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TABLE I.—PARAMETER VALUES AT MAXIMUM
GROWTH RATE FOR m2 = 1.25, m2 = 1.35

AND m2 = 1.45

Parameter m2 = 1.25 m2 = 1.35 m2 = 1.45

A 1.294735 1.22414 1.73897

s/wN 4 5.5 7.5

L*, meters 5.491×10– 3 7.1380×10– 3 9.3344×10– 3

fs, Hz 12192 10200 8512

fr*, Hz 6696 5412 4651

fr*/ fs 0.549 0.545 0.546

  ̂ωr 0.555 0.54 0.565

  ̂cr –0.29605 –0.29936 –2.2653

  ̂ci 0.4 0.4 0.4

  k̂r 1.192 1.1625 1.1527

  k̂i –0.6773 –0.6637 –0.59611

δr 0.50985 –0.90483 –1.8499

δi –1.5534×10– 10 2.1089×10– 6 1.4473×10– 7

Γ i 0.2897 0.17528 6.2044×10– 2

Γ r –1.2784×10– 11 –1.8818×10– 7 –3.0307×10– 8

|δ| 0.50985 0.90483 1.8499

TABLE II.—PARAMETER VALUES AT MAXIMUM
GROWTH RATE FOR m2 = 1.55, m2 = 1.65

AND m2 = 1.75

Parameter m2 = 1.55 m2 = 1.65 m2 = 1.75

A 1.139382 1.1258595 1.111845

s/wN 10 11.5 13.7

L*, meters 1.208×10–2 1.3727×10–2 1.6143×10–2

fs, Hz 7136 5952 5280

fr*, Hz 3876 3344 2183

fr*/ fs 0.543 0.562 0.413

  ̂ωr 0.57 0.525 0.38

  ̂cr –0.105 4.3075×10–2 –0.81295

  ̂ci 0.4 0.4 1.0

  k̂r 1.0617 0.87758 0.13735

  k̂i –0.47449 –0.33654 –0.73431

δr –1.8094 –1.5363 4.9339×10–2

δi 8.7953×10–8 8.3042×10–8 1.1×10–7

Γ i 7.0048×10–2 0.11059 0.24607

Γ r –1.6428×10–8 –1.0321×10–8 8.756×10–9

|δ| 1.8094 1.5363 4.9838×10–2
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Figure 1.—Nozzle configuration.
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Figure 2.—Typical velocity profile. (L = 1.173897; 
   s/wN = 7.5 and L = 1.22414; (s/wN = 5.5).
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Figure 3.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 1.0. (s/wn = 4.0; L = 1.294735; U/DU = 0.5; m2 = 1.25; T2 = 1). 
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Figure 3.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci < 1.0.
   (s/wn = 4.0; L = 1.294735; U/DU = 0.5; m2 = 1.25; T2 = 1). 
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Figure 3.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 4.0; L = 1.4735; U/DU = 0.5; m2 = 1.25; T2 = 1). 

0.5 1.00.0 1.5

G
i

0.00

0.05

0.10

0.15

0.20

0.25

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

v

ˆ ˆ
-

(a)

(c)



10
American Institute of Astronautics and Aeronautics

Figure 4.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 0.9. (s/wn = 5.5; L = 1.22414; U/DU = 0.5; m2 = 1.35; T2 = 1). 
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Figure 4.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci < 0.9.
   (s/wn = 5.5; L = 1.22414; U/DU = 0.5; m2 = 1.35; T2 = 1). 
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Figure 4.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   0.9. (s/wn = 5.5; L = 1.22414; U/DU = 0.5; m2 = 1.35; T2 = 1). 
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Figure 5.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 1.0. (s/wn = 7.5; L = 1.173897; U/DU = 0.5; m2 = 1.45; T2 = 1). 
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Figure 5.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 7.5; L = 1.173897; U/DU = 0.5; m2 = 1.45; T2 = 1). 
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Figure 5.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 7.5; L = 1.173897; U/DU = 0.5; m2 = 1.45; T2 = 1). 
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Figure 6.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 1.0. (s/wn = 10.0; L = 1.139382; U/DU = 0.5; m2 = 1.55; T2 = 1). 
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Figure 6.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 10.0; L = 1.139382; U/DU = 0.5; m2 = 1.55; T2 = 1). 
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Figure 6.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 10.0; L = 1.139382; U/DU = 0.5; m2 = 1.55; T2 = 1). 
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Figure 7.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 1.0. (s/wn = 11.5; L = 1.1258595; U/DU = 0.5; m2 = 1.65; T2 = 1). 
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Figure 7.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 11.5; L = 1.1258595; U/DU = 0.5; m2 = 1.65; T2 = 1). 
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Figure 7.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 11.5; L = 1.1258595; U/DU = 0.5; m2 = 1.65; T2 = 1). 
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Figure 8.—(a) Phase velocity eigenvalue, cr, verses frequency, w, for 0.1 
   < ci < 1.0. (s/wn = 11.5; L = 1.111845; U/DU = 0.5; m2 = 1.75; T2 = 1). 
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Figure 8.—(b) Amplification, ki, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 11.5; L = 1.111845; U/DU = 0.5; m2 = 1.75; T2 = 1). 
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Figure 8.—(c) Periodicity factor, Gi, verses frequency, w, for 0.1 < ci <
   1.0. (s/wn = 13.7; L = 1.111845; U/DU = 0.5; m2 = 1.75; T2 = 1). 
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Figure 9.—Temporal growth rate, (vi)max, results6 for
   a range of relative Mach numbers, m2, and nozzle 
   spacings, s/wn. 

ˆ

0

0.5

1.0

1.5

2.0

4 6 8 10 12 14

m2
(vi)max

(v
i) m

a
x 

, m
2

s/wn

Figure 10.—Spacial growth rate, (vi)max, results for
   a range of relative Mach numbers, m2, and nozzle 
   spacings, s/wn. 
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