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SUMMARY

Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was
evaluated at 980 and 870oC, respectively. Re108 and In939 without a protective coating began to show rapid
weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer
than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack alu-
minide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re108 and In939. VPA and
CODEP on Re108 and all three coatings on In939 showed excellent cyclic oxidation resistance out to
10 000 hr. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating
into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as
the Al loss through oxidation after 10000 h of cyclic exposure. Oxidation life of VPA-coated Re108 was esti-
mated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost
through oxidation and diffusion.

INTRODUCTION

Oxidation protection of high temperature alloys relies on the formation of an external layer of stable, slow
growing oxides, such as Cr2O3, Al2O3, or SiO2, through the selective oxidation of Cr, Al, or Si, respectively
(ref. 1).  There is a critical value for each of these elements which is necessary to form a continuous external
oxide layer of respective element in isothermal oxidation (ref. 1). Therefore, the protection conferred by Al2O3,
for example, ends once the selective oxidation of Al reduces the Al content in the alloy below the critical
value. Consequently, the oxidative lifetime of an alumina-forming alloy at a given temperature can be esti-
mated by calculating the amount of Al initially available for protective oxidation and the loss of Al through
oxidation, assuming rapid diffusional kinetics in the alloy (refs. 2 and 3).

Enhanced efficiency and performance of gas turbine engines requires hot section structural components
with higher temperature capability and longer life. In a typical alumina-forming high temperature superalloy,
there is only a limited amount of excess Al above the critical value because too much of Al degrades the
mechanical strength of superalloys. Under thermal cycling, protective scales crack and spall due to the differ-
ence in thermal expansion between the alloy and the scale, accelerating the loss of Al compared with that in
isothermal exposure. Thus, an external coating with a large reservoir of Al above the critical content is needed
for a long cyclic oxidative life at elevated temperatures. In coated alloys, diffusion between the coating and
the substrate is another source for the loss of the element responsible for the protective oxidation (ref. 4).

In this study, the long-term cyclic oxidation kinetics of alumina-forming Re108 and chromia-forming In939
with and without an external coating (NiAl-base coatings) were investigated. Coated alloys were also exposed
in an inert atmosphere to investigate the chemical interdiffusion between the coating and the superalloy sub-
strate. Oxidation life of coated Re108 was estimated on the basis of oxidation kinetics and diffusion data.
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2. EXPERIMENTAL PROCEDURE

Oxidation coupons of Re108* and In939* (2.5 × 1.25 × 0.3 cm) were cut from a large plate of each respec-
tive alloy. The as-cast Re108 has a surface layer (~25 µm thick) depleted in Cr, W, and Co (ref. 5). The sur-
face of a second set of coupons was ground off to remove the depleted surface layer. Some as-cast coupons
were coated with a vapor phase aluminide (VPA),* a pack aluminide (CODEP),* and a slurry paint aluminide
(SERMALOY J),† VPA and CODEP were about 40 µm thick and SERMALOY J was about 60 µm thick. All
three coatings are based on NiAl. Tables I and II, respectively, show the nominal composition of Re108 and
In939 and the composition of the three coatings as determined in this study using electron microprobe analysis
(EMPA). For the coating, the average composition of each element across the coating measured at 5 µm in-
tervals is reported (table II). Uncoated coupons were polished to a 600-grit surface finish and all coupons were
rinsed in acetone and methyl alcohol in an ultrasonic cleaner prior to the cyclic oxidation or chemical diffu-
sion test.

Cyclic oxidation test was performed using an automated cyclic furnace (ref. 6). Each cycle consisted of
1 h at temperature and a minimum of 20 min at room temperature. Typically, samples reached the test tem-
perature within 2 min and the ambient temperature within 5 min in each cycle. Oxidized coupons were
weighed periodically using a microbalance (±0.02 mg) to determine the oxidation kinetics. Chemical diffusion
was carried out in a horizontal furnace in a flowing Ar-5%H2 to minimize the oxidation of coupons. Both
cyclic oxidation and chemical diffusion tests were performed at 980 and 870 oC, respectively, for Re108 and
In939.

X-ray diffraction (XRD) was used to determine the phases present in the oxide scale and the coating and
scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) was used to exam-
ine the cross-sections of post-oxidation and post-diffusion coupons. EMPA was used to determine the composi-
tional profile of various elements along the cross-section of post-diffusion coupons.

3. RESULTS AND DISCUSSION

3.1 Oxidation of Uncoated Re108 and In939

Figure 1 shows the oxidation kinetics of as-cast and ground Re108 after cyclic oxidation at 980 oC. Both
coupons showed an initial parabolic oxidation followed by a constant weight period and eventually a weight
loss after 3000 hr. Except for the slightly higher weight loss rate after 3000 hr in the ground coupon, the two
coupons showed a similar oxidation behavior. Figure 2 shows the cross-section of Re108 after 4500 h. The
oxide scale consists of a NiO top layer, an intermediate spinel layer, and an inner Al2O3 layer. There are also
islands of HfO2 particles mostly within the spinel layer. X-ray diffraction on the Re108 coupon after 4500 h
showed NiO, HfO2, spinel, Al2O3, and TiO2.

Figure 3 shows the oxidation kinetics of In939 after cyclic oxidation at 870 oC. The weight change behav-
ior was very similar to that of Re108 at 980 oC, with the ground In939 showing a slightly higher weight loss
rate. Figure 4 shows the cross-section of In9393 after 4500 h. The oxide scale consists of a NiO top layer, an
intermediate spinel layer, and an inner Cr2O3 layer, similar to Re108 except that the inner Al2O3 was replaced
by Cr2O3. X-ray diffraction showed NiO, spinel, Cr2O3, and TiO2.

The kinetics data shown in figures 1 and 3 are typical of alumina- or chromia-forming superalloys under
cyclic oxidation, i.e., initial weight gain followed by a weight loss due to scale spallation (paralinear oxida-
tion). The rapid weight loss rate of Re108 and In939 indicates the need for protective coatings for an oxidation
life beyond thousands of hours.

3.2. Oxidation of Coated Re108 and In939

NiAl-base coatings of VPA, CODEP and SERMALOY J were applied on Re108 and In939 for extended
oxidation protection. Coating composition determined by EMPA in this study is shown in table II.

                                                
*Supplied by GE Aircraft Engines, Cincinnati, Ohio.
†Supplied by Pratt & Whitney, West Palm Beach, Florida.
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Re108.—Figure 5 shows the oxidation kinetics of coated Re108 after cyclic oxidation at 980 oC. The two
sets of data for CODEP and VPA are replicates. CODEP and VPA showed a typical paralinear weight change
of alumina-forming alloys under cyclic oxidation. No significant scale spallation was observed during the
weight gain period, indicating that the weight change in this period was predominantly due to the formation of
alumina scale. SERMALOY J gained substantially higher weight than VPA or CODEP when the test was ter-
minated at 3500 h. A significant amount of spinel was observed in the scale of SERMALOY J coating, which
presumably was responsible for the higher weight gain of this coating. The transition from weight gain to
weight loss occurred at around 4000 hr for VPA and CODEP. The weight loss was fairly linear out to 10000 h
(fig. 6).

Figure 7 shows the cross-section of VPA-coated Re108 after 1000 h. The scale was mostly Al2O3 with
some isolated patches of HfO2. The brightest phase in the coating was rich in Hf and Ta, from which HfO2

formed. The bright phase in the coating was rich in W and Cr (fig. 7(b)). The diffusion zone contained signifi-
cant amounts of Hf/Ta- and W/Cr-rich phases. Below the diffusion zone was a zone rich in aluminum, which
contained a needle-shaped second phase rich in W and Cr (fig. 7(a)).

IN939.—Figure 8 shows the oxidation kinetics of coated In939 after cyclic oxidation at 870 oC. All three
coatings showed an initial rapid weight gain (transient oxidation) followed by a very slow, steady-state weight
gain. SERMALOY J and VPA showed higher initial weight gains than CODEP; however, the steady state oxi-
dation rate was similar in all three coatings. Note that the weight gain of SERMALOY J-coated In939 at
870 oC was significantly lower than that of SERMALOY J-coated Re108 at 980 oC (fig. 5). The oxide scale of
SERMALOY J coating contained a smaller amount of spinel at the lower temperature.

3.3. Chemical Diffusion

VPA-Coated Re108.—Figures 9(a) and (b) show the concentration profiles of various elements along the
coating/diffusion zone/substrate after 0 and 9000 h annealing, respectively, at 980 oC. Two points are worth
mentioning. After the heat treatment, concentration profiles of all elements became fairly flat and the diffusion
zone extended significantly. The flattening of elemental concentration profiles occurred within the first 1000 h
annealing. Figure 10 shows the plot of Al concentration in the coating versus annealing time for VPA-coated
Re108. Note the rapid drop of Al concentration within the first 1000 h after which it leveled off at 20~21 wt%,
indicating the initial rapid diffusion of Al out of the coating. Figures 11 and 12 compare the cross-sections of
as-processed and annealed (9000 h) VPA-coated Re108. As-processed VPA coating was β phase (fig. 11),
while γ′ second phase appeared after annealing (fig. 12(a)). The diffusion zone contained two second phases,
i.e., Hf/Ta-rich phase (brightest) and W/Cr-rich phase (bright). Note that the second phases significantly coars-
ened with annealing (fig. 12(b)). An Al-rich zone, containing a high concentration of a needle-shaped phase,
developed below the diffusion zone (fig. 12(a)). This second phase was rich in W and Cr.

SERMALOY J-Coated In939.—Figures 13(a) and (b) show the concentration profiles of various elements
along the coating/diffusion zone/substrate after 0 and 9000 h annealing, respectively, at 870 oC. Similar behav-
ior to the VPA coating was observed, i.e., the concentration profiles of all elements became fairly flat after
annealing and the diffusion zone thickness increased significantly. Figures 14 and 15 compare the cross-
sections of as-processed and annealed (9000 h) SERMALOY J-coated In939. A high concentration of a second
phase rich in Cr, Co and W precipitated in the coating after annealing (fig. 15). The diffusion zone, after an-
nealing, consisted of at least three phases (fig. 15), the detailed analysis of which was not attempted in this
study. Similar to VPA, the second phase below the diffusion zone was needle shaped (fig. 15). Figure 10 shows
the plot of Al concentration in the coating versus annealing time for SERMALOY-coated In939. Similar to
VPA, rapid diffusion of Al occurred within the first 1000 h, after which it leveled off at 18~19 wt%.

3.4. Oxidation Life Projection of VPA-Coated Re108

Oxidation life of an alumina-forming alloy ends when the Al concentration in the alloy drops below the
critical Al concentration which is necessary for the formation of a continuous, protective Al2O3 scale (ref. 1).
In other words, oxidation life ends when all the Al available (excess Al above the critical value) is lost. There
are two sources for the loss of Al, i.e., oxidation to form Al2O3 scale and diffusion between the coating and the
substrate. Since the scale formed on VPA was mostly Al2O3, the loss of Al through oxidation was determined
from the oxidation weight change. The Al loss during the weight gain period was determined from the
stoichiometry of the reaction of Al with O2 to form Al2O3 scale, assuming that scale spallation was negligible
during this period. The Al loss rate during the weight loss period was taken from the average slope of the



NASA/TM—1999-209072 4

weight loss curve, and was assumed to be applicable to the end of oxidation life. The projected oxidative life-
time of bulk NiAl using this assumption agreed fairly well with the lifetime determined by experiments (ref. 2).
The change in Al concentration with annealing (fig. 10) was used to determine the loss of Al through diffusion.

Calculation of Al Available

Consider a unit volume (1 × 1 × h cm: h = coating thickness) of VPA coating. The fraction of Al initially
available for protective oxidation is related to the initial fraction of Al and the critical Al concentration
according to equation (1).

f f f (1)Al,avail Al
o

Al
*= −

fAl, avail weight fraction of Al initially available for protective oxidation
fAl

o initial weight fraction of Al
fAl

* weight fraction of Al at the time of oxidative failure

Thus, the weight of Al initially available for protective oxidation in the unit area of coating is given by

W f f h mg cm (2)Al,avail Al
o

Al
* 2= −( ) ⋅ρ

ρ coating density (mg/cm3)
h coating thickness (cm)

Calculation of Al Lost

Al Loss during the Weight Gain Period.—The Al loss during the weight gain period is calculated from
the parabolic oxidation equation, assuming that the scale spallation was negligible during this period. The
parabolic rate constant was determined from the slope of (weight gain)2 versus time plot. The loss of Al
through spallation needs to be taken into consideration for more rigorous calculation of Al loss during the
weight gain period of a cyclic oxidation (ref. 7).

W k t (3)p
2

p( ) = ⋅

Wp weight gain by parabolic oxidation
kp parabolic rate constant
t oxidation time

Rearranging equation (3) and taking the stoichiometry of alumina formation reaction into consideration, the
loss of Al during the weight gain period is given by

W 1.125 k t mg cm (t t*) (4)Al,p p
0.5 2= ( ) <

t* transition time from weight gain to linear weight loss period.

Al Loss during the linear weight loss period.—During the weight loss period, the rate of Al loss is taken
from the average slope of the weight loss curve, and is assumed to be applicable to the end of oxidation life.
Thus, the loss of Al during this period is given by

W k (t t*) mg cm (t t*) (5)Al,1 1
2= − >

kl  average weight loss rate (mg/cm2 h)
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Loss of Al through diffusion.—Two key assumptions in this calculation are that the loss of Al through dif-
fusion is negligible at t > 1000 h (based on the data in fig. 10) and the coating density is constant throughout
the coating life. Although the coating density undoubtedly will change to some degree as the coating composi-
tion changes, this assumption may be justifiable considering the approximate nature of life projection in this
study. Thus, the weight fraction of Al in the coating after diffusion anneal in an inert atmosphere is given by

f f f (6)Al
**

Al
o

Al,d= −

fAl
** weight fraction of Al in the coating after diffusion anneal in inert atmosphere

fAl, d weight fraction of Al lost by diffusion

Rearranging equation (6), the weight fraction of Al lost by diffusion is given by

f f f (7)Al,d Al
o

Al
**= −

Thus, the weight of Al lost by diffusion from the unit are of coating is given by

W f f h mg cm ( 1000 h) (8)Al,d Al
o

Al
** 2= −( ) ⋅ >ρ

Oxidation Life Projection

Oxidation life ends when the available Al, WAl,avail  (eq. (2)), equals the Al lost, i.e., WAl,p (eq. (4)) + WAl,l

(eq. (5)) + WAl,d  (eq. (8)). In other words, the oxidation life ends when the following condition is met.

f f h 1.125 k t k (t t*) f f h (9)Al
o

Al
*

p
0.5

1 Al
o

Al
**−( ) ⋅ = ( ) + − + −( ) ⋅ρ ρ

All parameters in equation (9) are known except for fAl
* . Table III lists the values of the parameters in

equation (9). Nesbitt, et al. reported that the critical Al concentration in the cyclic oxidation of NiAl at 1200
to 1400 oC was ~20 wt% (ref. 2).  As will be shown in the following discussion, the critical Al concentration in
the cyclic oxidation of VPA coating in this study was less than 14 wt %, indicating the dependence of the
critical Al concentration on alloy composition. Using equation (9), the oxidation life, tlife , can be plotted as a
function of the critical Al concentration, fAl

*  (fig. 16). If the critical Al concentration were 14 wt%, the coating
would  fail at t = 10000 h. This indicates that the aluminum concentration in the coating at t = 10000 h was
14 wt%, which is a drop of ~18 wt% from the initial concentration (~32 wt%).  (Fig. 16 can be interpreted as
a plot of oxidation time versus Al concentration in the coating.) Since about 11.5 wt% was lost through diffu-
sion (fig. 10), the remainder (~6.5 wt%) was lost through oxidation, or about half of what was lost through dif-
fusion. This demonstrates the importance of Al loss through diffusion in the consideration of the oxidation
lifetime of coated alloys. The critical Al concentration of the VPA coating used in this study needs to be de-
termined to project the cyclic oxidation life using equation (9). One way is to perform an accelerated oxida-
tion at higher temperature until the coated coupon fails then analyze the Al content in the coating using
EMPA.

4. CONCLUSIONS

•  Re108 and In939 need a protective coating for cyclic oxidation life longer than thousands of hours at
T > 980 and 870 oC, respectively.

•  VPA and CODEP coatings on Re108 and VPA, CODEP, and SERMALOY coatings on In939 showed
excellent oxidation resistance out to 10000 h at 980 and 870 oC, respectively.

•  A substantial amount of Al was lost from the coating into the substrate through diffusion. In the case of
VPA-coated Re108, the Al loss through diffusion was twice as great as the Al loss through oxidation after
10000 h cyclic exposure at 980 oC.

•  The critical Al concentration of VPA coating needs to be determined to project the oxidation life of VPA-
coated Re108.
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TABLE I.—NOMINAL COMPOSITION OF Re108 and In939 (wt%)
Alloy Ni Al Cr Co W Ta Ti Hf Mo Fe Si
Re108 Balance 5.7 8.5 9.9 8.5 2.88 0.79 1.09 0.55 0.04 0.03
In939 Balance 2 22 19 2 1.5 3.6 – – – – – – – – – – – –

TABLE II.—COMPOSITION OF VPA, CODEP AND
SERMALOY COATINGS DETERMINED IN THIS

STUDY BY EMPA (WT%)
Coating Ni Al Cr Co Si

VPA Balance 31.29 1.79 6.41 – – –
CODEP Balance 35.45 1.47 5.67 – – –
SERMALOY J Balance 27.43 15.74 13.54 7.04

TABLE III.—THE VALUES OF THE PARAMETERS IN EQUATION 9

fAl
o fAl** ρ(mg/cm3) h(µm) t*(hr) kp(mg2/cm4hr) k1(mg/cm2hr)

0.32 0.20 6000 40 4000 0.00011 0.00012
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Figure 1.—Oxidation kinetics of Re108 at 980 °C with 1 hr cycle. 
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Figure 2.—Cross-section of Re 108 after 4500 hr at 980 °C with 1 hr cycle.
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Figure 3.—Oxidation kinetics of In939 at 870 °C with 1 hr cycle. 

Time (h)

010 02 03 04 05 06 07 08 09 100

W
ei

g
ht

 C
ha

ng
e 

(m
g

/c
m

2 )

W
ei

g
ht

 C
ha

ng
e 

(m
g

/c
m

2 )

0 1000 2000 3000 4000 5000

–40

–30

–20

–10

0

10

As cast

Ground

Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

As cast

Ground

Figure 4.—Cross-section of In939 after 4500 hr at 870 °C with 1 hr cycle.

NiO

Cr2O3

Spinel

10 µm 



NASA/TM—1999-209072 9

Figure 5.—Oxidation kinetics of coated Re108 at 980 °C with 1 hr cycle. 
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Figure 6.—Linear weight loss rate of VPA-coated Re108 at 980 °C with 1 hr cycle.
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Figure 7.—Cross-section of VPA-coated Re108 after 1000 hr at  980 °C with 1 hr
   cycle. (a) Low magnification, showing the coating and the diffusion zone. (b)
   High magnification showing the oxide scale.
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Figure 9.—Concentration profile of elements in VPA-coated Re108. 
   (a) As-processed. (b) 9000 hr in Ar-5% H2. 
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Figure 12.—Cross-section of VPA-coated Re108 after 9000 hr in Ar-5% H2
   at  980 °C. (a) Low magnification, showing the coating and the diffusion
   zone. (b) High magnification, showing the diffusion zone.
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Figure 13.—Concentration profile of elements in SERMALOY J-coated In939.
   (a) As-processed. (b) 9000 hr in Ar-5% H2. 
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Diffusion Zone

Figure 14.—Cross-section of as-processed SERMALOY J-coated In939.
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Figure 15.—Cross-section of SERMALOY J-coated In939 after 9000 hr in 
   Ar-5% H2 at 870 °C.
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VPA-coated Re108

Figure 16.—Plot of oxidative life vs. critical Al content for VPA-coated Re108 at  980 °C with
   1 hr cycle.
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