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Collective interaction in a linear array of supersonic
rectangular jets: a linear spatial instability study

Jeffrey Hilton Miles
National Acronautics and Space Administration
Lewis Rescarch Center
Cleveland, OH 44135

Abstract

A lincar spatial instability modecl for multiple spa-
tially periodic supersonic rectangular jets is solved using
Floquct-Bloch theory. It is assumed that in the region
of interest a coherent wave can propagatce. For the case
studied large spatial growth rates arc found. This work is
motivated by an increase in mixing found in experimental
measurcments of spatially periodic supersonic rectangu-
lar jets with phase-locked screech and edge tone feedback
locked subsonic jets. The results obtained in this paper
suggests that phasc-locked screech or edge tones may pro-
duce correlated spatially periodic jet flow downstream of
the nozzles which creates a large span wise multi-nozzle
region where a cohierent wave can propagate. The large
spacial growth rates for eddies obtained by model cal-
culation herein are related to the increased mixing since
cddies arc the primary mechanism that transfer energy
from the mean flow to the large turbulent structures.
Calculations of spacial growth rates will be presented for
a sct of relative Mach numbers and spacings for which cx-
perimental measurcments have been made. Calculations
of spacial growth rates arc presented for relative Mach
numbers from 1.25 to 1.75 with ratios of nozzle spacing
to nozzle width ratios from s/wy = 4 to s/wny = 13.7.
The model may be of significant scientific and engincering
valuc in the quest to understand and construct supersonic
mixer-cjector nozzles which provide increased mixing and
reduced noise.

I. Introduction

Interest in proving the cconomic and cnvironmental
feasibility of a high-speed civil transport has stimulated

Acrospace Engineer, Member ATAA
Copyright ©1998 by the American Institute of Acronautics
and Astronautics, Inc. No copyright is asscrted in the United
State under Title 17, U.S. Code. The U.S. Government has a
royalty-free license to exercise all rights under the copyright
claimed herein for Governmental Purposes. All other rights
arc reserved by the copyright owner.

1

studics of mixing cnhancement in lobed mixer-cjector
nozzles. By cnhancing mixing the cjector length can be
reduced with the same amount of noisc suppression. In
order to obtain information on such flows simpler configu-
rations arc studicd. In particular, a simple mixer nozzle
configuration consisting of multiple rectangular nozzles
with a synchronized screech instability was studied by
Taghavi and Raman' and Raman and Taghavi?®. This
nozzle showed incrcased mixing with the jets synchro-
nized. This paper uses the geometry and flow conditions
investigated by Raman and Taghavi®. The same behavior
is shown in a study of the cffect of edge tones on multiple
jet mixing of high-speed subsonic flows by Krothapalli ct.
al.! using the nozzle described by Krothapalli ct. al.’.

It is proposcd that at some point before the jets merge
local coherence can be achicved due to external forcing
by screech or acoustic feedback and large-scale propaga-
tion of instabilitics occurs with vary high growth rates.
The temporal dynamics produced by the collective inter-
action of compressible jets is discussed by Miles® and the
collective interaction of incompressible jets is discussed
by Miles”. However, the predictions of spatial instabil-
ity theory have shown better agreement with experiment
in free shear flows and jets. Conscquently, this paper
presents a spatial instability analysis. Following Gaster®,
it is assumed the spatial instability analysis applics in
a region where nonlincar cffects arc small. However, it
is acknowledged that the spatially growing lincar theory
will fail since the amplitude of the disturbance must be
bounded.

For single nozzles a reduction in mixing and growth
rates with incrcasing Mach number has been demon-
strated cxperimentally by many investigators® '3 . Cor-
responding lincar stability analysis of single nozzles
shows results that arc similar to the cxperimental
studics'™™% . This is attributed to the fact that cddies
arc the primary mechanism that transfer cnergy from
the mean flow to the large turbulent structurcs. How-
cver, the following study is based on the idea that these
cxperimental and theoretical results do not apply to the
mixing of multiple supersonic rectangular jets with phase
locked screech. This paper is based on a lincar stability
analysis of compressible periodic parallel jet flows which
was undertaken to obtain results related to lobed mixer
nozzles. In this study, the lobed nozzle design concept is
extrapolated in a one dimensional manner to arrive at an
array of parallel rectangular nozzles scparated by a dis-
tance s where the smaller dimension of cach nozzle is wy
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and the longer dimension b is taken to be infinite. Note
that it is assumed that cven widely spaced rectangular
jets which arc phasc-locked by screech are coherent spa-
tially at somc distance from the nozzle. Conscquently, in
this lincar stability analysis it is the collective behavior
of compressible periodic parallel jet flow that determines
the nozzle interaction.

In this paper, the behavior of the solutions is discussed
and the trace of solutions is presented for a range of am-
plification curves. For cach opcerating condition, only the
most highly amplified mode is of interest and special at-
tention is paid to finding a good solution having the max-
imum amplification. Calculations of spatial growth rates
arc presented for relative Mach numbers from 1.25 to 1.75
with ratios of nozzle spacing to nozzle width ratios from
sfwy =4 to s/wy = 13.7. The actual valucs arc those
for which experimental data is presented by Raman and
Taghavi®.

II. Results

The nozzle configuration is shown in Fig. 1. In this
paper, the flow is compressible and the velocity profile
is adapted from an cquation used by Monkewitz!” in a
study of the absolute and convective instability of two-
dimensional wakes. A discussion of the problem formu-
lation is given in Appendix A. Velocity profiles for ratios
of nozzle spacing to nozzle width of s/wy = 5.5 and
s/wn = 7.5 arc shown in Figure 2.

The lincar spatial stability analysis is donc using
Floquct-Bloch theory. It is assumed that in the region
of interest a coherent wave can propagate. This type
of analysis for temporal stability has been applied by
Beaumont!'® to an incompressible flow with a sinusoidal
velocity profile perpendicular to the flow and by Miles®7?
to a compressible and incompressible periodic parallel jet
flow. This analysis procedure is discussed in Appendix
B.

Stability information is obtained using the flow model
described in Appendix A and the Floquet-Bloch method
described in Appendix B. In this study of spatially grow-
ing waves proportional to exp {#(k& — &7)} where & =
kL*, & =z/L*, & =wl*/AU and 7 = tAU/L* ,the flow
disturbance is characterized by a real frequency, @, and
a complex relative phase velocity , ¢ = é, + ¢, where
&k = ¢/AU = UJ/AU + ¢/2. Conscquently, the phase
velocity cigenfunction, ¢, represents the phase velocity
scaled by AU/2 and shifted by U where AU = Uy — U,
and U = (U; + Us)/2 so that for &. = 1 the disturbance
moves at velocity Us, for ¢, = —1 the disturbance moves
at velocity Uy and for ¢, = 0 the disturbance moves at
velocity U. For a given value of jet relative Mach num-
ber, ms, a value of the ratio of mean velocity to velocity
difference, U/ AU, a ratio of inter jet spacing to rectan-
gular nozzle smallest dimension, (s/wy), and é,, a range
of & arc studied to determine if a growing disturbance
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with amplification ,—l;'l, characterized by a periodicity
paramcter ', and a convective phase velocity &, exists.
The computer program first cvaluates solutions at onc
hundred fixed values of ¢, in the range —1 < &. < 1. The
wave number is given by k = &/ (UJAU +&./2 +18,/2).
Positive values of ¢, arc used in the range from 0 to 1 at
intcrvals of 0.1, since this produces negative k; values in
a uscful range. A solution at a given value é. is tabulated
if the calculated value of I, is smaller than 5.F — 04 and
the calculated value of |d] ( defined in Appendix B) is less
than 2. A further scarch is made in the é. region where
I, is smallest to find the best value of ¢.. An acceptable
solution has I',. smaller than 1.£ — 06 and the calculated
value of |d] less than 2.

The reported results at cach value of @ arce limited to
three @ no solution, one solution, or two solutions. It is
possible that more than two solutions cxist. The model
was developed to study amplification , —l;'i, over a range
of Mach numbers and flow geometrics for compressible
periodic parallel jet flow when the flow is correlated be-
tween the jets.

The stability model is for shock-free supersonic jets
where no screech tone exists. However, it docs depend
on the presence of a large span wise multi-nozzle region
where a cohcrent wave can propagate. In this paper,
it is suggested that this region can be created by phasc
locked screech or edge-tones. Since screech generally oc-
curs within a frequency range where the instability waves
arc highly amplified, the results from this study arc used
to cxplain certain events in screech synchronized multiple
jets.

For cach condition studicd, solutions for a range of w
values at a given value of é; were produced to find the
region where the maximum amplification, —l;'i, of the un-
stable wave occurred. The value of ¢ used were between
0. and 1. using steps of 0.1. The value of @ used was ini-
tialized at -0.005 and incremented by 0.005. In general,
blocks of 50 @ points were examined at a one time and
the calculation for a particular valuc of ¢; was abandoned
if the current block of 50 points and the previous block
of 50 points had no solutions.

To provide information on the spatial instability solu-
tion space, the trace of solutions for calculations of spa-
tial amplification is presented for U/AU = 0.5, and a
range of rclative Mach numbers, ms = AU/as, and of
and nozzle spacings s/w,, shown in Tables 1 and 2 where
the values sclected are those for which experimental data
is presented by Raman and Taghavi®.

Figurcs 3 thru 8 show plots of phasc velocity cigen-
value, ¢, amplification, lg'l, periodicity factor, I', as a
function of frequency, @ for 0.1 < ¢, < 1 using steps of
0.1 for ¢,. For a given valuc of ¢, the trace of points for the
spatial stability solutions can be characterized as having
two regions. At low frequencies the trace shows region or
band where the unstable solutions arc continuous. This
region is generally followed at higher frequencies by iso-
lated islands of instability.
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Paramecter values for good solutions at the maximum
growth rate for cach casc arc presented in Tables 1 and 2.
Valucs are sclected so that I is smaller than 1.E — 06.
Some points in Figure 7b and 8b have larger values of
—k;. However, for these points the value of I, was larger
than 1.E — 06 and they were rejected. In order to find a
good solution a progression of points was examined until
an acceptable point with I',. is smaller than 1.5 — 06 was
found.

The nozzle width, wx™, is 0.0069m. The frequency of
the instability is given by

fr = Wy M2ag
T+ el AU

where ag is the ambient speed of sound (nominally 333
m/sec). Values arc given in Tables 1 and 2. Also shown
in Tables 1 and 2 is the excitation screech frequency,
fs. The predicted instability frequency is about half the
cxcitation frequency.

III. Discussion

A summary of the results of a study of temporal growth
rates by Miles® is shown in Figure 9. Large growth rates
were found for a range of spacings ,s/wy, and relative
Mach numbers, ms. At larger spacings and higher Mach
numbers the temporal growth rate is reduced.

Figurc 10 shows spatial growth rates. This paper
shows similar trends when the spatial growth rate is cal-
culated.

IV. Concluding Remarks

A lincar instability model for a large span wise multi-
nozzle region far downstream where a coherent wave can
propagatc is presented. Multiple supersonic rectangular
jets exhibiting phasc-locked screech or excited by edge
tones may create such a region. The model may explain
an increasc in mixing obscrved in multiple jets exhibit-
ing phasc locked screech. This work was conducted with
the expectation that multi-jets with synchronized screech
could provide increased mixing and reduced noisc.

It might be that phasc locked screech or edge tones
can provide a confining mechanism which produces spa-
tial cohcrence just as ncighboring jets provided a con-
fining mechanisim in the experiments of Villermaux and
Hopfinger!? and Villermaux, Gagne, and Hopfinger?°.

The model may be of significant scientific and engi-
neering value in the quest to understand and construct
supcersonic mixer-cjector nozzles.
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Appendix A: Formulation of the problem

Let (U(y),0,0) be the velocity of a steady planc-
parallcl flow, where the x-axis is in the direction of the
flow and

U =0+ S hiy)

where Uy is the velocity outside the jet, Us is the mean
centerline jet velocity, U = % the velocity scale is
AU = Uy — Uy, and h(y) is the velocity profile function
which varics from -1 to 1.

The flow ficld is perturbed by introducing wave dis-
turbances in the velocity and pressurce with amplitudes
that arc a function of §. These disturbances arc assumed
to be traveling waves that arc expressed in dimensionless
variables as

(@1, 0,0, p)
= (u(9), 0(9),0(H), (7)) cxp [t (’“” - WT)] '

where 4,7, and w arc dimensionless velocitics, p is the
pressure, 7 is the time, Z is the distance along the jet
flow, and ¢ is the distance normal to the jet along the
row of nozzles. The dimensionless variable used hercin
arc & =z/L*, § =y/L*, and 7 = tAU/L*

The following quantitics arc also non-dimensionalized by
a length scale, L* and a velocity scale, AU.

k=kL*,

@_wL*

AU

b_ow _ ¢ .

P EAU T AU 7
and we define ¢ as follows

o ¢ U ¢

CTAUT AU T

By dcfinition for spacial instability, the frequency, @,
is a rcal positive number, & is a complex number that
represents the wavenumber in the z-direction, —k, is the
amplification rate of the disturbance in the x dircction.
¢ a complex number that represents the relative phase
velocity. Since
AT T
by keeping ¢, positive and varying ¢ between +1 and —1
k; is always negative and only spatially growing solutions
will be found.

From the cquations of motion if nonlincar and viscous

terms are neglected one can obtain an cquation for the
y-component of the perturbation velocity as follows:
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A
i/)ll _ ﬁl(? + I)
AW

I T/
1) (h—¢é)

U + Ak —

(h—¢) F T
where the primes denote differentiation with respect to
v,

+ (D

2
A= —ik+m? zku
4
o !
A = 2m22k( on
4
2
m? = 1
T
and from Crocco’s Equation?!
= Tly) To  (1+h(y)) T
1 . h(y) + 1) (h(y) — 1
__(ml)Z(h/_ 1)( ( ) )( (y) )
2 4
where
AU
mo = —
a
L AU_ AUV T,
Ta T e VR VT

where aq is the local velocity of sound outside the jet, as
is the local velocity of sound inside the jet, 74 is the local
temperature outside the jet, and 75 is the local temper-
aturc inside the jet.

In this paper, the velocity profile function, h(y), is pe-
riodic such that

h(y + 27) = h(y).

The velocity profile h(y) is not any cxact solution of the
Navicr-Stokes cquation, but it can be considered as a
simple model of some real periodic flow.

The velocity profile h(y) discussed herein is given by

hy) = 1-2f(y)

where the function f(y) is given by

1
fly) = "
L+ (Sinh(sing(l)))
n = A(-=1+ %). and y gocs from 0.0 to 2r. The

profile function f(y) is adapted from an cquation used
by Monkewitz!” in a study of the absolute and con-
vective instability of two-dimensional wakes. Only two-
dimensional disturbances will be considered. A schematic
of the nozzle geometry is shown in Figure 1. Velocity
profile using A = 1.22414 and A = 1.73897 arc shown in
Figure 2.
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Appendix B: Floquet-Bloch theory

Since the basic flow velocity profile , f(y), is peri-
odic, cquation (1) is an cxample of a Floquet-Bloch
problem. The mathematics of solving Floquet-Bloch
typc problems is discusscd by Incc??, Hochstadt?®, and
Zwillinger?!. Applications to solid state physics are dis-
cussed by Sachs?®, Brillouin?®, and Dckker??. Applica-
tions to spatially pCI‘lOdlC flow arc discusscd by Lorcnz?®,
Green?®, Beaumont'®, Bai®® and Gotoh3!32,

The paper by Beaumont'® and the dcscription of the
Floquet-Bloch theorem by Hochstadt?® were particularly
uscful in guiding this rescarch.

A survey of the spatially periodic flow literature is pre-
sented by K. Gotoh and M.Y. Yamada®? .

The sccond order differential equation can be described
by a system of first order differential cquations. Let

1“):;171

’lu)l = T2
so that Eq. 1 can be rewritten as the system

Ty = To
x5 = Dz + Cxs

where

A

C = \—= —_—

GG+

and
K T AW
= Aik — il
n—o - GFEDa
If ®(y) is a fundamental matrix solution of cquation (

(2 ) ) such that
(0) =1

where T is the identity matrix, then from the Floquet-
Bloch thcorem

(y + 27) = 2(y)(27)

with

(2)
1(0), <Z>z )]
0); =

We now introduce two solutions of cquation
initial values at y = 0.0. We have ®(0) = [¢

where ¢(0) =1, ¢'(0)1 = 0, ¢(0)2 = 0, and ¢(
Next we seck the cigenvalues of @(27)
|®(27) — p
= p® = (¢1(27) + 2" (2m)ps
(1 (2m)¢o" (2) —
$2(2m)¢hy " (27))
= p? = (1(27) + ' 2m)p+1=0
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Since
$1(2m) 2" (27) — o (2m) " (27) = |2(27)] = |2(0)| = 1

The independent solutions of cquation (2) have the
form

¢=X(y) CXp(%y) = X(y) exp(L'y)

The parameter I' specifies the period of the cigenfunc-
tion ¢. If I is real the cigenfunction grows or decays at
infinity. Consecquently, only imaginary values of T' arc
acceptable. Thus the cigenfunction oscillates in space
and is called a continuous mode. The disturbance with
I'; = 1/n, where n is a nonzero integer, has a period 2nr.
One with I'; = 0 has the same period 27 as the main flow,
while an irrational valuce of I'; mecans the disturbance is
apcriodic. Note that the paramcter I' does not appear
in the flow equation, but is due to the Floquet-Bloch
theorem.
Solutions of 2 arc thus of the form

Xi(y +27) = 1 Xy (y)
Xo(y +2m) = paXa(y)

where g1 and ps represent the zeros of (3), provided they

arc distinct.

In general, these solutions will not be periodic.
Conditions for periodic solutions can be found as fol-

lows

Lot py =€ and py = e~

Then from cquation (3)

cos(8;) = ¢1(2m) + o' (2m) = §/2

i0;

Conscquently, for a solution to be periodic 6 must be real
and |4| smaller than 2.

The constants u arc termed the characteristic multipli-
ers of the Floquet-Bloch system (2) and the correspond-
ing characteristic exponents are determined by the rela-

tion [ =T, 4 il = 208 — 8o 4 65
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TABLE |.—PARAMETER VALUES AT MAXIMUM
GROWTH RATE FOR @ =1.25, m = 1.35

AND m, = 1.45
Parameter| m=1.25 m =135 m =145
A 1.294735 1.22414 1.73897
Swy, 4 55 75
L*, meters [5.491x10°® 7.1380x10° |9.3344x10°3
fy, Hz 12192 10200 8512
f* Hz 6696 5412 4651
AN 0.549 0.545 0.546
®r 0.555 0.54 0.565
Cr -0.29605 —0.29936 —2.2653
G 04 04 04
ke 1.192 1.1625 1.1527
ki -0.6773 -0.6637 -0.59611
5, 0.50985 —-0.90483 —1.8499
o} —1.553410°1° [2.1089%10°® [1.4473x10°7
r 0.2897 0.17528 6.204410°2
r, —-1.2784<10° ™ [ -1.8818<10°" |-3.030710°®
3] 0.50985 0.90483 1.8499

TABLE I.—PARAMETER VALUES AT MAXIMUM
GROWTH RATE FOR @ = 1.55, ;m = 1.65

ANDm, = 1.75
Parameter m= 1.55 m = 1.65 m =175
A 1.139382 1.1258595 1.111845
swy 10 115 13.7
L*, meters [1.208x10? 1.3727%102 [1.6143«<102
fy Hz 7136 5952 5280
f* Hz 3876 3344 2183
fx/f, 0.543 0.562 0413
or 0.57 0.525 0.38
Cr -0.105 43078102 [-0.81295
G 04 04 1.0
|2r 1.0617 0.87758 0.13735
ki -0.47449 —0.33654 —0.73431
N -1.8094 —-1.5363 4.93340°
o} 8.7953x10°® [8.3042¢10° |11x107”
r, 7.0048<102 ]0.11059 0.24607
r, -1.6428<10® [-1.0321x10° |8.756x107°
3] 1.8094 1.5363 4983810
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Figure 1.—Nozzle configuration.
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Figure 2.—Typical velocity profile. (A = 1.173897;
s/wyn = 7.5 and A = 1.22414; (s/wy = 5.5).
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Figure 3.—(a) Phase velocity eigenvalue, cy, verses frequency, w, for 0.1
< Cj< 1.0. (s/wp = 4.0; A = 1.294735; U/AU = 0.5; mp = 1.25; T, = 1).
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Figure 3.—(b) Amplification, k;, verses frequency, W, for 0.1 < ¢j < 1.0.
(s/wp =4.0; A = 1.294735; U/AU = 0.5; mp = 1.25; T = 1).
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Figure 3.—(c) Periodicity factor, T}, verses frequency, W, for 0.1 < ¢; <
1.0. (s/wp, = 4.0; A = 1.4735; U/AU = 0.5; my = 1.25; To = 1).
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Figure 4.—(a) Phase velocity eigenvalue, cy, verses frequency, w, for 0.1
< ¢j<0.9. (s/wp =5.5; A = 1.22414; U/AU = 0.5; mp = 1.35; To = 1).
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Figure 4.—(b) Amplification, k;j, verses frequency, w, for 0.1 < ¢j < 0.9.
(s/wp =5.5; A = 1.22414; U/AU = 0.5; mp = 1.35; To = 1).
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Figure 4.—(c) Periodicity factor, T}, verses frequency, W, for 0.1 < ¢; <
0.9. (s/wp =5.5; A = 1.22414; U/AU = 0.5; mp = 1.35; T = 1).
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Figure 5.—(a) Phase velocity eigenvalue, cy, verses frequency, W, for 0.1
<Gj<1.0.(s/wy=7.5; A =1.173897; U/AU = 0.5; mp = 1.45; T, = 1).
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Figure 5.—(b) Amplification, k;, verses frequency, w, for 0.1 < ¢j <
1.0. (s/wp = 7.5; A = 1.173897; U/AU = 0.5; my = 1.45; To = 1).

0.25 v
. . ~ 1.0
2 v 0.9
020 < . 08
z + 0.7
M 0.6
0.15 ; 05
= 1 : < 04
iy v - 03
010 o v’.;’,‘f:v'v v' 02
wel v, . . 0.1
R T
0.05} ° . ..u % R
2 (c)
0.00
0.0 0.5 1.0 15

w

Figure 5.—(c) Periodicity factor, Tj, verses frequency, w, for 0.1 < ¢; <
1.0. (s/wp = 7.5; A = 1.173897; U/AU = 0.5; my = 1.45; T, = 1).
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Figure 6.—(a) Phase velocity eigenvalue, cy, verses frequency, w, for 0.1
< ¢j<1.0. (s/wp = 10.0; A =1.139382; U/AU = 0.5; my = 1.55; T, = 1).
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Figure 6.—(b) Amplification, kj, verses frequency, w, for 0.1 < ¢j <
1.0. (s/wp = 10.0; A = 1.139382; U/AU = 0.5; mp = 1.55; To = 1).
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Figure 6.—(c) Periodicity factor, T'j, verses frequency, W, for 0.1 < ¢; <
1.0. (s/wp = 10.0; A = 1.139382; U/AU = 0.5; mp = 1.55; To = 1).
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Figure 7.—(a) Phase velocity eigenvalue, c, verses frequency, w, for 0.1
< ¢j< 1.0. (s/wp = 11.5; A = 1.1258595; U/AU = 0.5; my = 1.65; T = 1).
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Figure 7.—(b) Amplification, kj, verses frequency, w, for 0.1 < ¢j <
1.0. (s/wp = 11.5; A = 1.1258595; U/AU = 0.5; my = 1.65; T = 1).
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Figure 7.—(c) Periodicity factor, T’j, verses frequency, w, for 0.1 < ¢j <
1.0. (s/wp = 11.5; A = 1.1258595; U/AU = 0.5; my = 1.65; Ty = 1).
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Figure 8.—(a) Phase velocity eigenvalue, c;, verses frequency, W, for 0.1
< i< 1.0. (s/wp = 11.5; A = 1.111845; U/AU = 0.5; mp = 1.75; T, = 1).
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Figure 8.—(b) Amplification, k;j, verses frequency, w, for 0.1 < ¢ <
1.0. (s/wp = 11.5; A = 1.111845; U/AU = 0.5; my = 1.75; T = 1).
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Figure 8.—(c) Periodicity factor, I'j, verses frequency, w, for 0.1 < ¢ <
1.0. (s/wp = 13.7; A = 1.111845; U/AU = 0.5; my = 1.75; Tp = 1).
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Figure 9.—Temporal growth rate, (®j)max. resultsé for
a range of relative Mach numbers, my, and nozzle
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