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Analysis of Multiple Cracks in an Infinite Functionally Graded Plate

N. I. Shbeeb, W. K. Binienda and K. L. Kreider
University of Akron
Akron, Ohio

Abstract

A general methodology was constructed to develop the fundamental solution for a
crack embedded in an infinite non-homogeneous material in which the shear modulus
varies exponentially with the y coordinate (thickness). The fundamental solution was
used to generate a solution to fully interactive multiple crack problems for stress intensity
factors and strain energy release rates. Parametric studies were conducted for two crack
configurations. The model displayed sensitivity to crack distance, relative angular

orientation, and to the coefficient of nonhomogeneity.

Introduction

One of the disadvantages of composites is the mismatch of the thermal expansion
coefficients between its constituents. This mismatch produces residual stresses, which
may initiate debonding, delamination, and micro-cracks. For example, application of
ceramics as a thermal coating for a metal substrate often produce debonding at the
interface after a small number of thermo-mechanical load cycles. In order to minimize the
mismatch between the ceramics and metal a new technology was developed. This
technology allows fully tailored processing of materials and interfacial zones with
predetermined continuously varying mechanical properties, that are known as

Functionally Graded Materials (FGM) (see Asish et. al., 1997 and Holt et. al., 1993).
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FGM could be described, as two-phase particulate composites wherein the volume
fraction of its constituents differs continuously in the thickness direction (see Niino and
Maeda, 1990; Hirano and Yamada, 1988; Hirano et. al., 1988; and Kawasaki and
Watanabe R., 1990). This implies that the composition profile could be tailored to give
the appropriate thermomechanical properties. Their physical properties can be determined
either experimentally or using higher order theory for FGMs developed by Aboudi,
Pindera and Arnold (1997).

Delale and Erdogan (1983) solved the crack problem for a nonhomogeneous plane.
The authors considered the plane elasticity problem, in which the material is isotropic,
has a constant Poisson’s rat, (@nd the Young’s modulus (E) is of an exponential form
varying in the x-direction, namely,

E(x) = B¢ )
where[3 is a hon-homogeneity constant angtlie Young modulus of the homogeneous
material. They found that Poisson’s ratio did not have much effect on the resulting stress
intensity factors. And that the strain-energy release rate at the crack embedded in the
portion of the medium with higher stiffness is lower than that corresponding to the crack
tip in the less stiff side of the material. Hence, the crack will grow in the direction of the
less stiff material.

Also, Delale and Erdogan (1988) solved the collinear crack problem for two
dissimilar homogeneous elastic half—planes bonded to a very thin nonhomogeneous layer.
The elastic properties of the interfacial material varied continuously between those of the
two semi-infinite planes. The Airy stress function was used in their formulation of the

solution in which it was assumed that it is composed of two functions, one is associated
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with an infinite plane containing the crack on the x-axis, while the second is an uncracked
strip. Their results showed that if the crack location approaches the less stiff material, the
strain energy release rate increases.

It can be noticed that multiple oriented crack problems embedded in a non-
homogeneous infinite plate have not yet been addressed. Thus the scope of this work will
deal with the general solution to a single and multiple oriented cracks embedded in a
nonhomogeneous infinite plate. It is assumed that the FGM has a constant Poisson’s ratio
and the shear modulus is of an exponential form. The solution is valid for both plane

stress and plane strain.

General Problem Formulation

The solution of the mixed boundary value problems for stress intensity factors or
strain energy release rates at a crack tip is obtained from the perturbation part of the
problem, see Figure 1. Before any particular problem is addressed, the general strategy
of solution is discussed in this section.

Assume that there are two states of stresses, one is associated with a local coordinate
system (x-y1) in an infinite plate, while the other is associated with boundaries of a finite
plate defined in a structural coordinate system (x-y). The crack lies or-&xésxwhich
is at an angl® from the x-axis. In the case of infinite plate problems only the first state
of stress exists, but for the general problem the total stresses in the local coordinate

system are expressed as:

gy, (X, ¥y) =08 (%, y,) + 0 (X, Y1)

(2)
T;)’l(xl’ yl) = ngll(xl’ yl) + Tillz))/l(xj_’ yj_)
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where,
a7 (%, Y1) = SiN*(0)0 (%, y) + coS (8)a,, (X, y) = 25in(@) cosB)T (X, y)
139 (%, ¥;) = —sin@) cos@)o ,(x, y) + sin@) cos@)a, (X, y)
+ (cos'(8) - sin* ()1, (X, y)
X = X, cos@) - vy, sin(@)
y = X, Sin(@) + y, cos@)

The stress boundary conditions obtained from the perturbation problem are

= (%) = lim J;yl(xli Y1)
PR (3)
- pZ(Xl) = ;l/:rpo Txlyl(xj_’ yl)

where p(x1) and p(x1) are the normal and shear tractions of the inner crack surfaces

Upon substitution of (2) into (3) the boundary conditions becomes

- (%) = lim ol (X, ;) + fim | 0y, (%, Y1)

(4)

= P04) = lim 73 O, y) + lim T8 (x4, v2) (5)

It is noticed that the principal part will be produced from the first part of (4) and (5). The
most general form of the stresses are expressed as

a® (x,y,) ——-[K(l)(x1 yi,t) f; (Ddt

Y1Y1

T, (%4, Y1) ‘—_[K(l)(xl yn, 1) f; (t)dt
(6)

*1Y1

05 (%) = o jK(”(xl.yl,ofj(t)dt
(2) ( 19 yl) —_IK(Z)(Xl yl t)f (t)dt fOI’ a< (Xlit) < b

X1 Y1
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where f are so called auxiliary functions defined as derivatives with respegtaio x

displacement jumps along the crack. The kernels are expressed as:

Kifl)(xii yi,t) = J-Xifl) (a, yl)eai(xl_t)da
. (7)
K (%, Y1) = Ixifz) (a, %, COSA — y, sing)e” asne%od Ny

—00

The expressions oXi(jl) andxi(jz)depend on the stress and displacement continuity

of the problem. Iin(jl) do not vanish asié| approaches infinity then an asymptotic

analysis is done to separate the singular part from the regular. Consequently equation (7)

can be integrated numerically.

As 4| approaches infinity equation (7) becomes:

(l) (Xl’ yl’t) = J'X () (a)e—\a\y1+ai(xi_t)da

(8)
K06, yo) = [X {2 ()™ Cnommomaatisssoyons i gq
Substituting equation (8) into (6), the following is obtained:

)(/jl-)yl (Xj_ yl) = on IX(J-) (a)e ‘G‘yl’rla(Xrt)daJ' f (t)dt
9)

)((:31 (Xj_ yl) = on IX(J-) (a)e ‘G‘yl’rla(Xrt)daJ' f (t)dt

)(,12)),1 (Xl yl) = o IX(2) (a)e‘\a\(ﬁsmewlcow)ﬂa(xicos9 y; SN - t)daj-f (t)dt

; (10)

X1 Y1

(2) (X1 yl) _ o J-xé? (a)e—\a\(x13|n9+ylcoa9)+|a(x1cose y1Sing - t)daj-f (t)dt
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Further simplifications can be achieved by taking the limit of equation (9) so that the

first terms in equations (4) and (5) can be determined:

yﬁo

b
lim{—— J?UDQUEMM““““daIfKUdﬂ (11)
Assume thaiX ” have the following asymptotes:

asyl = Cél) + idil(l) ...... a - +oo
= _iq@ — (12)
asy?2 = ¢ i oo a - —o

Splitting equation (12) at=0 into two parts and making the change of variable for

the part from e to 0 by lettinga=-B, adding and subtracting (12) from (11) and taking

the limit as y— 0, the following is obtained:

o J'{[X(l)(a)+x.f?(a) 2c;” cos@r(t = x,)) +

(13)
[Xi (@) - X(l)(a)+2ld(1)]lsm(a(t—xl))}da+||m[ - SIPY]

where, X (a )s the complex conjugate o€\’ (@ ahd the term denoted ISIP is:
SIPY = IZe‘“Vl{ c® cos@(t - %)) + di? sin@@(t - x))}da (14)
0

The following integral identities can be used to evaluate equation (14) (Abramowitz

and Stegun, 1964):

P —an —_ n
Ie cosfna)da = mea—
. (15)
Can m
e " sin(ma)da =
[ sinmaydar = 5
Hence, it can be shown that (14) becomes,
Y, 47 x) (16)
t-x)"+yr  (t-x)+y

NASA/CR—1999-208676 6



where upon taking the limit of (16) and substituting the result into (13) the following

expression is obtained:

L [UXP + X2 - 20 costa(t - %) +

ijc
17
@ _ yw® DT i _ 1 difl) 40
[Xio = X7 +2d”]isin@(t - x))}da + = ——
Tt— X

In some problems the integraniz{i(jl’ (o does not converge rapidly to zero,
consequently U (wherX i(jl) is close to zero) is large, thus for computational efficiency an
additional term of the asymptote is taken which is of the od8; famely:

o’ , o
aS)ZI.l = + | d a —» +oo (18)
a a

Equation (17) remains the same if the asymptote (18) is subtracted and added at the same

time. It becomes:

®

1 ey ® o, Si
EJ; {{ X7 (o) + X (o) = 2(c; +7)] cos@(t-x)) +

g® 1 d¥®
[Xie' (@) = X7 (@) +2i(d)? +=lisin@(t - x)}da +——
n —

ijc j

(19)

= 2e cos@(t - » 299 sina (t - x
+i_[ i o Xl))da_i-[ g; @( 1))da
24 a 2 a

To evaluate the last two terms of equation (19) the following identities are used

(Abramowitz and Stegun, 1964):

"1 . _ _nn (t B Xl)
!Esm(a(t X ))da = > |t - x1|
I%cos@(t — x))da = ~Ci(U (t - x,)) (20)
v U (t-x)
= —(C, +logU(t - x)| + I %ﬂdﬁ)
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where, G is the Euler constant. The following expression replaces equation (19),

@
L [IXP(@) - X (@) + 2 +“)lisina( - )} da

[ UXP @+ X (@) - 2 cos(t - x)}da
" (21)
+ LX)+ X2 (@) - 2c + )] cosa(t-x)}da

d-(l) @ _ e(.l)
L1479l ¢ Xl)_Lci(u(t—xi))

The first part of (4) and (5) can be expressed as:

(€] b
O I|m gl (X, Yy) = —_[Mdt Ikl‘jl’(xl,t)fj(t)dt
(1) t — (1) (22)
j[g“ W2X) & i - o,
-x|
(1)
0 lim 70, (6, 1) = j %, ’() N jk‘”(xl,t)f (t)dt
b g‘l) (t— ) eél) (23)
5 T — G- ) ()t
T
where,
()
k04,0 = [{IXP @) - X (@) +2i(d + % = lisin@(t - x)}da
+H[AXP @+ X2 (@) - 2c<1’]cos(a(t - x)}da (24)

1)
+ f X2 (@) + X @ (@) - 2c + %)] cos@(t - %))} da

ijc
A similar procedure is applied procedure to the second terms in equations (4) and
(5), expressed in the form shown in (10). The terms denoted(ﬁ;(a have) the

following asymptotes:

asy3 = (a2 +ib®)a +c{? +id® a0~ +o

25
asyt = (-a;” +ibj”)a + CSZ) Idil@ """ a -~ .
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Simplifications can be made with the use of the integral identities (Abramowitz and

Stegun, 1964):

(=)

2 _ 2
Iae‘“” cosma)da = ﬁ
(26)

Iae‘“” sin(ma)da =
0

2nm
(n2 + m2)2

Hence, the second part of equations (4) and (5) becomes:

. 1 ° a®(xZsin’ 8 - co 6(t - x,)?)
O lim 05,123,1(X1, y,) = —I[ ] > . 2 212
Y10 ™ (X sin® 6 + cos O(t - x,)?)
26 %, (t = x,) sin@ cosH
(x? sin” @ + cos O(t — x,)?)?
(2) : (2) —
. % §|n9 +2d;;” coso(t Xl)]f.(t)dt
(x? sin® @ + cos B(t - x,)?)* ~ !

1 b
+ E‘[kl(f)(xl,t)fj(t)dt

(27)

o 12 a(x; sin? @ - cos’ O(t — x)%)
Dllmrxlyl(xl,y1=—f[ eV o2\ 2
0 md® (xZsin? 8 + cos O(t - x,)?)
265 x, (t = x,) sin@ cosH
(X} sin® 8 + cos O(t — x,)%)?
.\ cix, sinB + 2d5? cosB(t — x,)

(x{ sin® 8 + cos O(t - x,)%)?

1 b
+ Efkg?(xl,t) f;(t)dt

(28)

I, (t)dt

where,

k2 (6.,1) = [ X2 (@) = X{? (@) + 2i(ab? +d{?)e ™" Jisin@(t - x,))}da

ijc
+ J; gl X (a) + X2 (@) - 2(0al? +ci?)e™™ " cos@r(t - )} da

It should be noted that (27) and (28) do not contain any singularity and the

asymptotic expansion is applied only for computational efficiency.
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Fundamental Solution

The formulated equations in the previous section will be used to solve the problem of
radial multiple cracks in an infinite isotropic FGM as depicted in Figure 2. Since dealing
with an infinite plate only equations (22), (23) and (24) will be used. But before doing so,
the fundamental solution of a single crack is required. Konda and Erdogan (1994) solved
the single crack problem using Navier equations. In this work the same problem will be
solved using Airy stress function and the shear modulagll vary exponentially with
the global y-axis.

The shear modulus is defined as follows:

Hy(Y) = Hoe”

o (X, Y1) = po€” 0%
J0 = ycosP) (30)

B =ysin@)

where y, §, and B are real constants and represent the coefficients of
nonhomogeneity.

The Airy stress function Ugyy,) are defined as,

o (><1,y1)=—dzu

dy?

o (%) = Y

yiy; V1 )1 XmZ (31)
T,, (X, Y) = - A

XY dxldyl

The stresses and strains are related through:

Ju 1
gxlxl(X:U yl) - dxj_ - 8”(X1’ yl) [(K * 1)JX1X1 + (K - 3bYIY1]
_ov, _ 1 :
Eylyl(xli yl) - a y]]: - 8“()(1, yl) [(K 3)UX1X1 + (K + 1)ay1y1] (32)
1,0 0 1
£,y (X0 Y1) = 2 (524 20 =

= — TX
20y, 0x~  2u(x,y) ™
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wherek is defined as,

K=3-4--.... for planestrain
K = 3-v ----.-for planestress (33)
1+v

and the compatibility equation is defined as:

0% 0% 0%

X1 X1 + Yivi 2 Y1 —

Ox; ay; Ixdy,

(34)

From the compatibility equation the following fourth order governing equation for

U(X1,Y1) is obtained,

17}

0°U (%, y) - ZU(xl,yl))—23—(DZU(x1,y1))+

8p5 02U(><1,y1)+ 2K =300 (%, ¥1) 02U(x1,y1))+

1+k Jx0y, 1+k 9y X} (35)

2 2
52(0 U(Xlz,y1)+K_3d U(X;’yl)):o
AYA 1+k 0%
where
62 0°
Defining the Fourier transform as follows,
V(@) = [U (%, y,)e ™ dx (37)

and applying equation (37) to (35), the following characteristic equation is obtained,

n4—25n3+EB 2a(|/3+a)% +ad%|+20%

1
Eg +523 2+,B(2|a B)E 9

NASA/CR—1999-208676 11



the roots of which are:

2
v, S B Kl S o U o PO Pt B
2 K, +1H 2 +1 K+1
2
1 3-kH 1 3-k [ ) 3-k [
n == - O- = - H +4(a” +iaB +90 =
2 2%5 B K+1: 2\/%5 B K+1: ( % K+1:
1 3-k0 1 3-k [ g
n==-D+p Koy 2 + B K;+4(a2+ia -0 Ko
2 K+1: 2 K+1: K+1:
- 2 -
1 3-kH4 1 3-K L P 3-K L
n ==-0 - + = - H +4a° +ial B+ 9o —
N 2%5 P K +1H 2\/%5 P K +1H ( %8 K +1H
The solution to the ODE becomes:
V(a,y,) = B,(a)e™ +B,(a)e™ + By (a)e™" + B, (a)e™ (40)

so that,
1 P n. n, n, X0
U (Xl’ yl) = 5_[ I[ Bl(a)enlyl + Bz (a)e 2+ Bs (a)e P+ B4 (a)e 4y1]e “da (41)

Bounded form of equation (41) can be obtained upon examination of the roots of the
characteristic equations. The real part pand n are negative while that ogand n are

positive asx approaches infinity. Hence,s defined for positive and negativeas,

1 p " n ix,0r
U,(X, y1) = 5_[ I(Ble Wi+ B,e™)e™da; e y, >0
- . (42)
UZ(Xl’ yl) = _2]7-_[ I(Bse”3y1 + BAen“yl)e'xlada; ......... y, < 0

Normal and shear stresses must be continuog=@t Yhe continuity conditions can

be represented by equation (31) as:

90U (%,0") _ dU(x,0")
A ay, (43)
U(x,07) =U(x,0)

NASA/CR—1999-208676 12



where, 0 is for y1>0 and Ois for y1<0. Using conditions (43) we can eliminatg B

and B :
B :n4_nlB+n4_nZB
* n,-n, © n,-n, ° )
n —n n,—n
B4= 1 3Bl+ 2 382

n,—n, n,—n,

The remaining two unknowns can be expressed in terms of the auxiliary functions:

fl(xl) = 0.,0 [ul(xl!o+) - ul(xlio_)]

1

(45)
fo (%) =

[Vl(xl !O+) - Vl(xl 0 )]

1

The final expressions of the stresses are obtained using (31) and Hooke’s law,

o, (Xl’ y1+) - i I[an Fl(a)hzz B Fz(a)hlz gy
- 2 o hnhzz - hiZh21

46
2 = F@hy + F@y g g )

hllh22 - h12h21

+ 1 7 2 Fl(a)h22 B Fz(a)hiz ny
o V) =-—(a e
ylyl(X1 W) 27-[:[0 [ hy;hy, = hhy,

47
o ZF@hy + F@y ey “7)
h11h22 - h12h21
T,y (Xl, y1+) = _2|_ J.a[nl Fl(sl):::zz — E;E’]a)hlz e
MYl 7-[ —
T ) 2l (48)

— Fl(a)hzl + Fz(a)hu enzyl]eixlada

+n
? h11h22 - hth21
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where,

hy, = K8; 1(”1 —-ng)(n, —n,)
hy, = K8;1(n2 —-n)(n, —n,)
ia-p (nl ~ n3)(nl ~ n4) ]
(49)

N =gy, OO I G -G -y

0

_ia-B, , _s20 _ (n, =ny)(n, —n,)
= G @) -5, 9l T e

0

b
F.(a) =I f, () dt - j=12.
The singular integral equations can be solved for the auxiliary functions using the

boundary conditions:

= pu(x) = !ljrl’lo Ty (X, Yy) oo .

= (%) = im T, (6, 2) oo 1 (50)

Equation (47) and (48) are rearranged as follows,

. 1 *© 5 hzzenl)ﬁ — h21enz)ﬁ
o,. (X, =—-—— (0o F (o
Y1Y1( 1 yl) 27-[_-[0 [ hilh22 _ I«hthl 1( )
(51)

Y1 _ Y1 .
+ hlle hlZe Fz (a)] elxla da
hllh22 - h12h21

R ny: _ N2Y1
0 Y1) =~ o M T €T )
2m Zoo hnhzz - h12h21 (52)
Ry MYy1
+ nzhlle nlhlze Fz(a)]eixl"’da

h11h22 - h12h21

As a goes to infinity aAlh, so X; can be expressed as defined in equation (9):

h,—-h h,-h
X.. = _02[ 22 21 ] = _02[ 1 2 ]
. hnhzz - h12h21 o hnhzz - hiZh21 (53)
X21 — —ia[ n1h22 B n2h21 ] X22 - —ia[ nzhn B n1h12 ]
hllh22 - h12h21 h11h22 - h12h21
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the asymptotes of are found as:

o _ o
Xy (#00) = ﬁ Xpy(=) = “a(l+K) |
Xp(+e0) = 2 + P Xip(=00) = -2 + B
(1 +.K) a(l+K) l+k) -a(l+k)
Xupw) = 2w B__ x (w)z 2y P
l+k) a(l+k) l+k) -a@d+k)
__ -9 )= —90
X (+00) = a(l+ k) X 55(=) “a(l+«)

so that from (54) it is concluded thgtj

(12) and (18) become,

2
di, =d} = ——
12 21 1+K
)
1 o— _al —
€= "€ =
1 _a - B
€ =€ =

1 A1 A1 A g1 g1 1 1 1 A1
Cll_ClZ_CZl_CZZ_dll_d22_gll_ng_921_922_0

Now substituting

eqguations are reached,

Kk +1 10 f,(1)
20,0 "0 = 1=

b

Iklz(xl, t) f,(t)dt

1.8 _
T j SCIU - X)) (bt
1} k0o, R OdE- j—CI(U (t = )] f,(t)cl
n a
B K +1 _lb f,(t) lb
2H(X1,0) P2() = ﬂ'!t - X e ﬂo!kﬂ(xl’t) fL(t)dt

-2 8o - oot

+ %!kzz(xl,t) f,(t)dt + %{%Ci(U (t = x))]f,(t)dt

NASA/CR—1999-208676 15
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1
i Cij andg” described earlier in equations

(55)

(53) and (55) into (22) and (23) the final singular integral

(56)

(57)



where,

() = [ X = Xyl sinat - x))}da
+ [ {1 X0y + Xyl cosa(t - x,)}da (58)
® 5
# fX+ X =2 7 ST costa(t - x)))da)
k060 ) = KX, = X, + —2 i sin@(t - x)Hda
12\ 4 J.O 12c 12 1 +K 1
+ [ {[ X4z + Xpze] cos@(t = x))}da (59)
) B B B
[+ X =2 0 ST costa(t - x)))da)

K+l e B LT B
kan(%,8) = [ (X = Xop + -l sin@(t - x,))}dar
+ [ {1 Xz + X ] cos@a(t - x)}da (60)
© B ﬁ B
# L0+ X =2 ST costa(t - )} da
o, 8) = S Xane = X1l sinfa(t = x))}
+ [ {1 Xzp + Xope] cos@(t = x,))}da (61)
@ o
# X0+ X + 2% ST cos@(t - x)}da)

The definitions for the stress intensity factors (SIF) and the strain energy release rate
(SERR) can be found in Konda and Erdogan (1994). Applying the Lobatto-Chebyshev
collocation integration technique, as in Binienda and Arnold (1995), to the system of
singular integral equations (56) and (57), the normalized mode | SIF were produced and

compared to that of Konda and Erdogan (1994) as summarized in Table I.
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Multiple Crack Formulation

To formulate the multiple crack problem the total stresses of the system needs to be
determined. The cracks are located along their locakes, which are related by the
following coordinate transformation:

X = %, €086, —6)-Yy,,sin@,, -6)

yi = X|+1 Slr‘|(6|+1 9|) + yi+.1 COSGHl - 9|)
X, = X% c0s@,, —6)+ysinG,, -6) (62)
Vi = X SiN@,,, —6) +y cosb,, -6)

6i +1 > 6i
and the stresses are related through the Cauchy stress transformation tensor:

o,, O B‘nz n>  -2mn DEb ., O
g o 2 0
Ep-ylyl D Er] m 2mn wyl +1Yis1 D

ETXME Enn -mn m' -n %x 1y.+1

o, . O Om* n*> 2mn DEb O
U “0o_0 . 2 > D
Wy, 0= gh m- —2smn @py.y. (63)

Elrmy.u% E_mn mn m’ -n %Tw.

m=cos@,,, - 6,);n =sin@,, - 6)
The material constants are:

B =ysin@)
5 = yoos6) (0

The stresses for each coordinate system are expressed as:

(% i) o (I) iy o
© N Yi Ny Y i
o, (oY) = (e € 2 R €
xx 50 Yi an OGN 0 1
o hy;, hy,=hyy hyy
(i)2 i o (l) i o ' (65)
n; h11 i n h12 eht 0 ixiar
OIOERON0 F,(a)]e™ da

h11 h22_ hlz h21
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@i O (i o _
- en1 Yi h21 en2 Yi i)

w17 h
o X0 )__2_71.[02[ oo oo @)
- hll h22_ h12 h21

O o 9y (66)
hllez i _hlZe 0 ixia
=0 o o @))€ da

h11 hzz_ h12 h21

R O IO B O N O NN
[ n h,,e** —n,h, e®" _O

T, (X,¥") :——Ia[ . 2 2 F(a)
XY i o D000
e h11 hzz_ h12 h21
(i) r(]ii) w0 If;) O o (67)
n e®¥ —n ehy G e
o o R(a)]etda

h11 hzz_ h12 h21

(i; i o (i; i o
© Y _ Ny Yi i
1 . n;N,,e*" —n;N,e"" O
— (I c T 12 F.(a)
21T i @ (O]

o Ny; Nop= Ny Ny
(i% i (i)2 i) _ (68)
n, N11 Chidis n; N12 e™” @ X0

DEROEROER0 F,(a)]e™ da

N11 sz_ N12 N21

O-xixi (Xi ! yi_) =

@i o i o
L 1 ) ) N22 en3yi — N21 en4yi (i)
Ty (%Y, )__2_n,ra [ o @)

- Np; Noo= Ny Ny
O 0,0 o (69)
N, e** —Nje*" _© i,
om0 o R(a)]e"da
N11 sz_ N12 N21

e (OB 2>y i) (i) g)y '
) = ! ne.szegi_mNzle4i 0
TXiYi (Xi ' yi ) - 27_[ J.a[ B0 GRG0 Fl(a)

—00

11 sz_ N12 N21
OO oo 00 0 (70)
n,Nye*” —n; Nj,e” ® ix.or

OO0 F,(a)]e™"da

N11 N22_ N12 N21
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where,

(i) K+1 0O O 0O O

N,, = 3 (n,—ny)(n;—n,)
0

(i) K+1 ® O 0 ®

N, = 3 (n,—n,)(n,—n,)
0

(OO O]
(@*(A+k,) =67 (k =3l (%_ns)(r:f)_nZ) o)
Ho (6i _nl)(éi - n2)(6i _ns)
0 . (i)_(i) (i)_(i)
N =SB @) -7 - ) g
Ho (6, — N, —n)(S —n,)

O _ia-p

N,, = (72)

and Ky are as defined in (49) for th® ¢rack. Assume that there are n cracks present, then

the stresses for th® track could be expressed as:

07,06, 3) = 03, 06,30 + Y 01, 16,6, Y. ¥, (%, )

_ no (72)
iT-Iy—iyi (X, Y;) = T;/iyi (%, y) + z T)J,jyi [Xj (X, Y1), Yi (%, ¥l

=1+

SO
where 9y Txy are found using (63) and they are evaluated as in (9) and (10)

respectively. One must be carefull when chossing the stress components for the positive
yi (y") and for the negative; Yy;). Thus the final singular integral equation could be

expressesd for th& crack as:
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i b h i i
g PO =2 “)n+1jmxx ) )t
31
b
R ROL:
by
%j@ﬂ&u)fﬂﬂu——j—cﬂﬂt—xmfﬂ)m
3,

1 " ai‘{)(x sin® @ - (t; - x, cosd)?)
& n-[ (x? sin® 0+(t, - X% c0s0)?)?

N ciP'x sinB((t; - x cosh)? + x’ sin” B)
(X7 sin® @ + (t; - x, cosh)?)?
2b[x; sin@(t; - x cosd)
(x?sin® 6 +co O(t - x)%)°
(t —x cos)d;} (x7 sin” @ + (t; — X cosh)?)
(x*sin® 6 + (t, — X cosf)?)?

]f(t)dt

1%
+_I 1(Xi’tj) fl(tj)dtj

:I

+1naﬂx$ne(t—xw$))
n-[ (x? sin® 0+(t - X c0s9)?)?

a;

.\ cix sinB((t; - x cosh)? + x’ sin” B)
(X7 sin® @ + (t; - x, cosh)?)?
2b1)x sin@(t; - x cosd)
(x*sin® @ +cos O(t — x)*)?
dl‘z’)(t ~ % cosB)(x’ sin? 6 + (t; - x, cosd)?)
(x? sin® 0 +(t, - X% cosH)?)?

11,(t,)dt
®l (i)

1 ()
+— [k, ot f, t; dtj
ali (x,t;) f,(t;)dt;} (73)

NASA/CR—1999-208676 20



. 0 -
o 0= I{%%%“+lf@*‘*)f“)“
EY I

]
-%I%cmam—x»ﬁxmdn

+ ﬂamofamv-j—awa—mnuum

1 g a‘”(x sin® @ - (t; - x, cosd)?)
i n-[ (x? sin® 0+(t, - X% c0s9)?)?

N ciPx sinB((t; - x cosh)? + x’ sin” B)
(X7 sin® @ + (t; - x, cosh)?)?
2b3)x; sin@(t; - x cosd)
(x* sin® 6 +cos O(t - x,)?)?
, (t; =% cosB)dP (X’ sin’ 6 + (t; - x cosh)’)
(%7 sin® @ + (t; — x cos)?)?

]f(t)dt

® ()

[alx.t) £, )

i
J

+

:lll—‘

+1b al) (x? sin® 6 - (t, - x, cosh)?)
EI[ (x? sin® 0+(t - X c0s9)?)?

a;

. cix sinB((t; - x cosh)? + x’ sin” B)
(X7 sin® @ + (t; - x, cosh)?)?
2b5)x; sin@(t; - x cosd)
(x*sin® @ +cos O(t — x)*)?
dég)(t ~ X cosB)(x’ sin? 6 + (t; - x, cosd)?)
(x? sin® 0 +(t; - X% cosH)?)?

11, (t ) dt;

+ ﬂAmeGNH e

(S)IO) (i) 0
where the constants, ---d,,andk,, are defined in the Appendix, the kerndls,

are defined as in (58) through (64) &¥®;-6;.
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The above solution is reduced to the case of two collinear cracks embedded in the

isotropic plate to demonstrate high accuracy of the results as shown in Table II.

Parametric Studies

In the following parametric studies the length of all cracks is chosen to be 2c = 2.
The infinite plate is subjected to normal stress along y global direatjgsi, psi. Cracks
are located along their locaj axes, which can be inclined with respect to the global x
axis. All the geometrical dimensions are normalized with respect to c. The parametric

studies are presented for the normalized mode-I and mode-Il SIFi/keahkd k/ko, and

8KoKo
(K +1)

normalized SERR, i.e., 85, and G/Gy, wherek, = OW\/E andG, =

First study takes into consideration the problem of two collinear horizontal cracks.
The same crack configuration was used to produce the results in Table Il for
homogeneous materials, see insert in Figure 3 or 4. Here we extended the material
properties to the show transition from homogeneous material to FGM. The distance
between the inner tips is denoted by r. Figures 3 and 4 show mode | normalized SIF and
mode-l normalized SERR versus a normalized crack tip distance r/c. The curves are
shown using the logarithmic scale for the crack distance variable.

It can be noticed that as the distance between the cracks becomes smaller the SIF
and SERR become larger for every power of the exponential variation coeffigient
Note, that the homogeneous case is represented by making the coeffici@nt Both

driving forces increase gdncreases for materials becoming more nonhomogeneous. The

increase is especially significant for the crack tip distance less than 0.01.
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The case of collinear inclined cracks at 30 degrees from the horizontal axis is
shown in Figures 5 to 8. Mode-I SIF shown in Figure 5 has larger magnitudes for both
the homogeneous and FGM materials than the corresponding Mode-Il SIF shown in
Figure 6. Both modes show increase of SIF for decreasing of the crack tip distance and
for increasing of the coefficieny. Figures 7 and 8 display mode-I and Il SERR.
Magnitudes of Mode-I SERR are almost three times larger than the corresponding mode-
Il SERR. Both SERR modes increase for decreasing of the crack tip distance r (same as
SIF) and for decreasing gf(opposite to SIF). It should be pointed out that the material
stiffness at each crack tip dominates the results for SERR to the point of reversing the
trend in comparison with SIF with respecito

The cases when two cracks are located along two different local radial axes
distance d = 1 from the origin is shown in the remaining figures. The location of the first
crack is kept constant at 30 degrees while orientation of the second crack is changed from
45 to 90 degrees. Both SIF and SERR are shown for each crack tip versus the orientation
angle of the second crack.

Figures 9 and 10 display mode-I and Il SIF while Figures 11 and 12 represent
both modes of SERR at the left crack tip of the stationary crack 1. It can be noticed that
when crack 2 comes closer to crack 1, the tipisashielded and all driving force
components are significantly reduced. Mode-1l SIF has its maximum for the orientation
angle of the second crack close to 70 degrees. By increasiiginer magnitudes for
mode-| SIF and lower magnitudes for mode-Il SIF are produced.

Both modes of the SERR depend not only on square of the SIF but also on the

material stiffness at the crack tip. This influence is especially shown in Figure 11 where
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the homogeneous case produces the smallest SERR for angle 45 degrees similar to the
corresponding SIF. However, homogeneous SERR curve becomes largest for higher
angles, which is opposite to the corresponding SIF.

The opposite character of SIF and SERR is even better shown in Figures 13 to 16.
Here the shielding effect does not exhibit itself. Both modes of SIF for the homogeneous
material are smallest (see Figures 13 and 14 for mode-l and Il SIF), while both
components of SERR are largest (see Figures 15 and 16 for mode-lI and Il SERR),
because of the crack tip material stiffness influence.

The results for the left crack tip of the second crack are shown in Figures 17 to 20.
Mode-I SIF depends on the crack orientation and for homogeneous case is smallest. The
negative values of the mode-I SIF should be interpreted as the crack closure and SERR
for such case is zero.

Mode-IlI SIF at the tip of the second crack versus its orientation is shown in
Figure 18. For the homogeneous case the maxinis & 45 degrees. In the cases of
higher coefficienty the maximum kis shifted towards 60 degrees crack orientation. The
magnitudes of SIF are larger for nonhomogeneous cases than for the homogeneous case
when the orientation angles of the second crack are higher than 60 degree.

Mode-I of SERR monotonically decreases to almost zero at 75 degrees and at
about 50 degrees does not depend gn see Figure 19. For 45-50 degrees the
homogeneous case is the highest and for 50-90 is the smallest. Mode-Il SERR is the
highest for 45-90 degrees angle orientation and has its maximum at 45 degrees, see

Figure 20. The shift of the maximum to 55 degrees can only be obseryesllf@r.
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Mode-I SIF for the right crack tip,lis very small for all the angles examined or it
is negative (crack closure) for the angle more than 65 degrees for the homogeneous case
and down to 50 degrees for FGM wity=1. Mode-ll SIF is shown in Figure 22. The
maximum is moved to 60 degrees because of the influence of the crack below. The
homogeneous material case is the smallest for all the angles of the crack orientation.

Mode-I SERR at the same crack tip is shown in Figure 23. Homogeneous case
starts to be the highest at the orientation of 45 degrees and quickly goes to zero at 62
degrees. The FGM with the highegtalso goes to zero but at the smaller angle because
the crack tip remains closed. Mode-ll SERR is shown in Figure 24. All the curves have
their maximum at 55 degrees. The highest SERR isyferl.0 and the smallest foy =
0.25 at the angle of 45 degrees. The homogeneous material produces the smallest SERR
for the orientation close to 75 degrees.

All of the above parametric studies demonstrate that the effect of the material
properties, crack orientation, location of the additional crack are interdependent and
consequently produce behavior different than isotropic homogeneous materials. The
model developed in this work can be used to study fracture problems in FGM and can be
used to tailor the properties in order to reduce driving force components and effectively

increase live of these materials.

Conclusions
Application of the general solution to the mixed boundary value problem was
demonstrated to provide an elegant way of obtaining the fundamental solution for a crack

embedded in an infinite nonhomogeneous plate. The fundamental solution was used to
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address multiple crack problem. Parametric studies for the multiple cracks revealed, that
both SIF and SERR highly depend on the crack geometrical parameters such as crack
orientation, location, relative distance, etc., but they also depend on the power of the
exponent describing the rate of change of the material elastic parangetand, local
stiffness of the material at each crack tip.

The results demonstrated that the driving forces can be amplified by the collinear
crack orientation or they can be reduced by the shielding effect between cracks above or
below. @ The character of the amplification or shielding remains similar for
nonhomogeneous materials but in most cases higher than zero coefficiengiases SIF
and reduces SERR.

The well known one-to-one relation between SIF and SERR curves is not always
valid for FGM, because SERR also depends on the material elastic constants. Hence, the
SIF curves may have different character than SERR curves. The application of the
driving forces to crack propagation criterion need to be further studied to determine
which driving force (SIF or SERR) best correlates with appropriate experimental results.
However, since SERR includes the influence of SIF and material stiffness at the tip it is

recommended that total SERR is used for the driving force parameter for FGM.
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Table | Verification of the Solution.

cy Konda and Present Study | Konda and Present Study

Erdogan (1994) k,(a)/Vc Erdogan (1994) kj(a)/Vc

ki(@)Nc ka(a)/ Ve
0.25 1.036 1.036 0.065 0.062
0.50 1.101 1.101 0.129 0.122
1.0 1.258 1.260 0.263 0.243

c=(b-a)/2
Table Il Two Collinear Cracks In Isotropic Plate
From literature
Ty Horri and Nemat-Nasser Erdogan Present Method
(1985) (1962)
Inner Outer Inner Outer Inner Outer

0.22 1.45387 1.11741 1.45736 1.11786
0.50 1.2289 1.0811 1.22894 1.08107 1.22894  1.08[07
0.857 1.1333 1.0579 1.13326 1.05786 1.13329 1.05[787
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where,
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a Oij

p.q to close the crack

®) 4 Ojj

Figure 1. Methodology of Solution for the Fundamental Problem.
(a) Mixed Boundary Value Problem for the FGM.
(b) Infinite FGM Plate without Crack.

(c) Perturbation Problem of a Crack loaded by Surface Tractions.
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Figure 2. Multiple Cracks Embedded in the Infinite FGM Plate.
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Figure 3. Mode | normalized SIF versus normalized inner crack tips distance

for two collinear horizontal cracksoyy, = 1.0,0, = 0xy =0.0).
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Figure 4. Mode | normalized SERR versus normalized inner crack tips distance

for two collinear horizontal cracksoy, = 1.0,04x« = 0yxy =0.0).
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Figure 5. Mode | normalized SIF versus normalized inner crack tips distance

for two collinear cracks along ti8=30 deg. §,y = 1.0,0x = Oxy =0.0).

NASA/CR—1999-208676 38



7 T T T TTTT T T TTT T T Tl T T TTTT

—c— yc=0.0001

6
—H=—yc=0.25
——yc=0.50
5 ! —<— yc=0.75
~° y —+—yc=1.0
T 4
E 2c X1
= 2 0

v

x

0 Ll Ll Ll ol
0.001 0.01 0.1 1 10

r/c

Figure 6. Mode Il normalized SIF versus normalized inner crack tips distance

for two collinear cracks along ti8=30 deg. §,y = 1.0,0,x« = 0y, =0.0).
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Figure 7. Mode | normalized SERR versus normalized inner crack tips distance

for two collinear cracks along ti8=30 deg. §,y = 1.0,04« = 0y, =0.0).
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Figure 8. Mode Il normalized SERR versus normalized inner crack tips distance for two

collinear cracks along t#=30 deg. §,y = 1.0,04« = 0y, =0.0).
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Figure 10. Mode Il normalized SIF at the tipvarsus crack (2) orientation andglgfor
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Figure 11. Mode | normalized SERR at the tiw@rsus crack (2) orientation andle

for two inclined cracks.dyy = 1.0,0x = Oxy =0.0, d=1.08,=30 deg.).
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Figure 12. Mode Il normalized SERR at the tipvarsus crack (2) orientation an@e

for two inclined cracks.dyy = 1.0,04 = 0y =0.0, d=1.09,=30 deg.).
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Figure 13. Mode | normalized SIF at the tipMersus crack (2) orientation an@efor

two inclined cracks.dyy = 1.0,04« = 0xy =0.0, d=1.00,=30 deg.).
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Figure 15. Mode | normalized SERR at the tipzérsus crack (2) orientation an@le
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for two inclined cracks.dyy = 1.0,04 = 0y =0.0, d=1.09,=30 deg.).
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Figure 17. Mode | normalized SIF at the tijpvarsus crack (2) orientation an@e
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Figure 20. Mode Il normalized SERR at the tipvarsus crack (2) orientation an@e
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Figure 21. Mode | normalized SIF at the tigpMersus crack (2) orientation an@le
for two inclined cracks.dyy = 1.0,0x = Oxy =0.0, d=1.08,=30 deg.).
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Figure 22. Mode Il normalized SIF at the tipuersus crack (2) orientation an@le
for two inclined cracks.dyy = 1.0,04 = 0y =0.0, d=1.09,=30 deg.).
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Figure 23. Mode | normalized SERR at the tiprérsus crack (2) orientation an@le

for two inclined cracks.dyy = 1.0,0x = Oxy =0.0, d=1.08,=30 deg.).
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