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ANALYSIS OF AN INTERFACE CRACK FOR A FUNCTIONALLY GRADED

STRIP SANDWICHED BETWEEN TWO HOMOGENEOUS LAYERS OF

FINITE THICKNESS

N.I. Shbeeb and W.K. Binienda
University of Akron

Department of Civil Engineering
Akron, Ohio

Abstract - The interface crack problem for a composite layer that consists of a

homogeneous substrate, coating and a non-homogeneous interface was formulated for

singular integral equations with Cauchy kernels and integrated using the Lobatto-

Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy

Release Rates were calculated. The Stress Intensity Factors were compared for accuracy

with relevant results previously published. The parametric studies were conducted for the

various thickness of each layer and for various non-homogeneity ratios. Particular

application to the Zirconia thermal barrier on steel substrate is demonstrated.
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1. INTRODUCTION

Advanced turbine systems and some aerospace applications require use of structural

ceramics to protect the hot sections. The thermomechanical mismatch between metal and

ceramics induces high residual stresses responsible for cracking and spallation. One way

of reduction of the residual stresses is accomplished by processing fully tailored materials

and interfacial zones with predetermined, continuously varying mechanical properties

known as Functionally Graded Materials (FGM) [1,2]. FGM could be described as two-

phase particulate composites where the volume fractions of its constituents differ

continuously in the thickness direction [3-6].

Erdogan in his paper [7] discussed the problem of crack growth in FGM due to

fatigue, creep and stress crack corrosion cracking, and fracture instability.

 He concluded the following:

1. By eliminating the discontinuity in material property distributions, the

mathematical anomalies regarding the crack tip stress oscillations for the

interface cracks are eliminated. Hence, one can now use the crack tip finite

element modeling developed for the ordinary square-root singularity and apply

the methods of the energy balance-based theories of the conventional fracture

mechanics.

2. Application of FGM as interfacial zones in joining generally incompatible

materials would greatly improve the bonding strength.

3. Use of FGM as coatings and interfacial zones would reduce the magnitude of

the residual and thermal stresses.
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4. Use of FGM coatings and interfaces would eliminate the stress singularities at

the points of intersection of interfaces and stress-free ends in bonded materials.

5. Replacing homogeneous coatings by FGM layers would both enhance the

bonding strength and reduce the driving forces at the crack tips.

Delale and Erdogan [8] solved the crack problem for a nonhomogeneous plate. The

authors considered the plane elasticity problem in which the material is isotropic, has a

constant Poisson’s ratio (ν), and the Young’s modulus (E) is of an exponential form

varying in the x-direction. They found that the Poisson’s ratio did not have much effect

on the resulting stress intensity factors. They also found that the strain-energy release rate

of the crack embedded in the portion of the medium with higher stiffness is lower than

that corresponding to the crack tip in the less stiff side of the material. Hence, the crack

will grow in the direction of the less stiff material.

Delale and Erdogan [9] considered the interface crack in a nonhomogeneous elastic

medium. In this paper the interface crack between two bonded half planes was addressed.

One of the half planes was homogeneous while the other was nonhomogeneous in a

manner that the elastic properties are continuous throughout the plane and have

discontinuous derivatives along the interface. They assumed that the Young’s modulus

and the Poisson’s ratio are of the exponential form. They found that the singular behavior

of the stress state near the crack tip in the nonhomogeneous medium is identical to that in

a homogeneous material given that the spatial distribution of the material properties are

continuous near and at the crack tip.

Also, Delale and Erdogan [10] solved the crack problem for two bonded

dissimilar homogeneous elastic half–planes and assumed that the interfacial region, can
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be modeled by a very thin non-homogeneous layer. The elastic properties of the

interfacial material varied continuously between that of the two semi-infinite planes. It

was assumed again that E and ν are exponentially dependent on y. Varying the Poisson’s

ratio did not have much effect on the stress intensity factors. The Airy stress function was

used in their formulation of the solution in which it was assumed that it is composed of

two functions, one is associated with an infinite plane containing the crack on the x-axis,

while the second is an uncracked strip. Their results showed that if the crack location

approaches the less stiff material the strain energy release rate increases.

Erdogan et al. [11] studied the perpendicular crack to the interface in a bonded non-

homogeneous material. The main goal was to study how the singular behavior of the

stresses and stress intensity factors is affected by the very steep variations in the material

properties near the diffusion plane.  Here they assumed that the shear modulus (µ) varies

in an exponential form. They suggested that:

1. Regardless of the mechanism of binding at the atomic level, in many cases there

is always a thermodynamically stable and readily distinguishable region

between the two homogeneous materials.

2. The interfacial regions are generally locations of higher concentration of stress

and micro-flaws.

3. In most material pairs the fracture toughness and the sub-critical crack growth

resistance of the interfacial zone tend to be lower than that of adjacent

homogenous materials.

They found that the nonhomogeneity constant β has a great effect on the stress

intensity factors. They showed that as β increases so do the stress intensity factors.
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Erdogan and Ozturk [12] solved the mixed boundary value problem for a non-

homogeneous medium bonded to a rigid subspace. They investigated a two-dimensional

diffusion problem in which the interface contains a plane crack. Rather than solving the

problem for a given material, they used an inverse method. This inverse method provided

the material constitutive behavior for which the mixed boundary value problem could be

solved.

One year later, Erdogan and Ozturk [13] studied the axisymmetric crack problem in

a non-homogeneous medium. They noticed that the crack opening displacement in non-

homogeneous materials was significantly greater than the corresponding homogeneous

values.

 Later Konda and Erdogan [14] considered the mixed mode crack problem in a non-

homogeneous elastic medium. The crack was arbitrarily oriented with respect to the

direction of the property gradient. The effect of the variation of the Poisson’s ratio was

neglected in the solution because of previous studies.

Erdogan and Wu [15] studied the crack problem in FGM layers under thermal

stresses. They considered an unconstrained elastic layer under statically self-equilibrating

thermal or residual stresses. The layer contained an embedded or surface crack

perpendicular to its boundaries. After giving the distribution of thermal stresses, the stress

intensity factors for the embedded and surface crack were presented along with the

results of the crack/contact problem in a FGM layer that was under compression near and

at the surface and tension in the interior region.

Chen and Erdogan [16] solved the interface crack problem for a nonhomogeneous

ceramics coating bonded to a homogenous metallic substrate using displacement
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formulation. It was concluded in this work that the dominant mode of the stress intensity

factor is Mode I, and it decreases as the nonhomogeneity constant changes from soft to

stiff under uniform normal stress. A similar trend was noticed for Mode II, under uniform

shear stress. Decreasing the thickness of either material increased the stress intensity

factors.

In this work the problem described in Chen and Erdogan [16] will be extended to

include the third thin layer of homogeneous ceramics material to increase thermal

protection of the metallic substrate. As shown by Kokini and Choule [17], thermal

barriers always include some thickness of pure ceramics material. The scope of this work

includes an examination of debonding of ceramics layers from the substrate. In particular,

the stress intensity factors (SIF) and strain energy release rates (SERR) are obtained

using the Airy stress function formulation for the interface crack embedded between the

finite thickness substrate and the non-homogeneous strip, which is sandwiched between

the substrate layer and thin homogeneous layer. It is assumed that the FGM has a

constant Poisson’s ratio and the shear modulus is of an exponential form. Plane elasticity

is assumed and the solution is valid for both plane stress and plane strain.
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2. FORMULATION

The geometry of the problem is shown in Figure 1. Both the substrate and the

coating, which are perfectly bonded to the FGM, are isotropic and homogeneous, and

have h1 and h3 as their respective thickness. The FGM thickness is h2, and is denoted as

material 2.

In the global x-y coordinates the shear modulus of the FGM is assumed to be as

follows:

yeγµµ 12(y) =  (1)

where
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The Airy stress function F(x,y) is defined by
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 By incorporating (4) and the strain-stress relations in the following compatibility

equation:
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The solution of (6) is found by applying the Fourier Transform:
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Thus, the stress function for the substrate has a form with double repeated roots as follows:
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Consequently, the stress function is obtained in the following form:
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Using (4) the stresses for the FGM are:
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the stresses for the substrate are:
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and for the coating they are as follows:
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From (15), (16) and (17), it can be seen that there are 12 unknown constants (in the

Fourier space they are functions of α), i.e., Di, Ci and Ai (i=1...4), which can be obtained

from the following conditions:
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and the following mixed boundary conditions:
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where p1 and p2 are known surface tractions. In order to convert the solution from a dual
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Consequently, all twelve unknowns are determined in terms of the auxiliary

functions, f1(x) and f2(x), by using (18) and (21). The unknown auxiliary functions are

solved by using (19). After some lengthy manipulations the following singular integral
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where,
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C0 is the Euler constant, whereas U is the upper limit beyond which the cosine

integral, Ci, is negligible. Q is the determinant of the 4 by 4 coefficient matrix and Qij are

the corresponding 3 by 3 cofactors. Both can be found in the Appendix.
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3. SINGULAR INTEGRAL EQUATIONS SOLUTION

The singular integral equations (22) contain Cauchy kernels. In order to obtain

unique results the following conditions need to be incorporated into the solution.

2,10)( ==∫
−

idttf
a

a

i �� (29)

The system of equations (22) and (29) can be solved together using the Gauss

quadrature method. For example, using, the Lobatto-Chebyshev collocation method was

shown in [19] to produce accurate results for the above type of equations. In practice the

auxiliary functions are discretized at particular points tk, integration is replaced by a

summation, and the system of linear algebraic equations are obtained for collocation

points xp (xp is never the same as tk) in the following form:

)()()(),(
)(

1 11 1
pipnkkj

N

j

n

k
kpij

N

j

n

k pk

kkjij xfxRwtgtxk
xt

wtgb
=++

− ∑∑∑ ∑
= == =π

            (30)

where p=1,…,n, wk is the weighting coefficient, and Rn is a remainder that becomes small

for sufficiently large number of points tk. According to the aforementioned technique, the

abscissas are calculated according to:

.,,1)
1

)1(
cos( nk

n

k
tk ��� =

−
−= π

                  (31)

The corresponding weights are:

.1,,2
1

;
)1(21 −=

−
=

−
== nr

n
w

n
ww rn ���

ππ
(32)

The collocation points can be found from:

.1,,1)
22

)12(
cos( −=

−
−= np

n

p
xp ���

π
(33)
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The remaining two equations are generated using (29) in the following form:

0)(

0)(

1
2

1
1

=

=

∑

∑

=

=

kk

n

k

kk

n

k

wsg

wsg

(34)

By incorporating (30), (34) and (33) together, the system of equations can be represented

as follows:

[ ] { } { } nnnn PgA 222x2 = (35)

thus, the unknowns are obtained by:

{ } [ ] { }PAg 1−= (36)

The mode-I and mode-II SIF are defined as follows:

)0,x()ax(2lim)a(k

)0,x()ax(2lim)a(k

1yx1
ax

2

1yy1
ax

1

11
1

11
1

τ−=

σ−=

→

→
(37)

From the principal part of the expressions for g1(t) and g2(t) as shown in [20], the

following are obtained for k1(a) and k2(a):

)a(g
a)1)(1(

)2(
)a(k 2

21

211
1 κ+κ+

κ+κ+µ= (38)

)a(g
a)1)(1(

)2(
)a(k 1

21

211
2 κ+κ+

κ+κ+µ−= (39)

Where g1(a) and g2(a) correspond to g1(1) and g2(1) respectively when solving (36).

The strain energy release rates (SERR) can be calculated from [16], and they are

listed as follows:

2
2

1

2
2

2
1

1

2
1

)(
8

)1(
)(

)(
8

)1(
)(

akaG

akaG

µ
κπ

µ
κπ

+=

+=
  (40)
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where G1 and G2 are the opening mode and sliding mode SERR, respectively. The total

SERR is expressed as:

))()((
8

)1(
)( 2

2
2

1
1

2 akakaGT +
+

=
µ

κπ
(41)

Before performing the parametric study the above solution should be verified with an

existing solution close to the proposed problem. The verification is accomplished by

comparing the results of our model with that of [16] by letting h3 approach zero and γa

(the normalized non-homogeneity constant with respect to the crack length) taking the

values as shown in the Table I.

 The values were obtained for h1=2a, h2=a, ν1= ν2= ν3= 0.3  under loading of uniform

normal stress. The results in Table 1 demonstrate the accuracy of the solution.

4. RESULTS

The geometry of the problem being examined is shown in Figure 1. The thickness

of each layer is normalized with respect to the half-length of the crack “a” located at the

interface between the substrate layer and FGM. The homogeneous substrate, material

“1”,  may be stiffer or softer with respect to the homogeneous layer of ceramics, material

“3”. The normalized nonhomogeneity constant γa is varied between –3 and 3, which

covers most of the practical cases. The results are calculated for normalized mode-I and

mode–II SIFs, i.e., k1/k0 and k2/k0, and normalized SERR, i.e., G1/G0 and G2/G0, where

ck yyσ=0
 and 

)1(

8

2

2
00

0 +
=

κπ
µ k

G . The results are calculated for two loading conditions,

namely unit normal stress in y direction and unit shear stress in x-y plane. The Poisson’s

ratio is assumed to be ν = 0.3 for each layer.
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First, the influence of the additional ceramics layer will be examined in order to

determine if there is any advantage to fabricate a thermal barrier with pure ceramics on

top of the FGM layer. Figures 2 and 3 show normalized total SERR versus the thickness

of the homogeneous ceramic layer h3 produced by normal stress and shear stress,

respectively. The thickness of the substrate is assumed 4 times higher than the thickness

of the FGM. The crack length is assumed to be the same as the thickness of FGM layer.

 It can be noticed that SERR is significantly reduced even by a small additional

thickness of the ceramics material. The rate of reduction is the highest for h3 below 0.5a

for h3 larger than 3a, the influence is negligible. The largest reduction is produced for the

negative nonhomogeneity constant when the stiffness of the ceramics material is smaller

than the substrate. The smallest reduction is in the case of the stiffer ceramic material.

The homogeneous case is obtained for γa = 0 and its SERR curve is located in between

the other two cases shown. One can conclude that the small change of the thickness of the

layer above the crack can significantly reduce the SERR. It can be recommended that the

optimum thickness of the ceramics layer should be about half of the thickness of the

FGM layer.

Using the above recommendation we can compare the SERR with the results

obtained by Chen and Erdogan (1996) indicated in the following figures by h3 = 0 (this

case is also the limiting case of our model). Figures 4, 5 and 6 are generated for the case

of the normal applied stress for three different thickness of the FGM layer. The thickness

of the substrate is assumed to be very large. Comparison of the curves with the additional

layer of ceramics and without that layer (h3 = 0) shows that the ceramics layer reduces the

SERR for each case, but the most significant reduction is for the thinnest FGM layer.  In
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all cases, the magnitude of G, k1 and k2 decreases as the stiffness of the ceramics layer

increases.

Figures 7-9 show SERR and SIF for the case of the applied shear stress for the

same geometrical and material conditions as in the Figures 4-6.  Similarly as for normal

applied stress, G, k1 and k2 decrease with the increasing nonhomogeneity constant. For

the case of the softest ceramic layer, additional thickness h3 = 0.125a of the homogeneous

layer added to 0.25a thick FGM reduces G, k1 and k2 as much as increasing the thickness

from 0.25a to 0.5a of the FGM. Hence, either increasing the FGM thickness or increasing

the ceramic layer can reduce the SIF and SERR.

Figures 10 and 11 show the normalized total SERR generated by normal and

shear stresses, respectively, versus the nonhomogeneity constant for the various thickness

of the substrate. The reduction of the SERR by increasing thickness of the ceramic layer

is equally significant to each thickness of the substrate. The cases for h1 = 10a and h1 = 4a

overlap for the applied normal stress and they are almost identical for the applied shear

stress. As in the previous cases, the stiffness ratio of the ceramics coating to substrate

significantly changes the SERR, especially for the thin layer of the substrate.

Mode-I is dominant under normal stress tractions.  A question arises what is

better under such loading conditions: thicker FGM layer without any homogeneous layer

of ceramics or thinner FGM with h3 making the difference. In the last parametric study

we will assume that the total thickness of the FGM and homogeneous ceramic coating is

constant. The results of SERR are plotted with respect to ln(µ3/µ1) in Figure 12.

It can be noticed that for increasing ln(µ3/µ1) the SERR decreases. The highest G

is for the most negative ln(µ3/µ1). By replacing part of FGM by pure ceramic material we
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increase G for ln(µ3/µ1)=-2 (the region above the crack is softened by the softer ceramics

layer) and decrease G slightly for  ln(µ3/µ1)=2 (the region above the crack is stiffened by

the stiffer ceramics layer).

Hence, it can be concluded that SERR can be reduced by several methods: stiffer

coating application, thicker FGM layer, and additional layer of homogeneous ceramics.

The most optimum combination depends on the stiffness ratio of the ceramics with

respect to the substrate.

Let’s apply the above knowledge to the specific cases shown in Figure 13 (also

discussed in [17]). The substrate material is steel. Zirconia is used for the ceramic

coating. The FGM is made by gradual change from 100 % of Zirconia to

Zirconia/CoCrAlY to the bond coat attached to the substrate. In case (a), there are 50/50

of Zirconia/CoCrAlY layer and bond layer sandwiched between pure ceramics and

substrate material. In case (b), there are four layers of Zirconia/CoCrAlY, i.e., 75/25,

50/50, 25/75, and bond layer sandwiched between pure ceramics and substrate material.

The properties of materials are taken from [21]. For Zirconia they are: E3 = 36

GPa and ν3 = 0.2, while for steel they are: E1 = 207 GPa and ν1 = 0.33. The thickness of

each layer can be normalized with respect to crack length, which is assumed to be the

same as half of the total thermal barrier thickness, i.e., ht = h2+h3 = a. The thickness of

the substrate is h1 = 6a.

Table II shows results for three different cases under normal stress conditions. In

the first case the ceramic layer is part of the FGM. In the second and third cases the pure

ceramic layer belongs to material “3” and FGM thickness is measured from the interfaces

between steel and bond coat to the interface between Zirconia and FGM layer. It can be
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noticed that the total SERR is higher in the lower two cases than it is in the first case by

16% and 38%, respectively. Hence, it is critical how FGM is defined in the practical case

studies. It can be also noticed that the thinner Zirconia layer produced smaller SERR

because of the negative nonhomogeneity ratio as described in Figure 12. Finally, the

results show some sensitivity to the FGM Poisson’s ratio, but for all practical purposes it

can be assumed to be the same as for the pure ceramics.
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Table I

Verification of the model

γa k1(a)/(σ0√a)
Chen and
Erdogan
(1996)

k1(a)/(σ0√a)
Present
study

k2(a)/(σ0√a)
Chen and
Erdogan
(1996)

k2(a)/(σ0√a)
Present
study

-3.0 2.430 2.428 -0.681 -0.624

-2.5 2.252 2.251 -0.571 -0.533

-2.0 2.087 2.087 -0.471 -0.445

-1.5 1.936 1.936 -0.379 -0.364

-1.25 1.866 1.866 -0.336 -0.325

-1.0 1.799 1.799 -0.296 -0.288

-0.75 1.735 1.735 -0.258 -0.252

-0.5 1.675 1.675 -0.221 -0.218

-0.25 1.618 1.618 -0.187 -0.186

-0.01 1.566 1.566 -0.156 -0.155

0.25 1.514 1.514 -0.125 -0.126

0.5 1.466 1.466 -0.096 -0.099

0.75 1.422 1.422 -0.069 -0.072

1.0 1.380 1.379 -0.044 -0.048

1.5 1.304 1.303 0.002 0.003

2.0 1.237 1.237 0.042 0.036

2.5 1.179 1.178 0.077 0.070

3.0 1.128 1.127 0.108 0.100
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Table II

SIF and SERR for Zirconia thermal barrier and steel substrate.

k1(a) k2(a) GT(a)Geometry and
Material
Property ν2=ν3 ν2=ν1 ν2=ν3 ν2=ν1 ν2=ν3 ν2=ν1

ht=a, h2=a, h3=0
ln(µ3/µ1)=-1.646
γa=-1.646

1.9471 1.9178 0.4102 0.2888 3.9598 3.7613

ht=a, h2=0.771a,
h3=0.229a
ln(µ3/µ1)= -1.646
γa=-2.135

2.0905 2.0336 .4827 .3190 4.6033 4.2371

ht=a, h2=0.545a,
h3=0.455a
ln(µ3/µ1)= -1.646
γa=-3.021

2.243 2.1690 .5565 .3448 5.3389 4.8236

Figure 1.  Geometry of the interface crack for a functionally graded layer sandwiched

between the homogeneous substrate and coating materials.
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Figure 2. Influence of h3/a on the total SERR for h1/a=4.0 and h2/a=1.0

under loading of uniform normal stress.
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Figure 3. Influence of h3/a on the total SERR for h1/a=4.0 and h2/a=1.0

under loading of uniform shear stress.
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Figure 6. Influence of h2/a and h3/a on the normalized mode II SIF for h1/a=100.0
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Figure 7. Influence of h2/a and h3/a on the total normalized SERR for h1/a=100.0

under loading of uniform shear stress.
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Figure 8. Influence of h2/a and h3/a on the normalized mode I SIF for h1/a=100.0

under loading of uniform shear stress.
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Figure 9. Influence of h2/a and h3/a on the normalized mode II SIF for h1/a=100.0

under loading of uniform shear stress.
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Figure 10. Influence of h1/a and h3/a on the total normalized SERR for h2/a=1.0

under loading of uniform normal stress.
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Figure 11. Influence of h1/a and h3/a on the total normalized SERR for h2/a=1.0

under loading of uniform shear stress.
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(a)

(b)

Figure 13. Geometry of the Zirconia thermal barrier on steel substrate (from Kokini and

Choules (1995)), (a) two layer FGM, (b) four layer FGM.
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