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Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many
space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian
Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the
Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and
has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic
actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack)
level. Payload acceleration, relative position, and relative orientation (Euler-parameter)
measurements are fed to a state-space controller. The controller, in turn, determines the actuator
currents needed for effective experiment isolation. This paper presents the development of an
algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The
equations are first derived using Newton’s Second Law directly; then a second derivation (i.e.,

validation) of the same equations is provided, using Kane’s approach.
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station
show acceleration environments that are noisier than expected [1]. The acceleration environment
on the International Space Station (ISS) likewise will not be as clean as originally anticipated; the
ISS is unlikely to meet its microgravity requirements without the use of isolation systems [1], [2].
While the quasi-static acceleration levels due to such factors as atmospheric drag, gravity gradient,
and spacecraft rotations are on the order of several micro-g, the vibration levels above 0.01 Hz are
likely to exceed 300 micro-g rms, with peaks typically reaching milli-g levels [3]. These
acceleration levels are sufficient to cause significant disturbances to many experiments that have
fluid or vapor phases, including a large class of materials science experiments [4].

The Microgravity Vibration Isolation Mount (MIM) is designed to isolate experiments from
the high frequency (>0.01 Hz) vibrations on the Space Shuttle, Mir, and ISS, while passing the
guasi-static (<0.01 Hz) accelerations to the experiment [5]. It can provide up to 40 dB of
acceleration attenuation to experiments of practically unlimited mass [6]. The acceleration-
attenuation capability of the MIM is limited primarily by two factors: (1) the character of the
umbilical required between the MIM base (stator) and the MIM experiment platform (flotor), and
(2) the allowed stator-to-flotor rattlespace. A primary goal in MIM design was to isolate at the
individual experiment, rather than entire rack, level; ideally the MIM isolates only the sensitive
elements of an experiment. This typically results in a stator-to-flotor umbilical that can be greatly
reduced in size and in the services it must provide. In the current implementation, the umbilical
provides experiments with power, and data-acquisition and control services. Even with the
approximately 70-wire umbilical the MIM has demonstrated good isolation performance [5].

The first MIM unit was launched in the Priroda laboratory module which docked with Mir
in April 1996. The system has been operational on Mir since May 1996 and has supported several
materials science experiments. An upgraded system (MIM-2) was flown on the U.S. Space Shuttle

on mission STS-85 in August 1997 [5].
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In order to design controllers for the MIM it was necessary to develop an appropriate
dynamic model of the system. The present paper presents an algebraic, state-space model of the

MIM, in a form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional
experiment platform was studied extensively by Hampton [7]. It was found that optimal control
techniques could be effectively employed using a state-space system model, with relative-position,
relative-velocity, and acceleration states. The experiment platform was assumed to be subject to
Lorentz (voice-coil) electromagnetic actuation, and to indirect (umbilical-induced) and direct
translational disturbances.

The task of the research presented below was to develop a corresponding state-space model
of the MIM. Translational and rotational relative-position, relative-velocity, and acceleration states
were to be included, with the rotational states employing Euler parameters and their derivatives.
The MIM dynamic model must incorporate indirect and direct translational and rotational

disturbances.

System Model
A schematic of the MIM is depicted in Figure 1. The stator, defined in reference
frame(®), is rigidly mounted to the orbiter. The flotor, fraf®, is magnetically levitated above
the stator by eight Lorentz actuators (two shown), each consisting of a flat racetrack-shaped
electrical coil positioned between a set of Nd-Fe-Bo supermagnets. The coils and the
supermagnets are fixed to the stator and flotor, respectively. Control currents passing through the
coils interact with their respective supermagnet flux fields to produce control forces used for flotor

isolation and disturbance attenuation [8].
The flotor has mass centéf'and a dextral coordinate system with unit vectf)lrsf , and

f g and originF,. The stator (actually, stator-plus-orbiter) has mass c8ngerd a dextral

coordinate system with unit vectogs §,, andgg, and origing. The inertial reference
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frame() is similarly defined by_ﬁl, f, andfg, and originN,. The umbilical is attached to the

stator atS,, and to the flotor aE,. When the flotor is centered in its rattlespace (the “home”

position),F”and F, are located at stator-fixed poin , andF, , respectively.
u uh

o
§
f‘*

Flator
By
%@
Umbihcal ‘ ‘
oy
S *

Stator

Figure 1. Schematic of the MIM

State Equations of Motion
Translational Equations of Motion

Let E be some flotor-fixed point of interest for which the acceleration is to be determined.

N

If E has inertial positiorlN . then its inertial velocity and acceleration are = E(LN E) and

"d O"d 0 : o
Po_=— g—(r )D respectively. (The presuperscript indicates the reference frame of the
-NE dt Ddt —NE/[]

differentiations. The subscripts indicate the vector origin and terminus.) The angular velocity and
angular acceleration of the flotor with respect to the inertial frame are represeried byd

N
d
a’, respectively, wheréa " = E( Na_)F).

N
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Let F be the resultant of all external forces acting on the flg@f" (or simplyM), the

moment resultant of these forces abBytm, the flotor mass; and=jF/ F (or 1), the central inertia

dyadic of the flotor forfl, fz, and fs. Then Newton’s Second Law for the flotor can be

expressed in the following two forms:

F=mi, . (Eq. 1)
and M =10 %" x(1 0WF). (Eq. 2)
From Equation (2),

b= 17 M - B (1 )], (Eq. 3)

It will be useful to find an expression fé,_.in terms of the acceleratiaif), ¢ of the umbilical

attachment poing,, and in terms of the extension of the umbilical from its relaxed position.

Begin with the following: gy =1 ¢+l —1 g T gs- (Eq. 4)
Differentiation of Equation (4) yields
Es E :EN E+'}L)F X I ee _I:N S NQSX r_sos . (Eq 5)

A second differentiation gives
=t O X+ “@Fx( "w” XT_EF)—CNS— U ”@Sx( ”wsxr_ss)- (Eq. 6)

Substitution fora " from Equation (3) into Equation (6) yields
=t M- (o - b

L
_NQSX( NS 1 )+,\b__)px( @FXEEF). (Eqa.7)

In these equations

NoF = NoS+ a_)F. (Eq. 8)
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Under the assumptions thab ® and “a ®are negligibly small and, therefore, that
=l g (Eg. 9)

Equation (7) reduces to

Fo, =F E+{|=-1 M_SQFX(IEFQF)

-SSR Ny = } Xr—EF _r_ NoS +SwF X ( S(L)F >¢—EF ). (Eq 10)

Linearization about®w" =0 yields the following result:

Por =fyet{L M} xr o1y o (Eq. 11)
Appropriate expressions férandM will now be determined, for substitution into Equations (1)
and (11), respectively. Those equations will be used in turn to obtain a more useful expression for

Fsr- [See Equations (43-48).]

The force resultarf is the vector sum of the eight actuator (coil) forEeigsi =1...8),

with resultant=; of the umbilical forcd=;, caused by umbilical extensions from the relaxed
position; of the direct disturbance forces, with resulignand of the gravitational fordg,.
Gravity may be neglected for a space vehicle in free-fall orbit. The moment rebultatite

vector sum of the moments due to the coil forces, with resulbntof the momentM , due to
the umbilical forceF ; of the momentM , due to the umbilical rotations from the relaxed
orientation; and of the momemd , due to the direct disturbance forces. There is no moment due

to gravity, sinceM is about the flotor center of mags In equation form, assuming tHecoil

force to be applied at flotor-fixed poiBt,

8
E=ZEL+Em+Ed (Ea. 12)

and M:ZLFBXEL-l-r—FF ><Eut-i_Mur-i_Md' (Eq 13)
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More explicit expressions fdE| and F , will now be developed. If the actuator has coil

currentl, [i , length L, , and magnetic flux densiti _If%i , then the associated actuator force
becomes
F.=-ILB I, xB . (Eq. 14)

Assume a translational stiffneg for an umbilical elongation in thgdirection, and a

corresponding translational dampidg Let F, represent the umbilical bias force, exerted by the

umbilical on the flotor in the home position. Then the total force of the umbilical on the flotor

becomes
Fu =—§i Killrs e -roe ) fse Z d@% (rsr -rse )@%@u&. (Eq. 15)
Define the following, fori =1, 2, 3:
Xa.=(LSF —LSF)B’_& (Eq. 16)
and Xp = X - (Eq. 17)
If “w® =0, Equation (15) becomes
Em=—§(r<:xai+dx,i):s§+_ﬁ. (Eq. 18)

The relative positions,; and the relative velocitieg will be six of the nine translational states
used in the state-space formulation of the system equations of motion.

As with Fland F , above,M , can also be expressed in more explicit form, in analogous
fashion. Assume a rotational stiffneié$and a rotational dampin@, , for umbilical twist about

the § direction. Let(pF/%j(p represent the rotation of the flotor, relative to the stator, from the
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relative position in which thd and§ coordinate systems are aligne'(zl%(pis the rotation axis,
pu— — —_

and@is the angle of twist about that axis. M} represent the umbilical bias moment, exerted by

the umbilical on the flotor in the home position. Then the monMptcan be expressed by the

following:
@ [ F/S" E_ﬁ s i le ((pF/sﬁq,)[g §$§+_MO, (Eq. 19)
or _E,Zl [ F/SA AS .:i c:;[(('pF/Sj:ﬁ (pF/SiQ)E—rV%:i%+ M (Eq. 20)

Equation (20) can be expressed in alternate form using Euler parametef@@(pbet
described if®) by

=68+ g5+ £ (Eq. 21)

Define the following Euler parameters [9].

B, = cos(—zp : (Eq. 22)

(SIF/sg = elsinc—zp, (Eq. 23)

(SIF/g, = eQSinc—zp, (Eq. 24)

(SIF/sp, = %sinc—zp, (Eq. 25)

and F/SB:sing FISq . (Eq. 26)
- K4

For small values af, the Euler parameters can be simplified:

7B, =1, (Eq. 27)
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OFIB, =6 /2,

OFB, =e,9/2,

OB, =e,9/2,
and F/S‘E:g F/Srj(p.
Note that, for small angles,

0" M=2"B.

This equation can be used to simplify the stiffness terms of Equation (20).

As for the damping term, Equation (31) can be differentiated to yield

F/Sy (P ¢ F/SA . .
SE_ E00&2 A, +sin3 F/SD(p

F/S: . .
or, for small angles, 2 /Sg =07 +o F/Sﬁ¢.

Equation (20) now becomes

M, = —2§ <i("Bs)s+y ("B %) s M.

Define the following, fori =1, 2, 3:

and Xei = Xy -

The assumption thatv®is negligible yields, finally,

M, = _2§[K:Xdi +C )%i]:s E"'_Mo
=T U
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Note that Equation (11) describ'_ég m in terms of the acceleration of an arbitrary flotor-

fixed pointE. ForE located at flotor mass centér, Equation (11) can be used straightforwardly

with Equation (1) to yield

Fsg = %E (l_l D\—A)XLF*F s

(Eq. 39)

Define now three unknown-acceleration terms, to be used with Equation (39). The first term
represents the indirect translational acceleration disturbance input to the flotor, applied at the stator
end of the umbilical:

a =+

=in

NeS, (Eq. 40)

The second term represents the direct translational acceleration disturbance to the flotor, due to

unknown disturbance forcg; :

Ey- (Eq. 41)

a_1
_d—m

And the third represents the direct angular acceleration disturbance input to the flotorFdue to

a,= 17 M, (Eq. 42)

Substitution from Equations (12), (13), (14), (18), (38), (40), (41), and (42) into (39) yields the

following result:

Fon= (BB 1 M oM M )t vl xr, -2, 42, (EQ.43)
8 8
where Fo=Y Ee=) (-ILBIxB), (Eq. 44)
S, . . O
Ey =-§(Kix& +Q>gi)§H+_Fb, (Eq. 45)
8 i 8 " R
M=y ML= 51X (-1LB L xB,), (Eq. 46)
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3
i O
My =T % @(Ktxa. )35 (Eq. 47)
=1
3
and My, =205 [Kix+ Cxs0r M, (Eq. 48)
Bl O

Substitution from Equation (43) into Equation (11) produces the following equation for the

acceleration of arbitrary flotor poiit

. 1 -
LNoE= r_n(Ec+Eut)+l 1EQMC+Mm+M ur)><r FE+ Qd Xl e +a—d' (EQ- 49)
Assuming"w®to be negligible, one also has the following:
, |
Ise =E(£SF)’ (Eq. 50)
i} *
and [ :F(LSF)' (Eq. 51)

(Note that assuminffo® to be negligible does not imply th§) and ) are identical; it means

rather that(®) can be treated as if it is in pure translation relativ@Jofor the frequencies of

interest.) Equations (43), (49), (50), and (51) provide the basis for a state-space form of the

translational equations of motion, usirg, x,;, and low-pass-filtered approximations to e

components off’ . [see Equations (94) and (99)], as states.

Rotational Equations of Motion

Let F/SB:sing F/sh as before [Eq. (26)]. Differentiating the left side twice produces
- 4

:E(F/S_) d (F/SB)+ %sxv% (Eq. 52)
I T e I

NASA/TM—1999-208906
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Assuming as before thatw® =0, Equations (52) and (53) become, respectively,

"B :d—oi(F/i}) (Eq. 54)
and F/Sf_é = Zdtzz ( F/SE). (Eq. 55)

Returning to Equation (26), two differentiations of the right side yield

N, 2 . .
d (s )_(p Prss _%Dz P L QF/sa . QF/sy Eq. 56
dt ( B =5 Cos, N, Hsins ", + coss N+ sinz M, (Eq. 56)
Linearizing aboutp=0and =0, Equation (56) becomes
2% = %, + 20" A+ 0" H, . (Eq. 57)

Equations (34), (54), (55), and (57) provide the basis for a state-space form of the rotational
equations of motion, using as states $heomponents O]E/SE and of F/SQ (i.e., x; and x,

respectively, fori =1, 2, 3).

Equations of Motion in State-Space Form

From Equation (16),
Tse ~Tse =Xug8+ %5+ X8 (Eq. 58)
Differentiation, along with the use of Equations (17) and (50), leads to the following:
Fsr=Tsr =XuS + X5 + %58, (Eq. 59)
A second differentiation yields
Fsp—Fse =XpuS + %S5+ X 8. (Eq. 60)
Introduce the use of a presuperscript in parentheses to indicate the coordinate system used for

componentiation. (This notation allows vectors to be expressed unambiguously in terms of their
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measure numbers.) Then Equations (58) and (59) take the respective forms,

Xy O
O 0O
I's rSF = K=

and

(Eq. 61)

(Eq. 62)

where x, and x, are defined as indicatedk, and x, have corresponding definitions. [Cf.

Equations (36) and (37).]

Equations (43) and (60) can be used together to develop a state-space equation for

First, express Equation (60) in measure-number form:

=
(S)
Lw-mﬂx

3

Next, define rotation matrix "Q by

8,0 Uf U
ENAEEL !
B A 00

3t ElR=

where the prefix indicates the rotation of fra@erelative to framdf) .

arbitrary vectors
I = Xlil + yliz + Zl_f3
and =xf +y,f +21,

the cross product can be expressed in determinant form by

fof f

1 —2 —3
LM, =1% M 4,

X Y. %

NASA/TM—1999-208906 13
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Finally, observe that, for

(Eq. 65)

(Eq. 66)

(Eq. 67)



or in matrix form (i.e., using measure numbers) [9], by

oo - Ok, O
(F) O “ h oQ ’0
(ler_z)zﬂzi 0 -x Oy, U.
By, x 0 BHH

(Eq. 68)

Represent the above skew-symmetric matrixg, . Using this notation, Equation (43) can be

expressed as follows:

1
Xb:r_n[ O F +(S)Eut]_8/FQ (F)_r;Furl[ (F)Mc’f(F)Mm’f(F)Mur]‘s/b (F)Lxrpu| 1M ~®a +®a,, (Eq. 69)

wherel is the inertia matrix corresponding to.

Linearizing Equation (3) aboulw™ = 0 yields

But " F o=
u = dt?

2B =17
(N2 0
or, equivalently, 20 d—z( F/SB)Dz 1™
gdrt —'g -

In measure-number form,

)-( _%S/FQI—].(F)M’

e —

_ 1
or, equivalently, )_'(e:% S/FQ I—l[ (F)Mut+ (F)Mur+ (F)Mc] + ES/FQ(FQd .

NASA/TM—1999-208906 14
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Six state equations of the system are given by Equations (17) and (37), iteratisgxon
more, by Equations (69) and (76). The latter six are written in terms of the various forces and
moments acting on the system, which loads have been defined in vector form by Equations (44)
through (48). These loads can be rewritten in measure-number form and substituted into Equations

(69) and (76), as follows. Beginning with Equation (44),itheontrol force can be expressed as
L =[-L 1 "8 8] = Fu, (Eq. 77)

The resultant control force becomes

8

OF. =y UF. =Ry (Eq. 78)

whereF,, F_, u, anduare defined as indicated.

Next, using Equation (61) with (45), the translational force the umbilical exerts on the

flotor can be expressed by

OF =KX, - Gx+OF = B x + B x+©F, (Eq. 79)
K 0 0O
where K, = SO K 0 E} (Eg. 80)
HO 0 KH
[t o0 o0
O , 0
= C 0p (Eq. 81)
H 0 CH

and F,, and F, are defined as indicated.

Thei™ control forceF! exerts on the flotor a momem' , defined by Equation (46).

Using again the notation introduced with Equation (68), this moment can be expressed by

T(S)AX

OM; =[-L B P SQT1 QB |1 = MUy, (Eq. 82)
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and the resultant moment by

8
M =5 M =M, (Eq. 83)

Ei
whereM_ and M, are defined as indicated.

The umbilical forceF , exerts on the flotor a momeht , , given by Equation (47).
Substituting from Equation (79), this moment can be expressed by

M, =rie YQFaXs + FpXo); (Eq. 84)

or, alternatively, M, = My X, + My X, (Eq. 85)

utaZ> a
for M ,and M, appropriately defined.

Finally, Equation (48) expresses the mombf that the umbilical applies to the flotor due

to umbilical rotational stiffness. The following equations expidssin measure-number form:

M, =2QK x,-29 Q"G x+ " M, = My x+ M.x+" M, (Eq. 86)
K 0 0O
h _u 2 ]
where Ki=g0 K& 0 (Eq. 87)
Ho 0 K°H
N
C= C 0p (Eq. 88)
B o cH

and M, and M are appropriately defined.

urd

Substituting from Equations (77) through (88), Equations (69) and (76) become, respectively,

o= R 70 7 1M+ B R 90 Vi 1M,
( S/FQ(F) _1Murd) ( S/FQ(F) —1|\/|ure e %F S/FQ(F) I_lMC@' (ECI 89)

O, L 1 F).x  (F) FQ P, 171
et et F,—5Q Orie Pa, =5 Q Tri 171\,
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and

1 ,
)—(eZES/ FQ I l[ Mutal(a + Mutbl(b + Ivlurd_xd + NLre_)%]

(Eqg. 90)
+15/FQ |_1|V|Cl_,| +1 S/FQ (ng +18/FQ |t (F)Mb-
2 2 2
For completeness, Equation (37) can be rewrittex,as X. . (Eq. 91)
To include ' . as states, defing, by
@, ¥y e =X+, X, (Eq. 92)

for some high value of circular frequenay,. Taking the Laplace Transform,

L{r )= E‘:—‘:EL {x.}, (Eq. 93)

so that x.= "V, ¢ for w <<a,. (Eq. 94)

C

Now using Equations (78), (79), 83), (85), (86), and (92) with (49),
X, :wh%ﬁw—ﬂb (F)[;EI'1Muta§ga+wh§%ﬁm— Q el Mook, ~0,x,
~a(3Q T Moy -, (7R Vi el MU+ B ¥R el Ml (BG-99)
+o0, O, +wh§%§<s>5) —wh(S/FQ ) x E)(F)gd_wh(stQ Brx | —1) M,

A state-space representation of the system is given by Equations (62), (89), (90), (91), and

(95), for state vector

QD

o

(Eq. 96)

o

I

]
pasimjer e[l
MOoOoOmOad

0]
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For the small rotation angles associated with the Mif is approximately equal to th@x 3

identity matrix, in which case the state equations have constant coefficients. Specifically,

X, = Xy (Eq. 97)
Xb—% uta (F)r;F _1M % %F (F)r;F _ utb~tb
(O 1My =2l M %F B 1M, @ (Eq. 98)
9 +<S)ad+ (s> G I Y
: (F)x NG
X :wh%F Te EI_lMLJta%a-l_wh@;lF Ieel Nm%b WX
—eo T o Mg -0 T MK +wh%1F—‘F)r;EI 'MC@ (Eq. 99)
s BEPE, 0,71 101
Xy = Xe, (Eq. 100)
. 1
)_(e E I~ [Mutax + Mutbxb + I\/lurd Xd + Ivlure )%]

. (Eq. 101)
+ 1M U+ (‘Fb{ +|1‘F>|v|)
2 2

State-Space Equations With MIM-2 States

The above state equations must be modified to account for the states actually used in
MIM-2. Designate by the post-supersciipthe states defined above; and by the post-superscript
C the states used with MIM-2. The former set of states are as followss io@, 3:

R

Xa = Ier, B (Eq. 102)

Xo = X1 (EqQ. 103)
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0
W& =L 1r] @ EL (©r. )5 (Eq. 104)
0

+wh
x5="PBB, (Eq. 105)
and x5 = X5, (Eq. 106)
and the latter, Xe="ree (Eq. 107)
Xp = X , (Eq. 108)
X =X =LA L (O, (Eq. 109)
+a)h 0
Xs =X="PBHE, (Eg. 110)
and XS = xi= 5. (Eq. 111)
Consider now the equation,
Fse=lgp+l e+l (- (Eq. 112)

Differentiating twice, under the prior assumption thaf'is negligible, leads to the following two

drgr  °dree

equations: G a Wi e (Eqg. 113)
Sd2r Sd?ro
and ot S e W B ). (Eq. 114)

Linearizing about®" = 0 as before, the following interrelationships are found to hold for the two

sets of states:

X =X, +(S/ "QPr. +®r F*), (Eq. 115)
Xp =% -297Q Prr. ¥FQ K, (Eq. 116)
Xp =% = 9FQ Prx 1M, (Eq. 117)
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Designate by®r, the final two terms of Equation (115). Substituting now from Equations (115),

(116), and (117) into Equations (62), (89), (90), (91), and (95) yields the following state equations

for MIM-2:

X=X, (Eq. 118)

Xh(@: = %\Fwa# +§%Fmb§§ +§‘ri|:utbs/ Q (F)[;Fu s FQT@QZ

(Eqg. 119)
+%1FC -3 +93, +§iﬁm§($rb +%§‘S’Fb,
1
XSZ%%FM—S/FQ (F)[: El_lMuta S"’%%%Fmb_gb (F)ﬁ El_lMutb :,:
~, X5+, (= Q 1My )66
2 x x - x N Eq. 120
+wh§~a|:u‘bS/FQ (F)[F FuS/FQT +2$FQ (F)IFEI 1NlutbS/FQ (F)[F FL,S/FQT_$FQ (F)IF*EI lMure@ec ( q )
+0 %F—SFQ Ere™™m @ﬁw ®a, + %(S)F
h c ~FE c h =d wh —b
1 N < ;
+0, P 90 O M %, (50 G )+ 1),
X=X, (Eq. 121)

3= B 3QI M + QI M6 + S0 M, 1%

+ %S/ FQ I_1|V|ure_S/F(g I_1Mutb ¥ FQ (F)L)';Fu ¥ FQTQZE * %S/ FQ I_lMCQy (Eq 122)

+ %S/FQ l_lMutaQS)[b + % S/FQ g((F)Qd + 17 (F)Mb)-

Again, for the small rotation angles associated with the MifQ is approximately equal to the
3x 3 identity matrix; Equations (118) through (122) reduce to the following:

X =X, (Eq. 123)
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§ o E{Bltm BS)U 5 : -m (Eq. 124)
a,* §d+[rn|:uta[| £b+EmD Fy
= whérlnl Fo= Oriel ‘1Muta§(§ +wh§¢anmb— Orfcl '1Mutb§<§—whxf
rao - P m, ) +“’“§_EZ Foo Vg, #2005l M, O = Ol '1Mure§<§ (Eq. 125)
+whélﬂ1Fc— (F)r?El'lMc@pwh “ay +whélﬂl§S)Fb +whélﬂlﬁt; (F)f?E"lMutaES)fb
v, O P, + 12Oy,
K€ = 5, (Eq. 126)
= B Be + B, Be + B, Be
2 o @& o 2 ]
B P B B € 127

+ %' _lMuta@S)Lb-l_ %@‘F)gd +17 ‘F)Mb).

State-Space Equations Using Kane’s Dynarjiio$

The above state equations for MIM-2 can be derived alternatively, by the approach
commonly called “Kane’s Dynamics.” First define generalized coordirgutesd generalized
speedsy, as follows. [Note the use of post-superscripts now, instead of the previous post-
subscripts, with position (and, later, velocity and acceleration) vectors. The post-subscript

position, with vectors, is used for another purpose in Kane’s notation, as will be seen.]

q=r"" 3, (Eq. 128)
Q=17 3, (EQ. 129)
G =17 3, (Eq. 130)
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u,="w" 3 = g, (Eq. 131)

u="w"3, = g, (Eq. 132)
U= "0 35 = g, (Eq. 133)
. . NoE
U, =Q¢; =~w,Qq, +wh([ @1)’ (EQ- 134)
. _NoE
Uy = G =~ 0+, (" 15,), (Eq. 135)
. .. NoE
Uy =(y = —W,qy +wh([ @3), (EQ- 136)
o= "w*[F = g, (Eqg. 137)
U,= NO_JS (5, = q, (Eq. 138)
U,= NQS[_% = Q,, (Eq. 139)
U =G, (Eq. 140)
u, =0,, (Eq. 141)
and U, = Q. (Eqg. 142)

Next determine useful velocities and angular velocities in terms of these generalized

coordinates and generalized speeds. The angular velocities can be expressed as follows:

"wi=ued Y5+ WS, (Eq. 143)
"W =u 5 +us+ yls, (Eq. 144)

and W= "~ W= (U, - uo)3 +(y- w)s+( w- y)
W= w- w=\U-Uy)§+{y-y)s+| ¥- Y-8 (Eq. 145)

The velocity of the flotor center-of-mass is

N
F =ol_(il(rNoS FrSF 4y FF) =y + o a1 e T (Eq. 146)

1<
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In terms of the generalized coordinates and generalized speeds

NoSxSF 48 + _
rsf+s(u+qu- quy) (Eq. 147

- qu)+s( v+ ay- ay

Accordingly, the respective velocities of the isolation pd&ntthe eight actuator force-application

points B, and the umbilical-attachment poiRf, are as follows

VE=ve s+ wsxrFes(y+ qu- qu)
+8(u+qu,- qu)+s( u+ ay- oy (Eq. 148)
+ NeoF rF*E
\_/B Ysh"' w erh ' +Sl(u1+q3U11 q2u12)
+5, ( Ui, _q3u10)+§3(u3 +q2u10_q1u11) (Eq. 149)
+ M X",
\_/Fu =v¥+ NQSXLSUF': +$1(u1+q3u11_q2u12)
(Eq. 150)

and Vv
+ Sz (uz T Uy, — qsulo) + Ss (us T Qply — q1u11)

One can now express the linearized partial velocities (L.P.V.’s) and linearized partial

angular velocities (L.P.A.V.’s), corresponding to the foregoing velocities and angular velocities

E
is the partial velocity (P.V.) of poirit with respect to the

using the following notation:v: = EN

NO)F
is the partial angular velocity (P.A.V.) of reference frdme

™ generalized speeg, "w!

Ju
with respect to reference frae and, v;” and [w' are the respective linearized velocity terms
u,=0. Thenv® =0(i=101113. Assume

Assume now that'w® = 0, so thatu,,
additionally that the flotor mass is much smaller than that of the combined stator-plus-orbiter, in
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which case®w "does not affect™ . Thenv® =0 (i = 4,5 6). Similarly, sincev® is not affected
by r®F or i™F, v& =0(i=123789. Thatis,
vi=0(i=1...,12). (Eq. 151)

Further, sincev® is unaffected by €, r*®  or r* %, one has the following L.P.V.’s and

LP.AV.S:
V=8 (=123, (Eq. 152)

v =0(=4...,9), (Eq. 153)

VE= VB = vi= v Oiin{L,..9}andDj in {1,..8}, (Eq. 154)

W =0(0=123789, (Eq. 155)

W, =8, (Eq. 156)

s =8, (Eq. 157)

W =8, (Eg. 158)

and W ="w (i=1...,9). (Eq. 159)

AllL.P.V.’s and L.P.A.V.’s associated with,, u,,, andu,, are_O.

In order to determine the linearized accelerations (L.A.’s) and linearized angular

accelerations (L.A.A.’s), one must first determine the linearized velocities (L.V.’s) and the
linearized angular velocities (L.A.V.’s). Assuming still thab® =0, the L.V.’s and L.A.V.’s are

as follows:
V=V U+ ysH us, (Eq. 160)

VE SV U8 U8, S (W xrFE ) (Eq. 161)
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VSV U8 0,8, s (W xR ), (Eq. 162)

V=V U S U8, + U S (SQF xp ) (Eq. 163)

%® =0, (Eq. 164)

and W =W =y 8 +us+ s (Eq. 165)

Differentiating the L.V.’s and L.A.V.’s, and linearizing abotib" = 0, yields the

following L.A.’s and L.A.A.’s:

at =a¥+ g+ ys+ s (Eq. 166)

% =ad+ug+ g+ st (st g s oo F, (Eq. 167)

@ =a¥+ug+ ys+ ws+( st s o TR, (Eq. 168)
av=ad+ug+ s+ s (s s i T (Eq. 169)

WS =0, (Eq. 170)

and o= =05+ U5+ Y (Eq. 171)

Beginning with Equation (3), one can also obtain readily an alternate expressjan for

lng :L_l EEM‘” +M, +[LFF X(Eut _Eb)]"'ﬁir_FB xF_L% (Eq. 172)

The final step, before writing the generalized active forces and generalized inertia forces of
Kane’s equations, is to determine the contributing loads:
The resultant of the actuator forces (cf. Eq. 44), which are considered to be applied at respective

locationsB , is

EcziEL=§(—liLia£ixBi)- (Eq. 173)
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The umbilical force (cf. Eq. 15), with the former term (in curly brackets) appliég,and the

latter (umbilical bias forceF, ) at F~, is
= 0'd =
F.= Kifrf"“ @ -Cclo= [r™" +F,. Eq. 174
——ut Zg t(_ _|)_S| t%dt )—Il}lg —b ( q )

The direct disturbance force (cf. Eq. 41), applie€atis F, (unknown).

The umbilical moment (cf. Eq. 20), applied abdt, is

3

M, = {— K;[((pF/sﬁ¢) ES.] 5- ¢[(¢F/s:@) s :% v (Eq. 175)

1=1

The direct disturbance moment (cf. Eq. 42), applied aBoyis M , (unknown). (Eq. 176)

The above expressions for the contributing loads can also be written in measure-number

form, needed for eventual computer implementation. Equation (173) becomes
(S)EC —|_ I_1(S)|_Axl o) Bl(F)Bl] | +...+[— I—g(S)lM; ¥FQ BB(F)BS L=FE I, (Eq. 177a b)
T
where =10y (Eq. 178)
Equation (174) is first re-expressed as

= I S
F. =Z%K£ [(LF““F" +r7 " F“)E%]% ~cpd (LF““F" +r7" 4" F“)@%%Eb- (Eq. 179)
=g pdt 0B

This now can readily be rewritten as

(g, U w0 tu, 0
(s) Higu U o sfy P FRxsrqT H, H ©
Fu = R0+ L 0F 7, - F, 7Q 1 ™ 70 DJ5§+ Fua' o (Eqg. 180)

wH HuS el

The direct disturbance force is simpRF, .
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Equation (175) becomes

BJAD DJAD
(F) g HH = BHe

Mur - Ivlurd Eq5|:]+ MureDJSEH- Mb’ (Eq 181)

a =i e
where M,, =-""QK, (Eg. 182)
and M, =-FQ'C,. (Eq. 183)

The direct disturb fam, ="

urbance momentisM ;= {1 [#&r,). (Eqg. 184)

Using the expressions for the L.P.V.’s and the L.P.A.V.’s with the contributing loads, the

generalized active forceQ can be determined as follows:

Q0 O ylF* [(Ed +Eb)D vy [(Eut _Eb)D vi [F.O
Engz E{yzF [(Ed +Eb)g+ EW;" EQEut _Eb)g'+ i @L\_/?‘ D_ZICE
R.H Bvi dF, +F.)H BvidE.-F,)H TH EH

=OF +OF +OF (Eq. 1854, b)

o

5[:!
EI:IT:H:H:I
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=(S)[£FF“><(Eut—Eb)}F EZLFB‘XEL&S’FQ((F)MW#F)M(,), (Eq. 1864, b)
. 0

0.0 mO
| []
1, H= ot
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The generalized inertia forces are

Qo g mdl

%E:%yg f-m o Jo=-m o, (Eq. 188a, b)
0 gy f-m )5
. DS4F N A AL wFD

%sz% EIS,_F =E|]S_F IS_F =EF_FE

EQED:SI—S _=|D]SC_¥ = XLEfQ S

Ol -1 - <] g

=9Q (-1 0 ") (inearizing aboufw® = P,  (Eq. 189a, b)

Q.0 O
10 _ge
and Q0= (Eqg. 190)

acA=liets

Kane’s Dynamical Equations for MIM can now be written in the following, recognizable
forms of Newton’s Second Law:
OF, +FF +FF, -m9a" =0, (Eq. 191)
o
+ [,

where [cf. Eq. (166)] OgF =95 ; (Eq. 192)

I |

3
and 7 x(E,-F (17 <L 90 M, QM0 (18 7) =0, (Eq.199)

0
where [cf. Eq. (171)] ®% =0 (Eq. 194)

aths
These equations must now be placed into a usable state-space form.
Define the following: X, =

-
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g5

(L

(EQ. 1964, b, c¢)

|
o
S
|
©

N
EI:H%H:H:I

mel=

Hg0g

L, 0 [, 0 l
g'e o' "0 one
X, = M= Mg 0= ~w, [ U+ Wy, a
1 Hed .0
SN FE F
= -, X, + W, (lg -rFEfx ) (Eqg. 197a, b, c, d)
[l
_ %]“D
Xq = W, (Eq. 198)
ais
Cu, 0 Co,0
. 0O Bﬁ“m -
X, = (0= (0= X, (Eq. 199)
aiallia A
and u=1 (Eq. 200)

Note that Equations (196) and (199) express Kane’s Kinematical Equations.
Using state-definition equations (195), (196), and (199); force equations (177) and (180);
acceleration equation (192); and disturbance equations (40) and (41); Kane’s Dynamical Equation

(191) becomes

i(b = Bl FutaB_Ka + B]_- Futb B_Kb + H 1 FutbS/FQ(F)L)I(:’Fu ¥ FQT E_X.e + : Fc
m 0 On 0 Om o om

_(S)g'in +(S)§'d + E BS)Eb + Bl Futa BS)[b'
tmJ on [

=

(Eqg. 201)

Likewise, using state-definition equations (195), (196), (198), and (199); force equations (177) and

(180); moment equations (82), (83), (181), and (184); angular acceleration equation (194); and
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disturbance equation (42); Kane’s Dynamical Equation (193) becomes
%= (FQIM M) %, + (T QI M) %, +( 971 M) X,
+ ( S/FQ |—1Mure_ S/FQ |_1Mutb S/FQ (F)L);*F S/ FQT)Ze + ( s/ FQ I—l MC)

+ ( SFQ |—1Muta)(3)£b + ( S/FQ)((F)gd + l_l(F)Mb)'

=

Eq. (202)

In terms of Euler parameterg, = "' [where "B is defined by Eq. (26)], for small rotation

angleg and negligible angular velocifyw®the rotational states are
X4 =2Xq, (Eg. 203)

and X, =2X,. (Eg. 204)

e s

Kinematical equations (196) and (199), and dynamical equations (201) and (202), now reduce to

the forms found previouslyjz., Equations (123), (126), (124) and (127), respectively.

Concluding Remarks
This paper has presented the derivation of algebraic, state-space equations for the Canadian

Space Agency’s Microgravity Vibration Isolation Mount. The states employed include payload

relative translational positio(»_gf) and velocity(>_<§), payload relative rotatio(1>_<g) and rotation

rate ()_(ec), and payload translational accelerat(gag?). Feedback ok$ corresponds to a change in
effective umbilical translational stiffness, with the effective umbilical assumed to be attached at the
flotor center of mass. Similarly, feedbackygf, x§, or x¢ corresponds, respectively, to a change

in translational damping, rotational stiffness, or rotational damping, for the same effective
umbilical. Likewise, feedback of payload translational acceleration causes a change in effective
payload mass. Thus, a cost functional which penalizes these states produces an intuitive effect on

system effective stiffness, damping, and inertia values.
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The acceleration states can be selected to pertain to any arbitrary point on the flotor. This
allows an optimal controller to be developed which penalizes directly the acceleration of any
significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-space form so that the powerful controller-design

methods of optimal control theory (e.@i, synthesis,H_ synthesisu synthesis, mixeds
synthesis, ang analysis) can be used. References [11], [12], and [13] detaH fheptimal

controller design approach used for MIM.
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