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Abstract

Test problems are used to examine the performance of several one-dimensional nu-
merical schemes based on the space-time conservation and solution element (CE/SE)
method. Investigated in this paper are the CE/SE schemes constructed previously
for solving the linear unsteady advection-diffusion equation and the schemes derived
here for solving the nonlinear viscous and inviscid Burgers equations. In compari-
son with the numerical solutions obtained using several traditional finite-difference
schemes with similar accuracy, the CE/SE solutions display much lower numerical
dissipation and dispersion errors.
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1. Introduction

The method of space-time conservation element and solution element(to be abbre-
viated as CE/SE) is a method recently developed by Chang|[1] for solving conservation
laws. The concept and methodology in this method are significantly different from
those in the well-established traditional methods such as the finite difference, finite
volume, finite element and spectral methods. First, the flux is conserved in time and
space when they are unified and treated equally. Second, all the dependent variables
and their derivatives are considered as individual unknowns to be solved simultane-
ously at each grid point. And third, the concepts of conservation element and solution
element are introduced to enforce both the local and global flux conservation without
using interpolation or extrapolation. It has been proven that this method is more ac-
curate than some of the traditional methods. The detailed descriptions can be found
in [2] and [3].

Several numerical schemes have been constructed earlier in [2] based on the CE/SE
method, one of which is the a-p scheme for solving the 1-D unsteady advection-
diffusion equation. Numerical results computed by the a-p scheme are compared
in [3] with those generated by the MacCormack scheme and the Leapfrog/Dufort-
Frankel scheme. The comparison shows that the a-p scheme is superior to the
Leapfrog/Dufort-Frankel scheme in accuracy, and has noticeable advantages over the
MacCormack scheme in both accuracy and stability.

Two additional examples are presented first to demonstrate the advantageous
behavior of the CE/SE a-pu schemes whose solutions display low numerical dissipation
and dispersion errors. Solved in those examples are the 1-D unsteady wave equation
of hyperbolic type and the 1-D unsteady diffusion equation of parabolic type using
the a-p scheme with = 0 and a = 0, respectively. Next, the v-u scheme for viscous
Burgers equation and the v-e-ar scheme for inviscid Burgers equation are derived
here based on the CE/SE method. Three test problems are used to demonstrate the
effectiveness of the CE/SE method in solving nonlinear problems.

2. Numerical Schemes

In this section a brief review of the space-time CE/SE a-p scheme developed in
[3] is described first, which is followed by the derivation of two numerical schemes for
solving the viscous and inviscid Burgers equations.
2.1. The a-p Scheme for Advection-Diffusion Equation

Consider the linear 1-D unsteady advection-diffusion equation

ou  Ou 0%u

bl == 1.1

ot + Yor ~ Hor (1.1)
where a is the advection speed and p is the viscosity coefficient, both being constant.
In the space-time Euclidean space Ey, the integral form of (1.1) is
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//V(V - h)dV =0 (1.2)

- ou
where h = (au — P u) and V' is an arbitrary space-time region in E,. By the use

of Gauss’ divergence theorem, Eq. (1.2) becomes

7{ B di =0 (1.3)
S(v)

where S(V) is the boundary of region V' and ds = + (dt, —dx) [3, p.14].

The conservation element (CE) and solution element (SE) are the two basic el-
ements to be used in the construction of numerical schemes. Some representative
CE(j,n) and SE(j,n) are depicted in Fig. 1. At each mesh point (j,n), there are two

CEs corresponding to two unknowns u? and (u,)}. For any (z,t) € SE(j,n), u(w,1)

and ﬁ(x,t) are approximated by u*(z,t; j,n) and h* (x,t;j,n), whose definitions are,
respectively,
w(x, b g, n) = uf 4 (ue) (2 — ) + (ue)7 (£ — ") (1.4)

where uf, (u;)} and (uy)} are constant in SE(j,n), which is the first-order Taylor

series expansion, and

-

ou*(z,t;j
h*(z,t;j,n) = (au*(:c,t;j, n) — pt S (.4 ,m)

S i) 9
The assumption that v = u*(z,t; j, n) satisfies (1.1) implies

(ut)? = —a(uw)? (1.6)

It can be concluded that there are two unknowns uf and (u,)} at each mesh point
(o).

Considering (1.3) in an arbitrary subset of CE(j,n), be it CE,(j,n) or CE_(j,n),
the approximation is

Fi(j,n) :7( - di=0 (1.7)
S(CE+(j,n))

Upon substitution of the flux leaving the boundary of CE.(j,n) into Eq. (1.7), we
can obtain

4 _ 1 " ne
o Felin) = £ [0+ Ow)f + (1 - - O(w)j5 s |
20Fv), , o
At 4pAt
where v = A and £ = (K 2 are the Courant number and diffusion number,
x x

respectively. By adding and subtracting the two equations in (1.8), and for 1—1?+¢ #
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0, we obtain

n 1 n—1/2 n—1/2
= S{ @)+ =g + (1= =)
Az n—1/2 n—1/2
o[ - )]} (19)
n 1 2 4 n—1/2 n—1/2
(U:c)j = m {(V - I)A—x(uj—l/Z _Uj+1/2)

(1= =) [ =) ()]s + T+ ) ()i 5]} (110)

Equations (1.9) and (1.10) are the general form of the a-y scheme. It is an explicit
time marching scheme with second-order accuracy in space and time, whose stability
condition is ¥ < 1. Detailed descriptions and analysis can be found in [2] and [3].

2.2. The a Scheme for Unsteady Wave Equation

With p = 0, Eq. (1.1) reduces to the following unsteady wave equation, which is
a first-order hyperbolic partial differential equation:

ou ou
— — =0 2.1
ot * “or (2.1)
The a scheme, which is obtained by setting £ = 0 in Egs. (1.9) and (1.10), is a scheme

without any numerical dissipation. Its accuracy and stability condition are the same
as those of the a-u scheme.

2.3. The i Scheme for Unsteady Diffusion Equation

On the other hand, with a = 0 Eq. (1.1) reduces to an unsteady diffusion equation,
which is a second-order parabolic partial differential equation:

du 0*u
== 3.1
ot~ Moa? (3:1)
The p scheme for Eq. (3.1) is deduced from (1.9) and (1.10) by letting v = 0,
which has the following form:

n_ 1 n—1/2 n—1/2 Az n—1/2 n—1/2
Ui =5 {uj—l//2 + uj+1//2 +1- f)T [(U:v)j—l//Q - (Ux)j+1//2] } (3.2)

1 4 - n— n— n—
()] = g | me it — s — = O [ + @]} 69)

For the boundary CEs, it is obtained from (1.8) that

[0+ () + (1 - )] + @ — iy =0 (34)
Az

N | —
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for CE,(j,n), and

1

2 [+ 9 + 0 - )li ] + ot~ =0 (35)

for CE_(j,n). At a boundary point with defined u?, (u,)} can be computed using

either Eq. (3.4) or Eq. (3.5) for the left or right boundary.

Note that in the absence of the Courant number v, the p scheme is characterized
only by the diffusion number ¢ and is unconditionally stable with the same accuracy
as the a-p scheme.

2.4. The v-; Scheme for Viscous Burgers Equation
If the constant a in Eq. (1.1) is replaced by u, the resulting equation

ou ou 0%u

is called the viscous Burgers equation, which is a nonlinear unsteady advection-
diffusion equation with advection speed u. Its conservative form is

ou Of 0*u

i E A 4.2

ot * or ~ oa2 (42)
1

where f = §u2. The v-u scheme for (4.2) is derived in a procedure similar to that

for the a-p1 scheme. Equations (1.2)—(1.4) are still valid here. Instead of Eqs. (1.5)
and (1.6), we define

[t 5,n) = £ + (fo)] (@ —25) + (fo)] (£ — 1) (4.3)

where f7', (f;)} and (f;)} are also constant in SE(j,n), being respectively the numer-
ical analogues of f,0f/0x, and 0f /0t at grid point (j,n), and

- , . , ou*(x,t;5,n) .
h*(l‘, t; 7, n) = (f (.T, t; 7, n) - M%a u (Z’, t; 7, TL) > (44)
The equivalent of Eq. (1.6) is
(ue)j = —(fa)] (4.5)
Since f = %u2, we have
n 1 n
(fe)} = uf (w)j (4.7
(fo)] = ujf (us)f (4.8)
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Substituting the flux leaving the boundary of CEL(j,n) into (1.7) results in

4 1 . . .
el = 5 {00+ (- O + (50 [ + ]

2 At n n—1/2 n n—1/2

e |::Fﬂ(fj - fjj:l//Z )+ (uf — j:l:l//Z):| =0 (4.9)

Using Eqs. (4.5)-(4.8), we obtain from (4.9)

n 1 n—1/2 n—1/2 n—1/2 n—1/2

Uy =3 [ Uj 1//2 + y+1//2 T 55 1//2 - Sj+1//2} (4.10)
and

n 2 n—1/2 n—1/2 n—1/2 n 1/2 n
(ug)j = Az (uj+1//2 - uj—l//Z - 5j+1//2 — 55— 1//2 +viui)/(1+ € — (v )?) (4.11)

t
where v} = A—u , & has the same definition as before, and
x
_ Az _ _ 1 _
n—1/2 n—1/2 n—1/2 n—1/2 n—-1/2
Sj:l:l//2 e {1 S (ijl:l//2 )2] (Uz)jil//Q +3 5 ]:I:l//2 uj:l:l//Q (4.12)

For boundary CEs, (4.9) reduces to

3 ([0 €] o+ [1- 0350 — €] ff)
+A% [— % (W) up — Vi) + () — uﬁf{j)} — 0 (4.13)
for CE,(j,n), and
3 {1 €]y + [1- @ - €] i)
+é [ l(yﬂ ul! — v 11//22 ul” 11//22) + (=l 11//22)] = 0 (4.14)

for CE_(j,n). At a boundary points with defined u}, (u,)} can be computed using
either Eq. (4.13) or Eq. (4.14) for the left or right boundary.

Note that the Courant number »7 is no longer a constant. Equations (4.10) and
(4.11) are the time-marching v-p scheme, which is still second-order accurate in space
and time. The stability condition is again Courant number being less than 1, i.e.,

t
|uma$A—x| < 1, which can be derived by von Neumann’s stability analysis.

2.5. The v-e-a Scheme for Inviscid Burgers Equation
The inviscid Burgers equation in conservative form is deduced by letting y = 0 in
Eq. (4.2),
ou Of

1
at Tar Y (5.1)
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It is expected that the v-p scheme may become unstable as 4 — 0 from the usual be-
havior of nonlinear problems. To introduce numerical dissipations for computational
stability, the assumption F4 (j,n) = 0 is replaced by

e(1 — v?)Ax?

F:I:(jan):j: 4

(du,); (52)
where € is a constant for controlling the numerical dissipation and

(duo)t = = [ (ua)imls + ()25 ] = (Wi fs — uiml) /Aa (5.3)

N | —

Also, the flux i* is assumed to be conserved over CE(j,n), i.e.,

—

F(j, :75 W dg =0 5.4
Gm) = focnumy "% (54)

where h* = (f*(z,t;5,n),u*(x,t;j,n)).
Then following the same procedure as that in deriving the v-u scheme, we finally
obtain

n 1 n—1/2 n—1/2 n—1/2 ~n—1/2
Uj = 2( j— 1//2 + ]+1//2 + 85 1//2 - 5j+1//2 ) (5.5)
where
Az 1
n—1/2 n—1/2 n—1/2 n—1/2 n-—1/2
il//Z e [1 (v ﬂ:l//Z) ] (Uz)jil//2 + 5 5 j:l:l//Z :I:l//2 (5.6)
and
(ug) = (uzp®)} + (2¢ — 1)(duy)’ (5.7)
in which
wo |ux+|au:v— + |u:v—|aua:+
with At
n—1/2 n—1/2 n
. ];l;l//Q + 4 5 (u )jj:l//Z — Uy
() = % e (5.9)

Note that the indices in Eq. (5.8) are dropped for simplicity. Detailed derivations of
(5.7)—(5.9) are referred to [2].

In the v-e-a scheme, € and « are used to control numerical dissipations, and v is
the Courant number. v and € are restricted by the stability condition that ¥ < 1 and
0 < e <1, and «ais a positive integer, such as 1 or 2, being used to suppress over- and
under-shoots near a discontinuity in the solution. Its accuracy is the same as that of
the v-u scheme.
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3. Test Problems and Discussions

All of the one-dimensional schemes described in the previous section are tested
using appropriate model problems. The numerical results are compared with those
obtained by some traditional finite-difference methods to examine their accuracy.

3.1. Test of the ¢ Scheme

Consider the first-order wave equation

ou n ou 0

JR— aq— =

ot ox
where ¢ = 0.5 in the domain —1 < x < 1. The initial condition is described as

u(z,0) = sin(wz)

where w = m. With periodic boundary conditions imposed at © = —1 and x = 1, the
exact solution is
u(z,t) = sin(w(xz — at))

This problem is solved by using the CE/SE a scheme, Lax-Wendroff scheme, and
first-order upwinding scheme, respectively. Different Courant numbers with 50 cells
are used for each scheme to see the effect of varying the size of time step. Numerical
solutions at t = 10 = 2.57" based on the CE/SE scheme, Lax-wendroff (L-W) scheme,
and first-order upwind scheme with CFL = 0.5 are shown in the upper frame of
Fig. 2 with the exact solution plotted as a solid line, while the corresponding error
distributions of the first two schemes are shown in the lower frame of Fiig. 2. The error
is defined as the difference between the numerical solution and the exact solution. It
can be seen that the large numerical dissipation in the upwind scheme causes strong
damping of the wave amplitude. From the error distribution, it is concluded that the
CE/SE scheme has less error than the L-W scheme of the same order of accuracy.
In Fig. 3, the results based on C'FL = 0.954 show that all of the three schemes
have smaller errors for larger Courant numbers. The CE/SE scheme is still the most
accurate scheme. To see the effect of numerical errors after a long time convection,
the CE/SE and L-W solutions and error distribution at ¢ = 100 = 257" are shown
in Figs. 4 and 5 for CFL = 0.5 and 0.954, respectively. For the L-W scheme, a
large numerical dispersion error is generated by using a smaller time step size when
the wave propagates for a long time. Under the same computational conditions, the
CE/SE scheme is still more accurate than the L-W scheme.

3.2. Test of the y Scheme

The p scheme is used to solve the unsteady diffusion equation (3.1)

ou 0%u

ot~ Mo
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which was solved in [4] by using several traditional finite-difference methods.
The initial and boundary conditions are stated as follows:

t = 0, u="U, for xr=0
u=0 for O0<x<h

and

t > 0, u="U, for x=0

u=20 for xr=nh
For fair comparisons, the grid size Az = 0.001m and physical parameters
Up = 40 m/s, h =0.04m, p=2.17x 107" m?/s

that are identical to those adopted in other finite-difference schemes are used here.
For the CE/SE scheme, (u,)! are set as zero in the entire domain at ¢ = 0, and (u,)}
at the left and right boundaries are computed using Eqgs. (3.4) and (3.5), respectively,
in the time marching. Figure 6 shows the numerical solution at several selected time
steps computed by the u scheme with At = 0.001s. Error comparisons of the x4 scheme
(At = 0.001,0.002 and 0.003s) with the Forward-Time Central-Space (FTCS) scheme
(At = 0.002s) and Dufort-Frankel (D-F) scheme (At = 0.003s) are shown in Fig. 7 at
t = 0.18s, and in Fig. 8 at t = 1.08s. It is known that relatively large time steps are
allowed in both g scheme and D-F scheme because they are unconditionally stable,

whereas the time step size in FTCS scheme is restricted by its stability condition

1
that p < —. The comparisons show that the y scheme is better than the FTCS

At
(Az)2 — 2
explicit scheme in both accuracy and stability as time increases, and its performance
is generally much better than that of the D-F explicit scheme. Furthermore, the
accuracy of the pu scheme increases with decreasing time step.

The Crank-Nicolson implicit scheme was also used to solve the same problem and
was found to have generated a highly accurate solution with At = 0.01s as shown in
[4]. The p scheme, however, cannot produce solutions of comparable accuracy even
with much smaller time step sizes. This fact implies that, in order to improve the
accuracy of the y scheme in the space-time CE/SE method for solving the unsteady
diffusion equation, the development of an implicit scheme is needed.

3.3 Test of the v-u Scheme

The non-dimensional form of the viscous Burgers equation (3.2) is

ou 0f _ou
ot  Ox  0x?
which has an analytical solution
2sinh x
U= —

coshz — et
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This problem was solved in [4] in the interval [-9, 9] by several finite-difference
schemes, such as the FTCS, Dufort-Frankel explicit schemes, and Backward-Time
Central-Space (BTCS) implicit scheme. The initial condition for the present numer-
ical computation is set as the analytical solution at £ = 0.1. The boundary condition
is specified as u = 2.0 and —2.0 at x = —9 and 9, respectively, and (u,)} = 0 at both
boundaries. The grid size Az = 0.2 and time step At = 0.01 used here are the same
as those in [4]. The numerical solutions at different time levels obtained by the v-u
scheme with At = 0.01 are plotted in the upper one of Fig. 9 in comparison with
the exact solutions plotted as solid lines. The corresponding error profiles are plotted
in the lower frame of Fig. 9. Under exactly the same computational conditions, the
result of the v-u scheme is much more accurate than those computed by the three
finite-difference schemes mentioned above, as shown in Fig. 10. For example, at
t = 0.4 and 1.0, the maximum errors for the v-u scheme are 0.0155 and 6.266 x 103,
respectively, as compared to 0.08 and 0.02 for the other three schemes. Keeping the
same grid size of Az = 0.2, accuracy of the v-u scheme can be improved by reducing
the time step size as shown in Fig. 11.

3.4. Test of the rv-e-a¢ Scheme

For the inviscid Burgers equation, consider a discontinuous initial condition de-
scribed by

as the first test problem.

Several finite-difference schemes, including Lax, Lax-Wendroff, MacCormack ex-
plicit, and Beam-Warming implicit schemes, were used to solve this problem with
At = 0.1 and Az = 0.1 in [4]. The numerical results obtained by using the v-e-«
scheme with € = 0.5 and o = 1 at different times are shown in Fig. 12, disclosing the
desired performance in a numerical solution. Unlike the other four schemes, whose
results at ¢ = 0.6 are shown in Fig. 13, the v-e-ar scheme is able to generate a smooth
solution without any oscillations and capture a discontinuity within only two grid
points. Figure 14 shows how the time step size affects the solution. The smear of
discontinuity is suppressed by increasing At or the Courant number v. The best
result is obtained for v,,,,, = 1.0.

The second test problem is taken from [5]. The initial condition is described as

u(z,0) = 0.75 4+ 0.25 sin(27z), 0<z<1

which is a continuous linear wave. The periodic boundary condition is imposed at
x = 0 and « = 1. The exact solution is referred to [5]. The CE/SE solutions obtained
at different time levels using Ax = 0.02 and At = 0.016 are shown in Fig. 15 in
comparison with the exact solution plotted as a solid line. In the upper and lower

NASA/TM—1999-209068 10



frames of Fig. 15, the solutions at ¢ = 0.2,0.4,0.6 using ¢ = 0, = 0, and those
at t = 0.8,1.0,1.2,1.4,1.6 using ¢ = 0.5,« = 2, are shown respectively. It can be
said that a fairly accurate solution is obtained, especially at later time levels without
showing any wiggles near the discontinuity.

Conclusion

The various schemes based on the space-time conservation element and solution
element method have been used to solve the 1-D unsteady wave equation, unsteady
diffusion equation, viscous and inviscid Burgers equations. Five numerical test prob-
lems have been presented to demonstrate that CE/SE schemes have much lower
numerical dissipation and dispersion errors, thus are more accurate than some of the
traditional finite-difference methods.
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Figure 1: The 1-D CEs and SEs used in the space-time CE/SE method.
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Figure 2: Numerical solutions and the corresponding error distributions at ¢ = 10
using C'F'L = 0.5 for various schemes.
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Figure 3: Numerical solutions and the corresponding error distribution at t = 10
using CF'L = 0.954 for various schemes.
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Figure 4: Numerical solutions and the corresponding error distribution at ¢t = 100
using C'F'L = 0.5 for various schemes.
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Figure 5: Numerical solutions and the corresponding error distribution at ¢ = 100
using CF'L = 0.954 for various schemes.
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Figure 9: Solution of the viscous Burgers equation by the v-u scheme and the corre-
sponding error distribution at different times (Az = 0.2, At = 0.01).
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Figure 10: Error comparisons of the v-u scheme with other schemes (Az = 0.2, At =
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Figure 11: Error distribution of the v-p scheme for different time step sizes at ¢t = 0.4
and 1.0 (Az = 0.2).
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Figure 12: Solution of the inviscid Burgers equation at different times by the v-¢
scheme (Az = 0.1, At =0.1).

1.6 T LI e s )
1.4f .
:
:
5 [ +——u LAXEX ]
08 . . LwEX ]
0_4; —=—x MAC EX
[ ———~ BWIM
0.2?
[ o—e—a STCE&SE
0.0 1
0201wy L 1 ]
00 05 1.0 15 20

Figure 13: Comparison of the v-€ scheme with other schemes at t=0.6 (Az = 0.1, At =
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