
velocity, and volume fraction were all close to their fully-developed values. The flow
development seems to be controlled by the end regions in a way that we do not yet understand.

Consequently, we have begun to evaluate an axi-symmetric shear cell configuration in
which the flow is fully developed at each section. Such a shear cell involves concentric circular
cylinders that are in relative motion. Cylindrical bumps on these are parallel to the axis of the
cylinders. When the cylinders rotate in opposite directions, so that there is a streamline of zero
circumferential mixture velocity inside the shearing flow, the centripetal accelerations are
minimized.

The advantage of such a cell is that the flows will be fully developed at every section.
Also, because both boundaries move with respect to the fixed sidewalls, the floles more
agitated across the gap. A possible disadvantage is that there is always some centripetal
accelerations within the gap. However, theory and computer simulations can incorporate at least
modest centrifugal forces, so we regard this as an opportunity to test this capability against the
physical experiments. Finally, such an axi-symmetric cell is simpler to design and build than the
racetrack and its axi-symmetric design seems to offers greaterilifiexibr a variety of
experiments that might involve cylindrical boundaries of different diameters, depths, and
bumpiness. Also, the design facilitates studies of time-dependent segregation and segregation in
flows that are a single particle in depth.

Because the flow in the axi-symmetric cell is fully developed at every section, it is possible
to employ it to carry out unambiguous experiments on time-dependent segregation. In the
racetrack design, the time-dependent segregation associated with a change in boundary speed
could be confused with that associated with the flow development. The axi-symmetrc geometry
makes it possible to carry out measurements of diffusion velocities and time-dependent
concentrations across the cell that follow, for example, an abrupt change in boundary speed. The
results of such experiments can be tested against computer simulations and simplified versions of
existing theories.

The simplicity of the design of the axi-symmetric cell makes it possible to reconfigure it to
carry out experiments on segregation in flows that are a single particle in thickness. This provides
an opportunity to test theory for the segregation of binary mixtures of disks in planar shearing
flows that we have developed during the past four years. Also, this provides an opportunity to
complement the work of researchers the University of Rennes who are carrying out physical
experiments on the segregation of binary mixtures of circular disks in shearing flows carried out
on an air table. We anticipate that because of the simplicity of the two-dimensional experiment,
the prototype axi-symmetric shear cell, employed upon the KC-135, could provide sufficient data
for meaningful comparison between theory, computer simulations, and the two experiments.
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Shear Cell Schematic
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The Region of
Fully-Developed Flow
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Experiment

Experimental conditions

Test U F [SpeciesA| rA | VA |[SpeciesB| rB | VB tT 10
m/s | Hz mm | % mm | % 5
I 14 [1000| ceramic | 1.59 | 10 [ acrylic | 1.98 | 30 | 300 | 10
I 09 [500 [ acrylic | 1.6 | 28 | acrylic | 198 5 | 250 | 10
Impact Properties
sphere 1 r1 p1 sphere 2, r2 p2 e | pf | BD
(mm) (2 / cm3} bump or (trum) (g / CmS]
wall
acrylic | 1.6/198 | 1.22 acrylic [1.6/1.98| 122 10937012 035
ceramic 1.59 3.86 ceramic 1.59 386 |0.97]0.10] 0.24
acrylic | 1.6/198 | 122 ceramic 1.59 386 |093(011| 010
acrylic | 1.6/198 | 1.22 |fixed bump| 1.59 - 097 (022 ] 0.28
ceramic 1.59 3.86 |fixedbump| 1.59 - 0.68 [ 0.08 | 0.29
acrylic | 1.6/1.98 | 1.22 | aluminum oo - 094 [0.14 | 0.51
ceramic 1.59 3.86 | aluminum s - 061|010} 014
acrylic | 1.6/1.98 | 1.22 glass o - 0.83 (0.12| 0.34
ceramic | 1.59 3.86 glass o - 0.96 | 0.09 | 0.00
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Experiments and Simulation
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Kinetic Theory

Fluctuation velocity: w=T""

(pMW,) L (1-2%8n)p ch[Fs] —3(1-e=ff)}w:0

F ts F| 4T\ p
where
l{n, n r, —rt T
X=—| AR | dr=2_B8 e =e——
2[ n n] T, . ZIJL

Boundary conditions

r,w =—b,w, aty=0,andr,,w =b,w, aty=Y.

Segregation

F

x' = _(l—jx }(Rﬁr + Fﬁm)lw—

W
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Theory and Simulations

0.8

Test |

<uls
0.4

0.0 &=
0.15 0.15
0.10
<yTT>
0.00 _ 0.00
3 _ l F 3
coramic ’D arge acrylic
) ¥ large acrylic o“small acrylic] 5
) .
<0 o>
q) L e G s 1
C
0
% 1 0 o
v/Y' yiY
NASA/CP—2000-210470 655

R



STUDIES OF GAS-PARTICLE INTERACTIONS IN A MICROGRAVITY FLOW CELL

Michel Y. Louge, James T. Jenkins, Haitao Xu and Anthony Reeves
Cornell University
Ithaca, NY 14853

ABSTRACT

The ability to transport particulate materials predictably and efficiently using a
flowing gas is likely to play an important role in the development of lunar and martian
environments that are hospitable to humans. On earth, the transport and processing of
solid materials are also crucial in a number of applications from the chemical, mining,
power and oil industries.

For these flows, an appreciation has recently developed for the influence of
collisional interactions among particles. Collisions between such particles can transfer a
significant amount of momentum within the flow and at the boundaries. A crucial
parameter in such suspensions is the fluctuation kinetic energy or agitation of the

particles. Its local measure is the granular temperature T © (1/3) u’j u’j , where u’; is the

fluctuating velocity of the particles. It is with this parameter that the solid phase can
transmit momentum through an effective viscosity.

Sangani, et al. (1996) have determined the contribution of the viscous forces of the
gas to the dissipation of particle fluctuation energy in random flights of particles between
collisions. They do this over a range of concentrations for simple shearing flows in which
the particle Reynolds number is small and the Stokes number is greater than one. We
have extended their theory to inhomogeneous, three-dimensional, fully developed, steady
shearing flows in practical wall-bounded devices. This involves the introduction of
energy transport due to spatial gradients and the extension of boundary conditions for
bumpy frictional walls to systems with large slip velocity at the boundaries.

7

>,

i “ Moving inner
boundary

A -=—'— Stationary floor

|
%// g
|

kcving — Pressure fap
ouker

boundary L Gas distributor

Housing

Sketch of the axisymmetric Couette shear cell.

In this context, we are designing an axisymmetric microgravity flow cell in which
to study the interaction of a flowing gas with relatively massive particles that collide with
each other and with the moving boundaries of the cell (Figure). This cell will permit
suspensions to be studied over a range of laminar, steady, fully developed conditions
where viscous forces dominate the gas flow and inertial forces proportional to the gas
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density are nearly eliminated. Unlike terrestrial flows, where the gas velocity must be set
to a value large enough to support the weight of particles, the duration and quality of
microgravity on the International Space Station will permit us to achieve suspensions in
which the agitation of the particles and the gas flow can be controlled independently by
adjusting the pressure gradient along the flow and the relative motion of the boundaries.

In this cell, we will first characterize the viscous dissipation of the energy of the
particle fluctuations when there is no relative mean velocity between gas and solids. In
the absence of a gas, individual impacts are so fast that the only time scale governing the
granular phase is the inverse of g, the shear rate imposed by the moving boundaries. At
small particle Reynolds numbers, the gas introduces an additional viscous relaxation time
Os = r s d2/18pg, where r s, d and g are, respectively, the density of the spheres, their
diameter and the gas viscosity. In simple shear flows, Sangani et al. (1996) have
calculated values of the limiting Stokes number St = g gs at which the particle fluctuation
energy is equally dissipated by viscous and collisional interactions. Far above this limit,
the shear rate is sufficient to ignore the viscous drag on the spheres.

In contrast, our intention is to reduce the boundary speed in successive tests until
the Stokes number becomes small enough for the gas to affect the balance of fluctuation
energy of the spheres. We will control the magnitude of the particle Reynolds number by
adjusting the absolute pressure in the cell. At sufficiently low Stokes number, Sangani et

al. (1996) showed that the granular fluctuation velocity scales as \/T’ /gd 1 St /Rgiss, Where
Rdiss 1S a coefficient characterizing viscous dissipation. In our experiments, we will infer
Rgiss by recording transverse profiles of granular temperature and comparing these with
theoretical predictions. The measurements will be accomplished by observing the flow
through sidewalls and by using computer vision techniques. In order to evaluate the role
of non-continuum lubrication, we will also carry out relatively modest evacuation of the
apparatus and measure Rgjss at increasing values of the molecular mean free path. We will
perform experiments at Stokes and Reynolds numbers where the present theory is valid
and also, in an effort to inform future theoretical work, at values when it is not.

In another series of experiments, we will impose a gas pressure gradient on the
shearing cell sketched above. The gradient will induce a relative velocity between the two
phases, while the shearing will independently set the agitation of the solids. These
experiments will be unique in exploring a regime where particle velocity fluctuations are
determined by a mechanism other than interactions with the gas. In this regime, we will
measure the dependence of Rgiss and the drag coefficient on the solid volume fraction. We
will do so by recording transverse profiles of mean gas velocity, mean granular velocity,
temperature and volume fraction, and by comparing these with theoretical predictions.
By partially evacuating the cell, we will also record the effects of particle Reynolds
number on Ryrag. These tests will require measurements of mean gas velocity. These will
be accomplished using a new tracer technique analogous to particle-image-velocimetry.

REFERENCE

Sangani A.S., Mo G., Tsao H.-K., and Koch D.L., “Simple shear flows of dense gas-solid
suspensions at finite Stokes number,” J. Fluid Mech. 313, 309-341 (1996).
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Background

o (GGas-solid suspensions are ubiquitous.

« An appreciation has developed for the
Importance of particle collisions.

* Theories have recently been proposed for
Interactions of aviscous gas and agitated
solids when the flow Is not turbulent.
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Fluid-solid suspensions

ﬁ

"macro-viscous' suspension collisional sheared suspens on)
Bagnold (1954)
\

\U

Stokesian simulations: Nott and Brady (1994) 1
kinetic theory: Jenkins and McTigue (1990)
— ( collisiona pressure:
neutrally buoyant spheresin aliquid: Zenit, Hunt and Brennen (1997)

Koh, Hookman and Leal (1994) collisional sediment transport:

N Jenkins and Hanes (1998)

I
pf/ps collisona granular flowsin agas:

Sangani, Koch, et a Kinetic
: theory
St<< 1 ‘ Our experiments
-
. StI>1 St>>1
turbulent suspensions
Sundaram and Collins (1997); Longmire and Eaton (1992)

Re »

Stokes number = 646y, with 65 = ps d/18},
particle inertia versus viscous gas resistance
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Granular temperature

Solid fluctuation velocity U’ ..

Fluctuation energy per mass
of the grains.



Objectives

In the context of aviscous gas interacting with
an agitated, collisonal granular material,

e Measure viscous dissipation of fluctuation

energy and viscous drag using a steady,
fully-developed, collisional flow of ingastic

spheresin agas.
» Test predictions of exiging theories.



0L¥012-000C—dD/VSVN

€99

| nteractions of aviscous gas and agitated solids

solid volume fraction v , molecular mean free path A ,, granular temperature T.

(1) Viscous dissipation of T; effectsof v, T, A,
(2) Viscous drag; effectsof v, T

Microgravity =—$ Only viscous and collisona interactions.
-3 NO enduring contacts.

Gas =P Minimize forces associated with fluid inertia.

Shear cdl - | ndependent control of fluctuation energy.
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(1) Viscous dissipation

/ L Stationary floar
| Mowing inner
4_ D:‘:lunl_:lnr'_lr
Moving inner — Maving Ouler
bowumdany
boundary _ _
. N - Stationary floor
7 ‘
4&— Housing
.+
MOVing Howsing |
outer
boundary

Reduce boundary speed until collisional and viscous dissipation of
fluctuation energy are comparable.



0L¥012-000C—dD/VSVN

G99

Interactions of a gas with colliding spheres
in a simple shearing flow

Solid density p,, diameter d, volume fraction v, pair-distribution function g,,(v),
granular temperature T, normal restitution e, mean shear rate'y, gas viscosity |,

FU——
A NANANANANANANL

O
OO;OQ
0O OOO
O O
(Y Y Y Y Y Y Y
~— -U

Collisional production ~ p,d VT f, (V) y2
Collisiond dissipation ~ (1-€) v p, T¥? v g,,(v)/d
Viscous dissipation ~ i, v Ry T/d?

High U: VT/yd ~ (1-e)12

Low U: VT/yd ~ (ps d?/1g) Y /Ryiee ~ St/ Ry
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Method

viscous dissipation

» Reduce boundary speed to achieve low Stokes numbers.
* Fit R to the measured granular fluctuation velocity profile.
* Measure granular velocity distribution function.

1.

St =25 //
50
100 O.l—_
yIY 00
VT/AU
0 0.05 JTIAU 0.1 0.15 1 10 g 100 1000
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(2) Viscous drag

L Stationary floor

| Moving inner
boundary

Maoving inner
boundary

Stationary floor

Housing
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|mpose a gas pressure gradient on a sheared granular material

Shearing — control of fluctuation energy
— control of solid mass flux
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Uniform, unbounded suspension

Grain diameter d, volume fractionv, relative velodty u.-u
gas pressure p, and viscosity .

Average gas momentum balance:

18u v(1-v)° d
0= Ren () -0 B

dx

Measure ug, u, and dp,/dXx.

Minimize shear stress in the gas phase.

g’
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Accomplishments

Modeled gas-solid flow in wall-bounded cell.
Prescribed experimental conditions.
Specified microgravity requirements.
Designed a new tracer anemometer.

Carried out preliminary tests on the KC-135.



ELECTROSTATICS OF GRANULAR MATERIAL
(EGM): SPACE STATION EXPERIMENT

J. Marshall and T. Sauke, SETI Institute, MS 239-12, NASA Ames, Moffett Field, CA 94035,
and W. Farrell, MS 695.0, NASA Goddard, Greenbelt, MD 20771.

ABSTRACT

Aggregates were observed to form very suddenly in a lab-contained dust cloud,
transforming (within seconds) an opaque monodispersed cloud into a clear volume containing
rapidly-settling, long hair-like aggregates. The implications of such a “phase change” led to a
series of experiments progressing from the lab, to KC-135, followed by micro-g flights on
USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden
“collapse” of a cloud to the effect of dipoles. This has significant ramifications for all types of
cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of
granular matter. Notably, there is the inference that like-charged grains need not necessarily
repel if they are close enough together: attraction or repulsion depends on intergranular distance
(the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the
dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely
pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of
mixed charges on individual grains resulting from tribological processes --are not universally
recognized in electrostatics, granular material studies, and aerosol science, despite some early
seminal work in the literature, and despite commercial applications of dipoles in such modern
uses as “Krazy Glue”, housecleaning dust cloths, and photocopying.

The overarching goal of EGM is to empirically prove that (triboelectrically) charged
dielectric grains of material have dipole moments that provide an “always attractive”
intergranular force as a result of both positive and negative charges residing on the surfaces of
individual grains. Microgravity is required for this experiment because sand grains can be
suspended as a cloud for protracted periods, the grains are free to rotate to express their
electrostatic character, and Coulombic forces are unmasked. Suspended grains will be
“interrogated” by applied electrical fields. In one module, grains will be immersed in an
inhomogeneous electric field and allowed to be attracted towards or repelled from the central
electrode of the module: part of the grain’s speed will be a function of its net charge (monopole),
part will be a function of the dipole. Observed grain position vs. time will provide a curve that
can be deconvolved into the dipole and monopole forces responsible, since both have distinctive
radial dependencies. In a second approach, the inhomogeneous field will be alternated at low
frequency (e.g., every 5-10 seconds) so that the grains are alternately attracted and repelled from
the center of the field. The resulting “zigzag” grain motion will gradually drift inwards, then
suddenly change to a unidirectional inward path when a critical radial distance is encountered (a
sort of “Coulombic event horizon”) at which the dipole strength supersedes the monopole
strength --thus proving the presence of a dipole, while also quantifying the D/M ratio. In a
second module, an homogeneous electric field eliminates dipole effects (both Coulombic and
induced) to provide calibration of the monopole and to more readily evaluate net charge
statistical variance. In both modules, the e-fields will be exponentially step-ramped in voltage
during the experiment, so that the field “nominalizes” grain speed while spreading the response
time --effectively forcing each grain to “wait its turn” to be measured.

In addition to rigorously quantifying M, D, and the D/M ratio for many hundreds of
grains, the experiment will also observe gross electrometric and RF discharge phenomena
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associated with grain activity. The parameter space will encompass grain charging levels (via
intentional triboelectrification), grain size, cloud density, and material type.

Results will prove or disprove the dipole hypothesis. In either case, light will be shed on
the role of electrostatic forces in governing granular systems. Knowledge so gained can be
applied to natural clouds such as protostellar and protoplanetary dust and debris systems,
planetary rings, planetary dust palls and aerosols created by volcanic, impact, aeolian, firestorm,
or nuclear winter processes. The data are also directly applicable to adhesion, cohesion,
transport, dispersion, and collection of granular materials in industrial, agricultural,
pharmaceutical applications, and in fields as diverse as dust contamination of space suits on
Mars and crop spraying on Earth.
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Hypotheses Being Tested

Grains of dielectric material must have a dipole moment, D, if they
have a non-uniform distribution of positive and negative surface
charges (total net charge determines value of monopole moment, M,
regardless of the charge distribution)

For certain granular regimes, interaction of grains is strongly a
function of D/M ratio and its relationship to intergranular spacing.
D/M has not been experimentally determined for triboelectrically
interactive grain populations

- , Dipole
axis

Strength of the dipole is a
function of the number of
fixed charges, and the
distribution of the charges
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Current Concepts

> @B
SS SN

Aggregates formed from

discrete dipoles on each grain Aggregates formed from
dipole couplets of monopoles

EGM versus conventional aggregation concept
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Tribocharging & Dipoles

Grains of like material acquire both + and - charges during
grain-grain contact as a result of differential work functions

Causes

@ Microscopic surface configurations causing
stress field variation

@ Structural variation in hardness, surface
energy, piezoelectrics, etc

@ Protruberance dragged across a surface is
dramatically heated compared to scratch line
on other surface --thermal discrepancy

@ Surfaces transfer material across tribological
boundary. For like materials, it is random
which grain acquires or loses material

Effects

Number
8Io%rg|ns in
population s

=3

= Mixt f
Mixtdre

Mixture of monopole
and dipole strengths in
grain population
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Dipoles: Early Clues

Undispersable sand mass
with filamentary attachments

(000000000000
Ooooooooooocooomooom

t = 30 seconds

Clear column with
2 cm long settling
filament hairs.
Catastrophic
"phase change"

(000000000000

(000000000000

10 liter container in KC-135 zero-g

1 m settling column of dustin1g
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ED USML-2 Evidence for Dipoles

Filamentary aggregates from dense grain cloud in USML-2
Glovebox. Angular grains of 400 micron diameter quartz
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Dipoles in Modeling

3-D computer modeling produced same results as USML experiments

Grains "dispersed" with fixed surface charges, randomly distributed.
Each charge just a monopole with corresponding Coulombic force

No dipoles or D/M ratio artifically embedded in the code

Chain aggregates always produced, implicating dipoles

a0y j : ' a0 it T Left: Aggregate from cloud
i { collapse ("neutral" charge-
" 40 . balanced grains with dipoles)
20| \-. :
of - of T
—T T ‘, F " ] Right: Aggregates (formed
i ] , by dipole interactions) being
- 10 At ] dispersed by monopole
- forces (cloud net charge).
-0 -&0 Units = grain diam.

=20 -140 ] 10 20 —B0-40-20 0O 20 40 g4
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Coulombic "Event Horizon"

Interaction of a grain with other grains or with surfaces is function
of dipole to monopole (nhet charge) relationship, and distance
between grains and surfaces. Need both D and M

Coulombic Horizon:

Force, F Critical distance where
(magnltlide) relative magnitudes of

dipole and monopole

Dipole force forces reverse
(always

attractive)

v

Monopole force
(attractive or
repulsive)

Particle with
mixture of positive

and negative \

charges

=
Distance from grain/surface

i
CH

CH can be orders of magnitude larger than grain itself
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Module Characteristics

@ Inhomogeneous
radial (2D) field lines

@ Dipoles only move to
center. Monopoles can
move in or out

Homogeneous
parallel field lines

@ Both aggregates and
single grains studied

@ Dipoles cannot move
in either direction.
Monopoles can move
both ways

@ Radial speed
indicates D and M

@ Event horizon (r)
gives D/M ratio

@ Forces expressed:
Dipole
Monopole
Induced polarization

@ Drift speed of grains &
aggregates indicates
monopole

@ Torque/alignment on
aggregates indicates
cluster dipole

@ Long range forces
expressed:
Monopole

Experiment Concept

Prime Measurements & Function
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Experiment Description

Preliminary Engineering Concept for the IFU

Experiment
::Je“;gua:‘gdlor chamber Insulating shell or
§ . . coating around . .
reservoir Venting air Filters metal cylinder Venting air

0

/ T Outer metal
V|a|ve o P, T cy|inder
. XL Central
// electrically
......... charged hollow
o BB rod with mesh
/ SRS filter sleeve
S B coverin
- / """" __ diqurs%n ____________
Eiﬁ Ese i | vent jets
ac oca
lighting observfation Window
zone o
experiment

Side Elevation End Elevation
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IFU: Grain Interrogation

Method I. Fixed-Polarity Field ------------- Data Acquisition

Shape of curve
reflects acceleration
U '« contributions from:

monopole and dipole
forces

1/r and 1/r?

Video images
components

t
Velocity plot

Grain with a dipole rotates dipole axis in alignment with field and is pulled
inward. Net charge on grain adds increase or decrease of speed, depending
on sign. Depending on distance, net charge can cause drift away from center,
but at close range, dipole can override net charge
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CI@ IFU: Grain Interrogation

Method II: Alternating-Polarity Field --- Data Acquisition
For Direct D/M Ratio

Inner Outer
rod wall

Zigzag grain motion

! Time

]

3

- N
o\/ n

o

N

® U=0
D/M force
balance
threshold

distance

-

-

\

_

|
tt0 t1 t2 t3 t4 t5 t6 t7

-t

Video images Velocity Plot
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IFU: Grain Interrogation

Definition of the D/M ratio

At the event horizon, where Fd and Fm are equal, and the grain is
about to enter the "always attractive" zone, it follows that:

-MKkV/r + DkV/r2 =0
This solves to: r = D/M

Thus, the event horizon for a grain is the grain's D/M ratio,
by definition, measured in units of length, I
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Example Data Product

Scenarios For IFU Population Statistics

Possible D/M Population Statistics for

Methods | & Il. (Data Sets Directly
Comparable in Units of 'r')

M'(:ﬁt grains Most grains with
1= With no D too large to
dipoles

measure

Grains with small

c dipoles, large net

-f_.—’ charges

S

=} . .

g. Grain with D/M ﬁ Highly

o mixed
grain
characters

Inner D/M Outer
rod cylinder

Possible D and M Population
Statistics from Method |

Population

(=]

Dipole 0

Monopole
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@ Verification of Hypothesis

@ Measurable values of D in IFU Method I:
Proof of dipoles (of magnitude affecting cloud behavior)

@ Measurable D/M ratios in IFU Method II:
Proof of dipoles
Proof of charge mixing on single grains if D/M >grain diameter

@ D/M values too large to measure by IFU Method II:
Proves dipoles and that even greater than expected
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CI@ Benefits of Research

Provides fundamental knowledge for electrostatics, granular
materials, surface science. Concept of largely unrecognized
adhesive/cohesive force

Knowledge enables modeling of cloud behavior in protostellar
and protoplanetary dust-debris systems, planetary rings,
planetary dust palls and aerosols created by volcanic, impact,
aeolian, firestorm, nuclear winter processes, and atmospheric
pollution

Data directly applicable to adhesion, cohesion, transport,
dispersion, and collection of granular materials in industrial,
agricultural, pharmaceutical applications, and in fields as diverse
as dust contamination of space suits on Mars and crop spraying
on Earth



ASSESSMENT OF CONSTITUTIVE AND STABILITY BEHAVIOR OF
SANDS UNDER PLANE STRAIN CONDITION

Khalid A. Alshibli' and Stein Sture®

'Project Scientist, University of Alabama in Huntsville/ NASA Marshall Space Flight Center, Mail Code SD48,
Huntsville, AL 35812, Tel. (256) 544-3051, Fax (256) 544-8029, Email: khalid.alshibli@msfc.nasa.gov.

’Principal Investigator, Dep. of Civil, Environmental, & Architectural Engineering, Campus Box 428, University of
Colorado at Boulder, Boulder, CO 80308-0428, Tel. (303) 492-7651, Email: sture@grieg.colorado.edu.

ABSTRACT: A series of biaxial (plane strain) experiments were conducted on three sands
under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of
specimen density, confining pressure, and sand grains size and shape on the constitutive and
stability behavior of granular materials. The three sands used in the experiments were fine,
medium, and coarse-grained uniform silica sands with rounded, sub-angular, and angular grains,
respectively. Specimen deformation was readily monitored and analyzed with the help of a grid
pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly
dependent on the specimen density, confining pressure, sand grain texture, and the resulting
failure mode(s). That became evident in different degrees of softening responses at various axial
strains. The relationship between the constitutive behavior and the specimens’ modes of
instability is presented. The failure in all specimens was characterized by two distinct and
opposite shear bands. It was found that the measured dilatancy angles increase as the sand
grains’ angularity and size increase. The measured shear band inclination angles are also

presented and compared with classical Coulomb and Roscoe solutions.
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Introduction

Plane Strain (PS) experiments:
— Sand particles properties

— Specimen density

— Confining pressure

Conventional Triaxial Compression (CTC)
experiments
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Plane Strain versus Conventional
Triaxial Compression Experiments

T
MEDIUM DENSE
89 = 0.85
