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Presence of a Conflicting Duct
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and
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Abstract

An approximate method for calculating the noise generated by a
turbulent flow within a semi-infinite duct of arbitrary cross section
is developed. It is based on a previously derived high-frequency so-
lution to Lilley’s equation, which describes the sound propagation in
a transversely-sheared mean flow. The source term is simplified by
assuming the turbulence to be axisymmetric about the mean flow
direction. Numerical results are presented for the special case of a
ring source in a circular duct with an axisymmetric mean flow. They
show that the internally generated noise is suppressed at sufficiently
large upstream angles in a hard walled duct, and that acoustic liners
can significantly reduce the sound radiated in both the upstream and
downstream regions, depending upon the source location and Mach

number of the flow.

1 Introduction

Considerable effort has been invested in developing a new generation of su-
personic transports. One of the primary requirements was that the aircraft

be quiet enough to meet or even exceed existing noise regulations, and it was
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decided that a mixer-ejector nozzle concept would be used to help accom-
plish this objective. The idea was that a significant amount of the mixing
noise would be generated internally within the nozzle, and could therefore
be considerably reduced by using suitable acoustic liner designs. Data from
recent tests using a prototype mixer-ejector show that the peak internal tur-
bulence level is more than twice the external level. It is therefore important
to develop prediction methods for this internally generated noise. A general
theory based on Lighthill’s equation was developed by Goldstein and Rosen-
baum [1]. Dill, Oyediran and Krejsa [2] extended this analysis to account for
mean-flow refraction effects. However, both theories involve the solution of a
complicated Weiner-Hopf problem, which can only be explicitly worked out
for a slug ( or ‘top hat’) mean velocity profile.

The experimental data suggest that the internal noise is of much higher
frequency than the externally generated noise, in addition to being much
more sensitive to nozzle geometry. Moreover, many of the most successful
noise prediction schemes ( e.g. the MGB code, ref. [3]) are based on high-
frequency Lilley’s-equation solutions (ref. [4]). The present study is therefore
directed toward developing a high-frequency Lilley’s-equation solution that

can be used to predict the internally generated noise. We suppose that the
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sound is generated by a superposition of statistically independent and acous-
tically compact, convecting-point quadruples and derive a formula for the
high-frequency acoustic radiation generated by such sources when they are
located within a semi-infinite, parallel-walled nozzle. In fact, we suppose that
the mean flow is completely parallel, but allow the cross-sectional shape and
velocity profile to be arbitrary (as shown in Figure la), in order to account
for nozzle-geometry effects. The only variation in the streamwise direction is
due to the boundary condition change at the nozzle exit, which is allowed to
have an arbitrary shape. Finally, an arbitrary (frequency dependent) acous-
tic impedance boundary condition is imposed at the nozzle walls, in order to
model an acoustically treated surface. The resulting solutions can then be
superimposed to calculate the sound generated by an actual turbulent flow
within a nozzle. The analysis can be used to guide the design of acoustic
liners that may be required to absorb the noise radiated in specific directions
or to design nozzle exit shapes that reduce the noise radiation below the
flight path.

Goldstein [5] developed a formula (equation (5.9) of that reference) for the
high-frequency sound radiation from a convecting-point quadruple source in

an arbitrary, transversely sheared mean flow. This result was later extended
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by Durbin [6] to account for a general (not necessarily parallel) mean flow.
These formulas involve a ray-spreading factor that multiplies the product
of a source function—which describes the actual acoustic sources-with some
Doppler factors that account for the local source and mean flow convection
effects. The spreading factor accounts for the mean-flow variation along the
path of the radiated sound and can be calculated from geometric acoustics
or ray tracing.

The present paper shows that Goldstein’s [5] formula still applies to the
internally-generated noise and that only the ray-tracing analysis which is
used to calculate the ray-spreading factor needs to be modified in order to
account for the effect of the nozzle walls. This is demonstrated in Section
2, where the notation is introduced and the Goldstein [5] and Durbin [6]
analyses are reviewed in some detail.

Three-dimensional ray tracing is fairly complex and somewhat difficult
to implement numerically, but it was shown in Ref. [5] that the three-
dimensional ray-tracing calculation could be reduced to a much simpler two-
dimensional one for the doubly-infinite jet flow considered in that paper. The
rays can then be found by solving a single second-order equation. In section

3 we show that this can also be done in the present problem. The results
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are applied to an actual turbulent flow in Section 4 and specialized to an
axisymmetric mean flow in a round duct with circular exit plane in Section
5, where some numerical results are also presented. Some conclusions and

recommendations for further work are given in Section 6.

2 Extension of Doubly Infinite Jet Solution

to Account for Finite Nozzle Geometry

For definiteness, we consider a unidirectional, transversely-sheared, parallel

mean flow

A

v=iU(x), p=p(x), c=c(x), p=constant, (1)

with velocity v, density p, speed of sound ¢, and pressure p, exiting from a
parallel-walled nozzle, as shown in Figure 1-a. The result which we obtain,
however, is much more general and applies to more complicated flow configu-
rations such as the one shown in Figure 1-b. Equation (1) is an exact solution
of the inviscid, non-heat-conducting equations of motion for these configura-
tions. x = {x1, 2, 23} denote Cartesian coordinates with x; aligned with the
direction of the mean flow, i denotes the unit vector in this direction, and

x; = {23, 23} denotes the transverse coordinate vector. The nozzle exit is
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described by an arbitrary, three-dimensional curve C, as shown in the figure.
The mean velocity U is assumed to go smoothly to zero at the generators of
the nozzle wall and to remain zero beyond that surface. The analysis does
not therefore account for forward flight effects, but can easily be extended to
do so.

Assuming that the ideal gas law applies, the linearized equation governing

the acoustic propagation on this flow is [8]

D (D% dp
Lp= —|— -V &V 2°VU -V— =T 2
P Dt (th c p) —I_ c 8:1?1 9 ( )

where p now denotes the acoustic pressure fluctuation normalized by pc?,
+U—— (3)

denotes the convective derivative, and ¢ denotes the time. I' represents the

acoustic source distribution and is given by

D of
[=-—=V.-f-2VU.— 4
DY VU o ()

when this quantity is produced by a fluctuating force f; per unit volume.

In the absence of temperature fluctuations, Lilley’s equation is obtained by

ouiuy
)
O

replacing f; by the quadruple source distribution f; = where u; denotes

the velocity fluctuation within the flow.
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Since the problem is linear, and the second term in (4) is negligible com-
pared to the first in the high-frequency limit, the solution for an arbitrary
force distribution f; can be obtained by superposition of solutions, say pg,

to

. D .
E (pGe—lwt) — E(S (X o Xs) e—lwt7 (5)

where w is the frequency, x° denotes the source position, and ¢ is the Dirac

delta function.

2.1 Review of Durbin’s high-frequency solution

By using matched asymptotic expansions, Durbin [6] showed that the solu-

tion to this problem is given by
pe = pa(x[x*,w) = (1 — Ms;) @™, (6)
in the high-frequency limit
k=w/ce — 00, (7)
where ¢, 1s the speed of sound in the region of zero mean flow,

M=U/c, (8)
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S denotes the Fikenal, which satisfies the Fikenal equation

(1— Msp)? — (i)2 s|? = 0, (9

Coo

~—

and

S = {81782783} =Ves. (10)

The solution to this first-order partial differential equation can be ob-
tained by the method of characteristics by calculating S along the rays x(7)

, which are determined by the ordinary differential equations

=0, (11)
2
1 = $1 [1 — (%) ] Ucczoo7 (12)
x;, = 8
=123, (13)
. s1U—Coo 2
= g ()

subject to the initial conditions at the source position x* that the initial ray
velocity is proportional to the initial ray direction, say {cos p, sin p cos A, sin g sin A},
i.e. that

X; = Ys{cos g, sin pcos A, sin g sin A}, (14)
where 7 is a parameter that varies continuously along thetlay,dot denotes
differentiation with respect to 7, the subscript s denotes quantities evaluated

at the source position x°, and the proportionality constant v, is given by
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5

7P = (G En)” [1 - (%smu) ] : (15)

The amplitude function ® is given by

1 Y2 sin
o = 16
AmcCo, (1 — Msy) psyd (16)

where J denotes the Jacobian determinant

a (wlv Lo, 1’3)

(o, A) | (17)

I-

with do = |dx| denoting the distance along the ray.
Once these equations are solved, the Fikenal can be found by integrating

the equation

S=s-%, (18)

and the velocity fluctuation ug, corresponding to the acoustic pressure per-

turbation pg, can be calculated from

ug = sl /é.,. (19)
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The important thing to notice is that the derivation of these results is
completely independent of any boundary conditions that are imposed on the
surface ¥ of the duct, and the termination curve C of the duct exit. The
latter gives rise to the so-called defracted radiation which (Pierce [9]) is of
higher order in frequency than the direct and reflected radiation and can
therefore legitimately be neglected in the high-frequency limit-though it can

certainly be important in the upstream direction.

2.2 Modification of solution to account for the duct
walls

The conditions at the surface of the duct are accounted for by imposing
boundary conditions on the solutions to the ray equations (11) to (13) at
the point where the rays reach the boundary to produce a reflected wave,
say {ps,uy}, corresponding to the incident wave, say {p_,u_}. (See, for
example, [9].)

The reflected wave is still given by equations (6) with (16), but multiplied
by a constant reflection coefficient, say R. The Eikenal S is obtained by

integrating (18) through the reflection.
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Thus, the pressure and velocity on the boundary 3. are given by

pe =@ (1+R)e*, (20)
and
72@ ]
UG = — (s_ + Rsy)elts (21)
Co

(recall that U is assumed to be zero at ¥).

The usual impedance boundary condition for a locally-reacting surface
involves only the normal component of the velocity ug, and therefore only
the normal component of the propagation vector s. This condition is usually
expressed in terms of an impedance, say Z (which can, in general, be a

function of the frequency wy), as

7 = '66211(}:7(21 for x on X, (22)

where n denotes the unit normal to ¥. Moreover, the normal component of
s changes sign, i.e.

s_-n=—s;-n forxonX. (23)
Substituting this along with (21) into (22) yields the following expression for

the reflection coeflicient

b
I
=
T

(24)
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where

n=-—(s_-n)(, (25)
where ( = Z/peoCso is a normalized impedance. Notice that Z — oo and
R — 1 for a hard wall.

On the other hand, the tangential component of s, namely s;, remains

unchanged by the reflection, and it therefore follows from (11) that
sy = constant, (26)

which is equal to the far-field value of this quantity for any ray that propa-
gates to infinity (which are the only ones we are interested in here). In this
region (where the mean flow is zero), the acoustic rays are straight lines and

are therefore given by
X = X° + R (cos 0., sin 0., cos poo, sin O, sin ¢ ) (27)

where R can be taken as the distance between the source point and the ob-
servation point, and 0., and ¢, denote the far-field polar and circumferential
angles, respectively, shown in Figure 1.

It therefore follows from Eqs. (11) to (13) and the Eikenal equation (18)
that B = 1, and that

s1 = cos 0. (28)

NASA/TM—1999-209171 12



The Jacobian determinant (17) becomes

J = R*sinf,. M 7 (29)
9 (1, A)
and it now follows from (12), (14), and (28) that
U\ ? UsCoo
vscosp = |1 — (—) cos O, + — (30)
Cs c?

Eliminating 75 between this and equation (15) shows that 6., depends

only on p, and not A, and that

() =S 31
s Coo)  sinp dp

Inserting this into (16) and using (29) shows that
R
¢
- ArReé2, (1 — M cos 6,) ‘

dA
ddso

) (32)

where we have used the ideal gas law to obtain this result and put

R

ﬁ R, (33)

where the R; denote the individual reflection coefficients for each of the m

reflections that the ray undergoes before leaving the duct. Also, it follows

from (13), (18) and (28) that

S = (21 — x1°) cos oo + So(x¢|x:%). (34)
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2.3 Application to moving point source

As indicated in the Introduction, the sound radiated by an actual turbulent
flow can be calculated in terms of the pressure field p generated by a su-
perposition of point quadrupole sources moving downstream with the mean

flow. We therefore consider the source distribution

_Db
N Dt 8:1;26:1;]

715 (x — x," —ilt) Qyj. (35)

where U, denotes the convection speed of the source whose strength is );;.
The corresponding acoustic field can be calculated from the fixed source

solution pg by superposing Fourier components and using the Green’s for-

mula ([5])

SINES S ey - x; iUy drd
x : —x; —1U. Tdw.
pG y7 axlsax] y 1 T y
(36)
Integrating by parts to transfer the derivatives from the source term to the

Green’s function, and carrying out the integrations with respect to y; and 7

gives

7 —1w Hw—ws)(z — 62
b= 27T[j' t/ / 1°/Ue 75)a o spG(X|X w)de®dw.  (37)

For clarity, we begin with the case where only a single ray reaches the

observer. The result will then be corrected for multiple ray effects in a
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relatively obvious manner. Inserting equations (6), (28) and (34) into (37),
and using the fact that (at lowest approximation) the partial derivatives

operate only on the frequency-dependent terms in the exponent, we obtain

1— M 0 —1wt //(I)lww (z15/Uc—t)
= (L= Mcos A
0?

COO[(JL’l r® )C059m+50d S duo. 38
Xaxisax] e z1 dw (38)

Then, carrying out the integration, first with respect to x1° (to obtain a

d-function), and then with respect to w, shows that

_ (1 — M cos 000) O'ZO'JQZJk 2@em($l cosfoo+S0 —Coot) (39)

(1 — M, cosf) s ’

p:

where we have put M. = U, /¢y, ks = w,/¢s and

cos 0, ‘ —1 05

_ P = it =2,3. 4
1 — M_.cos 8. 7 1 — M.cosb., Oz;°’ or ¢ 3 (10)

g1 =

Then it follows from equation (32) that

12
) ko |Qijoioj) ‘R‘ d\
(4rR)" ¢t (1 — Mycos0..)" (1 — M.cosf,,)" |doe

in the far field where M = 0, which, except for some minor notational

changes, and the inclusion of the reflection coefficient R, is the same as
equation (5.9) given in Ref. [5]. The normalized wall impedance, ¢, which

appears in this equation through the reflection coefficient, R , must be eval-
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uated at the actual (or observation) frequency

w=ws/ (1l —M.cosb), (42)

and not the source frequency ws;.

It is convenient to allow the transverse orientation of the quadrupoles to
vary with source position. This amounts to changing the orientation of the
x° coordinate system or, equivalently, referencing the angle A to a different
angle, say Ao(x®). Then it follows from the results given in Ref. [5] that o9

and o3 are given explicitly by

_ —gscos (A —Ag) _ —gssin (X = Ao)
72 1—M.cosb, 73 = 1 — M.cosf,, ’ (43)
where
1 — M cos b 2
q= \l ( /o)’ S _ cos? 0. (44)

When multiple rays (which we individuate by a superscript in parenthe-
ses) reach the observer, the far-field pressure is given by the somewhat more

complicated formula

2 kst Qi QhiDin
(47TR)2 et (1 — M; cos (900)2 (1 — M, cos (900)27

p (45)

where * denotes the complex conjugate, and the dependence on the transverse

NASA/TM—1999-209171 16



source coordinates ry, @5, and the emission angle A enters through

eié(so(n)_so(m)

Y

_ o)
Diju= Y. Ui(”)ay‘(n)ak(m)az(m)R(”)R(m)*\l ‘ 90

ON(m)
0o

(46)

where k denotes the number of rays reaching the observer.

3 Reduction of Order of Ray Equations

Goldstein [5] introduced the two-dimensional ray distance S defined by (see

equation (2.19) of that reference),

dxi
dS

~1. (47)
It follows from equations (9), (13),(44) and (28) that 7 is related to S by

s

dr q. (48)

Equations (13) can then be combined to obtain the second-order system

where V; denotes the cross stream divergence. This is the same as equation

(2.23) of ref. [5], where it is shown, by introducing the polar coordinates

¢ =tan™" (x3/x2), =1/ 222+ 232, (50)
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that it can be reduced to the single second-order equation
= (51)

where
dr\ 2
I=,|r?+ (—T) ; (52)

which is to be solved subject to the initial conditions

dr
d¢

r=r, ;

=rscot (A — o@s), at & = ¢s. (53)

Inserting equations (13) and (48) into the boundary condition (23), using
(50) and taking ¢ as the independent variable, shows that the appropriate

boundary condition for equation (51) is

1 |dry 1 |dr_

E d—qb—r—l—tan(qb—ﬁ)]:fl%—r—tan(qb—ﬁ) , for x on X,

(54)
where we have put

n = {cos 3,sin 3}. (55)

This boundary condition must be imposed on all rays reaching the cylindrical

surface containing the duct wall whenever

1 S $6($2,$3), (56)
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where x1 = x.(x3, x3) is the equation for the termination curve C'. x; can be
calculated as a function of ¢ along the ray by inserting (28), (48), (50), and

(52) into (13) to obtain
1S (G A E] B

4 Application to Sound Radiated by Actual

Turbulent Flows

Equation (45) can be used to calculate the power spectral density of a spec-
tral distribution of sources of band width Aw, by putting Q;;Q)%; equal to
(1 = M. cos00) ¥;jrAws (Ref. [10]). However, pressure spectra are mea-
sured per unit observation frequency Aw

Aw,

A= ——"——
1 — M.cosf.

(58)

(see Eq. (42)) and it therefore follows that the directivity of the spectra at
constant source frequency w; (due to a source at x°) is given by

ko Wi Diip ‘
(47TR)2 et (1 — M; cos (900)2

1 2
— 59
A Ip|” — (59)

This result can now be used to calculate the sound emitted by an actual

turbulent flow by assuming that the turbulent eddies behave like compact
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sound sources, and using Lilley’s equation to show that the spectral source
strength W, 1s related to the fourth-order, two-point, time-delayed correla-

tion function of the turbulence

Rijkl(xsv €7 T) = u;u;u%u;/ - u;u; u%u}’, (60)

in the usual way by

Wik = //e_iWSTRijkl(XsaévT)dngv (61)

where the single prime indicates that the quantity is evaluated at the po-
sition and time (x*,t), the double prime indicates the position and time
(XS//7t _I_ 7_)7

¢ =x" —x* —il,r, (62)

and
X’ = {xi’, L (:L';’ + :L';") L (:1;;’ + :z;g”)} (63)
denotes the mean position of the source.
Since the sound field is always produced by a distribution of sources
rather than by a single point source, the final result will involve an integral

of Eq. (59) (and consequently of Eq. (46)) over the transverse source coor-

dinates ry and ¢,;. Then, since S(()n) is a function of these coordinates, the
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contribution from the cross-coupling terms in (46) will be smaller than the
contribution of the m = n terms by a factor of (at least) w™'/2, which in
a strict asymptotic sense is negligible in the high-frequency limit. However,
the zero-mean-flow computations of Boyd, Kempton and Morfey [11] sug-
gest that the asymptotic convergence may be relatively slow for sources close
to the wall (which result in small values of S(()n) - S(()m) in Eqn. (46)), and
that the interference effects may not be insignificant even at relatively high
frequencies — particularly at small angles to the downstream axis where the
sound field in expected to be maximal. However, the turbulent flows, which
are of interest here, will probably introduce significant random fluctuations
in the phases of the disturbances, which will tend to uncorrelate the pressure
fluctuations corresponding to different ray paths. We therefore feel that it is
best to neglect the interference effects, which amounts to replacing Eq. (46)

with
I\

SOIE
56

Dijw = 3 0:M oMo 0™ |R
n=1

. (64)

Since the fourth-order correlation tensor is very difficult to measure ex-
perimentally, or even calculate numerically, it is usual to assume that the

turbulence is quasi-normal, and, consequently, that Rz can be expressed as
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the product of second-order correlations ([12], [13])
Rijm = R R + RaRjy. (65)

In order to simplify this further, Goldstein and Rosenbaum [14], Kerschen
[15], and, more recently, Béchara et al. [16] and Khavaran [17] , assumed that
the turbulence is axisymmetric about the direction of the mean flow. The

analysis given in Ref. [1] (see also [2]) then shows that

o000V = |0'|4//e_iw”@od€d7 — 2(0203)2//6_i%T (Qz:a — sz) d€dr
+ ot [ [erQutar, (66)

where we have dropped the superscript (n) on the o;, and

Qu = Ri - R%z

Q12 =0Q13 = R%g + Ri1Rao

Q22 = Q33 = R%z - R%z (67)

Qa3 = R%z - R%:a

QO = R%z

are symmetric in their indices.
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5 Application to Round Duct with Axisym-

metric Mean Flow

Goldstein [5] showed that Eqs. (51) - (53) can be solved analytically when
the mean flow is axisymmetric. A similar procedure can be used to obtain
an analytical solution to the present problem, but it is probably easier to
solve it numerically. However, it is important to notice that, in this case, the
resulting solution, whether obtained analytically or numerically, will depend
on A, ¢ and ¢, (where ¢ is the circumferential angle of the source point)
only in the combinations ¢ — ¢; and A — ¢, since the coefficient q in Eq. (51)
is independent of ¢, i.e., ¢ appears only as an independent variable. This, in
particular, implies that A — ¢, is a function of ¢, — ¢s, s and 0.,. Moreover,
calculations of the ray trajectories for sources located within the nozzle show
that A is a discontinuous, multi-valued function of ¢.,, due to the sudden
change of boundary conditions at the nozzle lip. This is illustrated in figure
2, which is a plot of ¢, vs. A for the indicated source location. Thus, even
though ¢., is necessarily a single-valued function of A, the figure shows that

the converse is certainly not true. It follows that

d()
ddes

2

> [ sin (M — ) cos (A — )[R

n=1

deps
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d (w _ ¢5)
dos

de\ for p,q=10,1,2,

= Z /027r sin? ()\(”) — qbs) cos? ()\(”) — qbs) ‘7?(”)‘2

27 _ o —
= / sin? A cos? A ‘R(”)
0

dos (68)

since, for a given r, and 0., R depends on ¢, — ¢, only through A — ¢,.
The sum in Eq. (68) must be taken over all A(*) values corresponding to any
given value of ¢, in order to account for all of the rays reaching a given
observation point.

If we now choose the reference angle Ag in Eq. (43) to be equal to ¢s,
the quadrupole sources will have the same orientation relative to the radial
direction for all ¢;, i.e. the quadrupole source distribution in Eq. (59) will be
axisymmetric when W,z is independent of ¢,. Then, since equations (43),
(44), (64), and (68) show that the entire ¢, dependence in (59) is of the form
(68), it follows that the sound field |p| emitted by a ring of uncorrelated, equi-
strength quadrupole sources with radius r,, and the same orientation relative
to the radial direction, is independent of the circumferential observation angle
Do, 1.€. 1t 1s axisymmetric.

When ‘7?‘ =1 (i.e. for a hard-walled duct), it follows from equations (43),

(44), (66) and (68) that

I\
0bos

2

o 2 _
3 /0 010 o Moy [RCY do, =

n=1

NASA/TM—1999-209171 24



2m qs*
(1 — M.cosf.)" | 8

+2 cos” 00q,° / / eTiwsT (le + @o) d€dr +

//e_inT (8(20 +7Q2 + Q23) dgdr

+cos?l,, / / e iwsT (QH + Qo) dédT] . (69)

For isotropic turbulence Q;; = 7Qo, and it follows from Eqns. (43) and
(44) that Eq. (69) is independent of 6., when M; = M.. This means that
the sound radiated by a ring source in a hard-walled duct is not only inde-
pendent of the mean velocity profile within the jet, but is also unaffected by
the presence of the duct when all rays reach the far field. Of course, this
result only applies when the phase cancelation between multiple rays can be
neglected. Also, since rsdos is the element of arc length, the total sound

radiated by the ring source will be directly proportional to the radius r;.

5.1 Numerical results

Results for the directivity patterns due to a ring source within a round
duct were computed for a constant mean speed of sound, ¢ = ¢.,, and mean

Mach number profiles of the form

M(r) = My————, (70)
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where Mg is the centerline Mach number and the parameters a and b are
used to control the profile shape.

The source terms in Eq. (66) were evaluated using the relations given by
Khavaran [17] for axisymmetric turbulence. The anisotropy is characterized
by the two parameters u_%/u_% and Ly/ Ly, where u? and u? are the streamwise
and transverse mean square turbulent velocities, respectively, and L; and
Ly are the corresponding correlation lengths (see ref. [17]). Values for the
anisotropy parameters of u_g/u_% = 0.6 and Ly/L; = 0.5 were used in the
calculations.

Figure 3 shows the results for the far-field, one-third-octave directivity,
plotted at constant source frequency, for a ring source at r; = 0.75r¢, 1° =
—2.0r¢, where rg is the duct radius, and a centerline Mach number of 1.5
with @ = 0.1,b = 6, for a hard-walled duct and a soft-walled duct of various
impedances.

For sufficiently small far-field polar angles outside the zone of silence, all
rays emanating from the source reach the far field and, for the perfectly-
reflecting, hard-walled duct considered here, the duct has no effect on the
far-field sound. At far-field positions beginning in the upstream quadrant

(i.e. 0 > /2 ), however, some of the rays become trapped within the
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duct, causing the sound pressure levels to be reduced at these angles. The
hard-walled duct, therefore, only effects the sound field at sufficiently large
angles to the downstream axis which, in fact, lie in the upstream quadrant
as indicated in the figure. Since the number of rays reaching the far field
rapidly decreases as 6., — m, there is a sharp drop in the far-field sound.

However, the soft-walled duct starts to effect the sound field as soon
as wall reflections begin. Since an increasing number of rays reflect (an
increasing number of times) off the walls as the polar angle increases there
is a substantial decrease in the far-field sound relative to the hard-wall case.
The wall impedances ¢ = (1,—1) and { = (2,—1) are seen to reduce the
peak noise level by nearly 5 dB, relative to the hard wall case. The results
suggest that the magnitude and phase of the normalized wall impedance can
significantly effect the peak sound level, and a detailed parameter study to
find the optimal value should be carried out.

Figures 4 and 5 show the effect of the source position on the far-field
sound. The rays undergo fewer wall reflections when the source is closer to
the nozzle exit (Fig. 4), and the acoustic liner therefore provides less noise
suppression. When the source is closer to the duct centerline (Fig. 5), all

rays exit the duct without reflecting off the wall when the far-field polar
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angle is sufficiently small, and the acoustic liner has no effect on the sound
field. Wall reflections start to occur when the polar angle is increased, and
the liner reduces the far-field sound, but only by a relatively small amount -
again due to fewer wall reflections.

Figure 6 illustrates the effect of centerline Mach number on the liner
effectiveness. At the subsonic Mach number (M(0) = 0.9) for which this
result was obtained, a wall impedance of ( = (1, —1) again reduces the peak
sound pressure level by about 5dB, but produces a much larger reduction

than the previous (supersonic) case at large upstream angles.

6 Conclusions and future work

It was shown that the high-frequency Lilley’s-equation solution devel-
oped in Ref. [5] for a doubly-infinite, transversely-sheared mean flow also
applies to the noise generated internally within a nozzle, provided appropri-
ate boundary conditions are imposed on the ray trajectories at the surface
of the duct and a suitable wall impedance factor is included.

By assuming the turbulence to be axisymmetric about the mean flow di-

rection, a simplified expression for the far-field sound radiated by a turbulent
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flow within the nozzle was derived.

The analysis was applied to the case of a round duct with an axisym-
metric mean flow, and it was shown that a hard-walled duct has no effect
on the far-field sound radiated at polar angles sufficiently close the duct axis
(but outside the zone of silence). The numerical results show that the duct
cuts off some of the rays for polar angles in the upstream quadrant, and that
acoustic liners can significantly reduce the far-field sound but their effective-
ness depends upon the wall impedance, source position and mean flow field.
The analysis can be used to carry out detailed parametric studies to find the
optimal wall impedance, acoustic source distributions, mean profile shape
and nozzle geometry for a given application.

The ray acoustics solution has the advantage of being applicable to nozzles
of any shape and any mean velocity profile (see Fig. 1). The high-speed
civil transport was expected to use a rectangular mixer-ejector nozzle with
a very complex mean velocity profile and acoustically treated walls. Future
work will evaluate the ray acoustics solution for this geometry and make
comparisons with some recent test data.

This paper only considers the sound produced by the first source term in

Eq. (4) - the so-called ‘self-noise’ term. While this term is asymptotically
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large compared with the second (or ‘shear-noise’) term in Eq. (4) in the
high- frequency limit, it may be necessary to include the latter in order to
obtain agreement with experimental results, particularly in the downstream
quadrant (see, for example, Khavaran [17]).

This paper also does not address the diffracted radiation produced by
acoustic rays striking the duct lip. It too is asymptotically small compared
with the direct and reflected sound (Pierce [9]), but can still be of significance
at the upstream polar angles, where most of the direct or reflected sound is
cut off by the duct. This is currently being investigated by Wundrow and
Goldstein [18], who plan to develop a computational algorithm incorporating

the diffraction effects into the present analysis.

The authors would like to thank Dr. James Bridges of NASA Glenn
Research Center for providing values of the wall impedance and Dr. Abbas
Khavaran of Dynacs Engineering Co. for information on the mixer-ejector

nozzle configuration and flow field.
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Fig 1-a= Flow configuration.
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Figure 1-b: Example of more complex configuration to which analysis applies.
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A
Figure 2: Far-field cirumferential angle vs. initial cirumferential angle for Mach
number profile (70) with a = 0.1,6 = 6, M(0) = 0.9 and source position r; =
0.757r0, 21° = —0.57q, and 6., = 37/8.
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Figure 3: Far-field one-third-octave directivity plotted at constant source fre-
quency for Mach number profile (70) with ¢ = 0.1,6 = 6, M(0) = 1.5, and
source position r; = 0.75rg, 21° = —2.0r¢ for hard-wall duct (solid) and soft-
wall duct with ¢ = (1, —1) (dashed), (1/2,—1) (dotted), (2,—1) (dot-dashed),
(1,—2) (dot-dot-dashed).
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Figure 4: Far-field one-third-octave directivity plotted at constant source fre-
quency for Mach number profile (70) with ¢ = 0.1,6 = 6, M (0) = 1.5, and source
position r; = 0.75rg, 1° = —0.5r¢ for hard-wall duct (solid) and soft-wall duct
with ¢ = (1, —1) (dashed).
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Figure 5: Far-field one-third-octave directivity plotted at constant source fre-
quency for Mach number profile (70) with ¢ = 0.1,6 = 6, M(0) = 1.5, and
source position r; = 0.5rg, 1° = —0.5r¢ for hard-wall duct (solid) and soft-wall

duct with ¢ = (1,—1) (dashed).
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Figure 6: Far-field one-third-octave directivity plotted at constant source fre-
quency for Mach number profile (70) with ¢ = 0.1,6 = 6, M(0) = 0.9, and
source position r; = 0.5rg, 1° = —2.07q for hard-wall duct (solid) and soft-wall

duct with ¢ = (1,—1) (dashed).
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