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NOMENCLATURE

c speed of sound

D jet  diameter

cε turbulence model coefficients

f, f ' ean and fluctuating components of variable f

g time factor (Eq. 41)

k turbulence kinetic energy, ½ uiui

l turbulence length scale

Mt turbulent Mach number, Eq. 23.

Pij           stress production, Eq. 6,  P = Pkk/2

p pressure

R radius

Rg gas constant

Rij space factor, Eq. 41.

Rt turbulence Reynolds number

T  temperature

Tij Lighthill stress tensor

u,v,w fluctuating velocities in x,y,z directions

uτ friction velocity

x,y,z Cartesian coordinates

y+ nondimensonal distance, yuτ/ν

α factor in Sarkar compressbility correction, Eq. 23  & 43

β factor in compressible dissiapation model, Eq. 43

δij Kronecker delta

ε dissipation rate of turbulence energy

γ ratio of specific heats

λ factor in Zeman compressibility correction, Eq. 43

µ dynamic viscosity
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ν kinematic viscosity

νt turbulent viscosity

θ polar coordinate

ρ density

σ turbulent Prandtl number for diffusion of k and ε

τo characteristic time dalay

ττ shear stress

Ω source frequency



1

ji

ij

xx

T
c

t ∂
∂

=∇−
∂

∂ 2
'22

2

'2

ρρ

SURVEY OF TURBULENCE MODELS FOR THE COMPUTATION OF
TURBULENT JET FLOW AND NOISE

Abstract

The report presents an overview of jet noise computation utilizing the computational fluid
dynamic solution of the turbulent jet flow field.  The jet flow solution obtained with an
appropriate turbulence model provides the turbulence characteristics needed for the
computation of jet mixing noise.  A brief account of turbulence models that are relevant
for the jet noise computation is presented.  The jet flow solutions that have been directly
used to calculate jet noise are first reviewed.  Then, the turbulent jet flow studies that
compute the turbulence characteristics that may be used for noise calculations are
summarized.  In particular, flow solutions obtained with the k-ε model, algebraic
Reynolds stress model, and Reynolds stress transport equation model are reviewed.
Since, the small scale jet mixing noise predictions can be improved by utilizing
anisotropic turbulence characteristics, turbulence models that can provide the Reynolds
stress components must now be considered for jet flow computations.  In this regard,
algebraic stress models and Reynolds stress transport models are good candidates.
Reynolds stress transport models involve more modeling and computational effort and
time compared to algebraic stress models.  Hence, it is recommended that an algebraic
Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds
stress components.

I.  INTRODUCTION

The study of the origin of jet noise began around 1950 in response to the then emerging
need to control the noise of jet propelled aircraft.  Lighthill [1,2] proposed the theory of
aerodynamic sound to describe the mechanism of noise generation from the mixing zone
of turbulent jets.  It is an exact formulation based on the fundamental equations of fluid
motion.  Lighthill’s equation for density fluctuations in a flow is written as,

(1)

where

Tij = ρuiuj - τij  + (p - ρc2)δij  (2)

 is the Lighthill stress tensor.
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The theory replaces the actual flow by a flow at rest with an acoustic field in which
waves propagate at constant speed c.  The source field for the waves is a quadrupole
distribution and the strength of the quadrupole in unit volume is given by Lihgthill stress
tensor, Tij . The double divergence on Tij  indicates that the source is a quadrupole.  Thus
in Lighthill’s analogy the sources move instead of the fluid.  Hence if Tij  is known
throughout the real flow field the wave equation (1) can be solved, to evaluate the small
scale jet mixing noise.

In the absence of a detailed flow field solution, simple scaling laws derived for the
turbulent flow were used to estimate the sound radiation from turbulent jets.  Such
estimates showed poor agreement with the data.  The variation of sound spectra with
angle to the jet axis was poorly estimated at moderate and high frequencies.  This was
traced to the neglect of mean flow effects on the radiated field.  Lilley [3] formulated the
jet noise problem in terms of jet noise generation and sound-flow interaction, accounting
for the effect of refraction and convection.  This formulation is used in a majority of
recent investigations of jet noise.

The problem of estimating the distribution of Tij  throughout the flow field has been the
subject of numerous investigations.  A fully time dependent numerical simulation (Direct
Numerical Simulation, DNS) of the turbulent jet flow can be used to provide the
distribution of noise source strength Tij .  But such full simulations are still restricted to
simple flows and low Mach numbers.  Colonious et al [4] computed the acoustic field due
to plane mixing layer, using direct simulation.  Before we look for other methods of
computing Tij , let us look at the terms in Lighthill stress tensor.  The first term ρuiuj is the
momentum flux per unit volume.  The second term -τij is the viscous stress, which can be
neglected for high Reynolds number flows.  The third term (p - ρc2)δij is normally
considered to be small order compared to ρuiuj in isentropic flows, where the temperature
difference between the flow and the ambient is small.  So for majority of the flows of
interest Tij =ρuiuj. ρuiuj is the unsteady Reynolds stress.  However, the full space-time
history of Tij  can not easily be evaluated for flows of  practical interest..

The Reynolds stress distribution can be obtained from the solution of Reynolds averaged
Navier-Stokes (RANS) equations.  Substitution of apparent mean (Reynolds) stresses for
the actual transfer of momentum by the velocity fluctuations increase the number of
unknowns above the number of equations. The problem then is to supply the information
missing from the time-averaged equations by formulating a model to describe some or
all of the six independent Reynolds stresses, -ρuiuj.  The exact Reynolds stress transport
equations can be derived from the time dependent Navier-Stokes equations [5].  These
equations express the conservation of each Reynolds stress as the Navier-Stokes
equations express the conservation of each component of momentum.  In turbulence
modeling one uses a finite number of Reynolds stress transport equations and supplies
missing information from experimental (or analytical) results.  The time-averaged scalar
transport equation contains the turbulent heat or mass flux, -ρuiφ, where φ is the
fluctuating scalar quantity.  When only time averaged information is available, modeling
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of the turbulent velocity frequency–wave number spectrum is required to obtain noise
spectra as a function of directivity angle.

From a time averaged solution with appropriate turbulence modeling, turbulence length
and time scales needed for the acoustic solution can be extracted.  This approach has been
adopted by Khavaran et al [6], Bailey et al [7,8], and Khavaran and Krejsa [9] recently to
compute the sound radiated from turbulent jets.  These papers use k-ε turbulence models
and they express the turbulence length and time scales in terms of turbulent kinetic
energy, k, and its dissipation rate, ε.  In this report, we will look at the turbulence models
that provide k and ε, for use in noise calculations.

Several reviews of turbulence models have appeared concentrating on different aspects of
turbulence modeling [for example, 10 –15].  A recent review by Hanjalic [16]
summarizes the applications of single point closure methods and discusses possible
directions for turbulence model improvements.  Spieziale [17] discusses mathematical
aspects of Reynolds stress closure methods.   The book (revised, 2nd Edition) by Wilcox
[18] contains complete details of turbulence models that are employed in computational
fluid dynamics computations.

One recent NASA conference publication [19] presents various turbulence models and
their applications to subsonic/supersonic flows, wall bounded and free shear flows of
interest in propulsion.  Turbulence models used by various industries and research
organizations and the results obtained with these models are presented.  In another
NASA/Industry report [20] nozzle flow computational results obtained from five
different codes (from GE, UTRC, MDC, Boeing, and Glenn Research Center (GRC))
with different models were evaluated.  The codes were found to produce similar results
when they used common grids, boundary conditions, and turbulence models.  The results
showed little sensitivity to upstream turbulence levels, but showed strong dependence on
the choice of turbulence model and the near wall treatment.

In the present survey, we examine the turbulence models that are relevant for the
computation of jet flow for the purpose of evaluating sound radiated from turbulent jets.
First a description of turbulence models which are relevant for computing the noise
radiated by jets is given.  Then the application of the models and their performance in jet
flows of interest are described.

II.  TURBULENCE MODELS

The transport equations for the Reynolds stress tensor can be derived from Navier-Stokes
equations [5].  Since such transport equations contain higher order correlation terms,
models need to be developed to express them in terms of known or calculable variables.
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2.1 Reynolds Stress Transport Equation Model

Turbulence models employing transport equations for uiuj are called second order closure
smodels.  Several closure schemes have been proposed for these equations.  The well-
tested one is that of Launder et al [21].  This model was applied to axisymmetric free
shear flows by Launder and Morse [22].  The free-shear flow version of the transport
equation for Reynolds stresses transport equations may be expressed as

           (3)

Convection = Production + Pressure strain + Dissipation + Diffusion

The four terms on the right hand side represent the stress production, pressure-strain
correlation, viscous dissipation and diffusive transport of uiuj, respectively.

The pressure–strain correlation is approximated as:

   (4)

(5)

where

                     (6)

.

                 (7)

ijij εδε
3

2=
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The coefficients α, β, and γ are related to a quantity c2 by
α = (8+c2)/11; β = (8c2-2)/11; γ = (30c2-2)/55.
 P = Pkk/2; k = ukuk/2.

In [21], two models were adopted for the diffusive transport of stress, Dij .  The simpler
one proposed by Daly and Harlow [23] was used for axisymmetric thin shear layers by
Launder and Morse and it is:

                 (8)

Closure of Launder et al model [21] is completed through the following equation for the
turbulence dissipation rate, ε, of turbulence energy.

(9)

The model contains six coefficients and their values are [22]:

     c1        c2            cs      cε1      cε2      cε
  1.5      0.4       0.22   1.45   1.9    0.15

Convective transport and production terms are exact whereas the diffusion, pressure-
strain, and viscous dissipation terms have been modeled.  The diffusion fluxes of uiuj

have been expressed by simple gradient diffusion models.  The most important
assumption concerns pressure-strain terms, since for shear stresses these are the main
terms to balance the production of these quantities.  The pressure strain model consists of
two parts.  The first one represents the interaction of fluctuating components only, and
the second, the interaction of mean strain and fluctuating quantities: φij  = φij

1 + φij
2.

(10)

` (11)

 Several versions of pressure-strain model have been proposed to correctly predict the
experimentally observed results.  To account for the wall damping effects a wall
correction must be introduced in the pressure-strain model.  Launder et al [21] make the
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empirical constants in the pressur-strain model a function of the relative distance from the
wall, 1/y ∝ k3/2/(εy).  Because of the complexity and the large amount of computational
effort involved, the model has not been widely used as one would like it to be.

2.2 Algebraic Stress Model

In Reynolds stress models, there are differential equations for each component of uiuj in
addition to an ε equation.  To reduce computational effort algebraic relations have been
proposed by Rodi [24] for calculating the Reynolds stresses.  This done by assuming that
the net transport of uiuj is proportional to the net transport of k multiplied by the factor
uiuj/k.

Rodi uses a simpler model for pressure-strain relation than that presented in Eq. (4) and it
is given by

      (12)

with α = 0.4 and he writes the transport equation for turbulent energy, k as

                   (13)

As mentioned above, to obtain an algebraic expression for uiuj, the following
approximation is employed:

       (14)

where  Dij   is defined in Eq. (8), Dk  and P in Eq. (13).  Incorporation of Eq. (14) into the
uiuj equation (3) yields the desired algebraic expression for uiuj :

              (15)
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Now we have a set of algebraic expressions for the stresses uiuj, in terms of the mean
strain rate, turbulent kinetic energy k, and its dissipation rate ε, and the stresses
themselves. As in Launder et al model [21], closure is completed by an equation for the
dissipation rate of turbulence energy, ε.  

The algebraic stress model provides a mechanism by which anisotropic turbulence
distribution can be computed without the large amount of computational effort required
for the Reynolds stress transport equation model discussed above.  All the effects that
enter the transport equations for uiuj through the source terms for example, body force
effects (buoyancy, rotation, and streamline curvature), non-isotropic strain field and wall
damping influence can be incorporated into algebraic stress models.  Algebraic stress
models therefore also simulate many of the flow phenomena that were described
successfully by Reynolds stress transport equation models.

2.3  k-ε Model

The k-ε model is the most often used model in present day engineering computations.
The model was developed by Launder and Spalding [25,26] and Hanjalic and Launder
[27].  In this model closure is achieved by relating the Reynolds stress to the mean strain
rate through the Boussinesq approximation

(16)

The effective turbulent viscosity, µt is defined in terms of a characteristic length and
velocity.  If the length scale is taken as the turbulent length scale, k3/2/ε, and the velocity
scale is approximated as √k, then µt can be expressed as

µt  = cµ ρk2/ε       (17)

cµ  is a constant.  The individual uiuj is related to the single velocity scale √k.  For
isotropic turbulence uiuj =2/3 δijk.  In k-ε model one solves two separate modeled
transport equations, one for turbulent kinetic energy and the other for its dissipation rate.
The modeled equations for k and ε as described in Reference 26 are:

(a) Kinetic energy equation

(18)

(b) Kinetic energy dissipation rate equation
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(19)

The constants assume the approximate values of cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk =1.0,
and σε = 1.3.  These constants were obtained by comparison of model predictions with
the experimental data on equilibrium boundary layers and decay of isotropic turbulence.

III.   MODIFICATIONS TO k-ε MODEL

The standard k-ε model has been modified to account for observed discrepancies between
the model prediction and the experimental results.  Here we consider first two such
modifications relevant for the computation of jet flows to account for the spreading rate
of circular jets and the spreading rate of high-speed jets. Then we discuss an anisotropic
k-ε model, low Reynolds number and near-wall models, and multiple-scale models.

3.1 Vortex stretching dependent dissipation rate

It was found early on that while the standard k-ε model predicts the plane jet flow
correctly, it overestimates the spreading rate of circular jets. Pope [28] suggested that the
stretching of vortex tubes by the mean flow has significant influence on the process of
turbulence scale reduction.  In axisymmetric jets, as the jet spreads rings of vorticity are
stretched.  This causes the effective viscosity and hence the spreading rate to be lower in
the circular jet.  Pope incorporated this aspect in the standard k-ε model by modifying the
dissipation rate, ε, equation.  The modified form of the dissipation equation proposed by
him is:

  (20)

                                                                                                                   

Where χ = ωijωjksij
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and cε3 = 0.79.

3.2 Compressibility Correction

The standard k-ε model when used to predict the development of high-speed shear layers
and jets, it was found that the growth rate did not compare well with the measurements.
In these flows, the experiments showed that the growth rate of high-speed shear layers
reduces with increase in convective Mach number [29].  The growth rate of shear layers
is dependent on the growth rate of instability waves at these speeds.  At high speeds, the
reduction in the instability wave growth rate reduces turbulent mixing.  Sarkar et al [30],
Sarkar and Lashhmanan [31], and Sarkar [32], developed an addtitonal factor to be added
to the standard k-ε model to account for the compressibility effects.  The form of the
additional factor was found by an asymptotic analysis of the compressible Navier-Stokes
equations.  The suggested modification is

ε= εs(1+α Mt
2) (23)

where Mt
2 = 2k/(γRgT)   and α is a constant set equal to 1.0 and Rg is the gas constant.

The factor  ε= εs(1+α Mt
2)  corresponds to the contribution due to the incompressible and

compressible dissipation rates, εs referring to the standard value and Mt is the turbulent
Mach number.  This term is added to the turbulent kinetic energy equation of the standard
k-ε model. The equation now reads as

(24)

3.3 Anisotropic k-ε Model

The standard k-ε model assumes an isotropic eddy viscosity relationship for the Reynods
stress tensor.  Reynolds stress models discussed above can predict the observed
anisotropy in normal stresses.  Anisotropic k-ε models based on anisotropic eddy
diffusivitites have been proposed [33-38].  The anisotropic model proposed by Myong
and Kasagi [35], is valid up to the wall.  In this model, the deviations from isotropic
Reynolds stresses are given by a function of nonlinear quadratic terms of mean velocity
gradients and that of anisotropic diffusion terms of turbulent kinetic energy.  The normal
Reynolds stresses are algebraically calculated.  The expression for Reynolds stress is
given as:

(25)
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(26)

Where

(27)

(28)

(29)

(30)

(31)

(32)

Rt=k2/νε ;  δk=1.4, δε=1.3, cε1=1.4, cε2=1.8, and cµ=0.09.

(The indices n and m denote the wall normal and streamwise coordinates respectively).

The mean velocity, the turbulent kinetic energy and its dissipation rate are not influenced
by the normal stress anisotropy.  The transport equations to be solved are similar to those
of isotropic k-ε model.

Myong and Kasagi [35] showed that their anisotropic model predicts correctly the
dependence of each normal component of Reynods stress correctly, u α y, v α y2, and w
α y [Fig. 1].  For the flow over a flat plate, the model predicts the wall-limiting behavior
that is in good agreement with the data [Fig. 2].  The predicted Reynolds stress
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components in the entire region were also found to agree fairly well with the
experimental results.

3.4 Low Reynolds Number and Near Wall k-ε Model

Jones and Launder [36], extended the k-ε model to model low Reynolds number flows so
that the turbulence model equation can be valid throughout the laminar, transition, and
fully turbulent regions.  In this version of the model k and ε are determined from the
following equations:

  (33)

(34)

µt is the turbulent viscosity defined, for the standard k-ε model, in Eq. (17).  In this
model, cµ and cε2 vary with turbulence Reynolds number, Rt.

Rt = ρk2/µε (35)

cµ = cµs exp[-2.5/(1+Rt/50)]        (36)

cε2 = cε2s [1-0.3 exp(-Rt
2)]            (37)

Subscript s refers to the standard model values.  We note here, that the laminar diffusive
transport becomes of increasing importance as the wall is approached and the extra
destruction terms included are of some significance in the viscous and transitional
regions.  The term,

in the ε equation produces satisfactory variation of  k with distance from the wall.  In the
computations ε is set to zero at the wall and an extra term,

is introduced to the k equation.  This extra term is exactly equal to the energy dissipation
rate in the neighborhood of the wall.
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Turbulence models for near wall and low Reynolds number flows were reviewed by Patel
et al [37].  Eight different models ( all based on k-ε model except one) were considered
and their performance in predicting turbulent boundary layers with and without pressure
gradient (favorable/adverse) was examined.  The model of Launder and Sharma [38] and
that of Chien [39], both based on Jones and Launder model described above appear to
perform well in majority of the test cases studied by Patel et al [37].

The model of Chien [39] is claimed to perform better than that of Jones and Launder is
briefly described here.  Though the model is based on Jones and Launder model, the
presence of solid wall is handled differently.  An additional term, representing the finite
dissipation rate at the wall, is added to balance the molecular diffusion term.  The
dissipation term in the kinetic energy equation is given by ε + (2νk/y2) for finite values of
y, distance from the wall.  The turbulent kinetic energy equation takes the form

(38)

The term

is the term added to produce correct behavior of turbulent energy k in the near wall
region. ν is the kinematic viscosity.  The turbulent viscosity νt is modified to reflect the
wall damping effect.

             (39)

c3 is a constant.  u* is the friction velocity.  The turbulent dissipation rate equation
suggested by Chien reads as

(40)

where f = 1-0.222 exp[-(Rt/6)2], c4 is a constant.  c3 = 0.0115 and c4 = 0.5 were used by
Chien.
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3.5 Multiple-Scale Model

The turbulence models discussed above are based on the assumption that in all flow
situations turbulence has a spectrum of universal form which can be characterized by the
scale of the energy containing range.  Difficulties arise when the spectrum is not an
equilibrium one or when the flow exhibits distinctly different ranges of scales.  A two-
scales model was proposed by Hanjalic et al [40] .  They split the spectrum into a large
scale part and a small scale part with different time scales for energy transfer into the
large scale part and transfer from large scale to small scale part.

The turbulence spectrum consists of independent production, inertial, and dissipation
ranges.  K1 denotes the wave number above which a significant mean strain production
occurs while K2 is the largest wave number at which viscous dissipation of turbulence is
unimportant (Fig. 3).  Energy leaves the first region (production) at a rate εp and enters
the high wave number or dissipation region at a rate εt.  Between the two regions,
occupying the intermediate range of wave numbers is the transfer region, across which a
representative spectral energy transfer rate εT is assumed.  This simplified energy
spectrum is the basis of the model of Hanjalic et al.  The total turbulence energy k is
assumed to be divided between production range kp and the transfer range kT.  At high
Reynolds numbers there is negligible kinetic energy in the dissipation range.  The
transport equations for kp, kT, εp, and εT are formulated.  Thus there are two k and two ε
equations in this model and two sets of constants which are determined from
experiments.
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Modified versions of the above two-scale model have been formulated by Kim & Chen
[41] and Chen [42].  In the model used by Duncan et al [43], the model coefficients were
made dynamically dependent on the partitioning of the energy spectrum.   Ko and Rhode
[44] developed a new multi-scale k-ε turbulence model, which incorporated a new way of
evaluating source/sink coefficient functions.  Though these models are attractive from a
theoretical viewpoint, their use to flows of engineering interest is hampered by the
number of constants needed to be calibrated with these models.

Next, the application of the turbulence models to the prediction of jet nose shall be
discussed.

IV.  TURBULENCE MODELS AS APPLIED TO JET NOISE PREDICTION

4.1 k-ε Model Computations for Jet Noise Prediction

The quadrupole source term (unsteady Reynolds stress) that appears in Lighthill’s
equation has to be evaluated to compute the jet noise.  In the absence of detailed time
dependent flow information, one uses the mean flow information from a simplified
turbulent flow model such as that of Reichardt’s[45].  Suggestions were made that with
the advances in computational fluid dynamics (CFD), the source terms can be computed
more accurately from the solution of Reynolds averaged Navier-Stokes equations using a
k-ε model[46].  Khavaran et al [6] were the first to carry out such a source computation
and use the source characteristics for the computation of jet noise.  They considered a
convergent-divergent nozzle geometry.  The flow solution was obtained using an
axisymmetric version of PARC code [47] with Chiens’s k-ε model [39].  They showed
good agreements of the CFD results with the data.  The computed turbulence intensity
contours in the flow field are shown in Fig.  4.   Comparisons of the computed turbulence
intensities with the data and the Reichardt’s solution are shown in Fig.  5.
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The time averaged flow information is used to compute the sound field: The noise source
strength in a turbulent flow is characterized by a two-point time delayed fourth order
velocity correlation tensor.  The fourth order correlation is expressed as a linear
combination of second order correlations. Then, the two point velocity correlations are
written in terms of separable space/time factors as suggested by Ribner [48],

(41)

The space factor Rij(ξ) is expressed as a function of turbulence intensity and the
longitudinal macroscale of turbulence.  The time correlation is expressed in terms of the
characteristic time delay, τo, which is proportional to the inverse of mean shear and is
related to turbulence kinetic energy k  (k = uiui/2) and its dissipation rate ε as τo = k/ε.
Thus, the noise source strengths can be expressed in terms of length and time scales
extracted from time averaged solutions.  The corresponding spectrum can then be
evaluated by a using a Fourier transform on the time delay of correlation.

Khavaran et al evaluated the contribution to self noise for various source strength
components using Ribner’s formulation [48]. The contribution to the acoustic pressure,
p(R,θ,Ω), due to each quadrupole source may be expressed as

P R k o o
2 7 2 4 21

8
( , , ) exp/θ Ω Ωτ Ωτ∝ −�

! 
"
$#

1 6 1 6 (42)

where R is the radius, θ is the angle with respect to jet axis and Ω the source frequency.
It is seen that for accurate prediction of acoustic pressure, the turbulent kinetic energy
and its dissipation rate ε need to be computed accurately by the flow solution (τo= k/ε).
Further details of the noise computation can be found in [6].  Comparisons of the overall
sound pressure level directivity show good agreement with the data and the results of
Reichardt method (Fig. 6).  The spectral components of noise, based on the one-third
octave band, are shown in Fig.  7.
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Bailly et al [7,8] used a similar approach and computed the jet noise using the source
strength obtained from a CFD solution using k-ε model.  They computed far-field levels
using Ribner’s model and also that of Goldstein and Rosenbaum [49] who modified the
Ribner model by introducing an anisotropic description of turbulent field.  They found
that Goldstein and Rosenbaum model produced better agreement with the far-field sound
pressure data.

For supersonic jets, Bailly et al used Ffowcs-Williams and Maidanic [50] formulation of
Lighthill source term to account for Mach wave radiation which is one of the main noise
source in supersonic jets.  They applied this model when the local convective Mach
number is supersonic.  Using a combination of Goldstein and Rosenbaum model and
Ffowics-Williams and Maidanic model, they were able to compute the far-field acoustic
pressure as a function of jet Mach number, from low subsonic to high supersonic jets.
The computed far-field levels were found to be in good agreement with the data (Fig. 8).
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However, the description of the two-point velocity correlation needs to be further
examined to improve the source definition and better establish the proportionality factors
that arise from the use of time averaged quantities.

Measured turbulence intensities in nozzle flows show considerable anisotropy among
turbulence intensity components.  Longitudinal component (u1) is significantly different
from the transverse components (u2 and u3).    The transverse components (u2 and u3) are
nearly equal.  To account for the observed  anisotropy Khavaran and Krejsa [9] proposed
the use of an axisymmetric turbulence model for jet noise computation.  However, since
the CFD solutions were obtained with a k-ε model (isotropic turbulence assumed) they
investigate the influence of anisotropy by varying the ratio of transverse to longitudinal
length scales, ∆l, and the ratio of intensities, ∆u = u2

2/u1
2. They demonstrated the effects

of the parameters on the noise directivity of a splitter nozzle flow. The predicted noise
directivity shows good agreement with the data when the parameter ∆l = 0.5 and ∆u = 0.6
(Fig. 9). The effects of anisotropy parameters are summarized in Fig. 10.  An increase in
anisotropy tends to increase the sound pressure level.  The use of axisymmetric
turbulence model for noise computation would improve the noise predictive capability of
jets of practical interest.
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Since, distributions of u1
2 and u2

2 are needed for the prediction of jet noise, ways to
obtain these components should be explored.  The possibilities exist to use the Reynolds
stress transport equation model or the algebraic stress model (ASM) described in section
2.

4.2 Other k-ε Model Predictions

Here, some other applications of turbulence models to jet flow predictions that produce
reasonable solutions that may be used for jet noise prediction are discussed.

Numerous k-ε model predictions have been carried out for jet flows.  But these
predictions were mainly intended to study the flow field characteristics and they have not
been used for the purpose of noise prediction.  Some of them are reviewed here, as they
hold promise for noise predictions.

One of the most exhaustive applications of k-ε model for jet flows encompassing
subsonic, supersonic, cold and hot jet flows is that of Thies and Tam [51].  The jet Mach
number varied from 0.4 to 2.2 and the ratio of jet reservoir temperature to ambient
temperature varied from 1.0 (cold jet) to 4.0.  They demonstrated that if the original
constants of the k-ε model are replaced by a new set of constants (established
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empirically), the calculated jet mean velocity profiles agreed with the data for a wide
range of jet flows.  They included the correction term for vortex stretching due to Pope
[28] and compressibility correction due to Sarkar [32], but with new empirically
established constants.  Their choices of model constants are:

cµ            cε1       cε2          cε3            σk            σε          α
0.0874   1.4    2.02       0.822     0.324    0.377        0.518

Note that the factor associated with the vortex stretching term, cε3, and the factor, α,
associated with the compressibility correction term are also modified. The parabolized
equations, in the Favre-averaged form, are solved using an accurate dispersion-relation-
preserving (DRP) numerical scheme.   In all the cases the computation started from the
nozzle exit, with initial conditions derived analytically or from the data.  The predicted
mean velocities agreed well with the data as shown in Fig. 11 for heated jets.

Dash et al [52-54] in a series of papers have explored different formulations of k-ε model
and its various combinations for jet flow predictions.  A k-ε model with modified
compressible dissipation factor (due to Sarkar [32] and Zeman [55]) and with Pope
correction factor was found to yield reasonably good predictions over a range of jet flow
conditions.   They expressed the compressible dissipation as

(43)

where α = 1 (same as Sarkar) and Mt = Mt – λ.
            λ = 0.1 (same as Zeman)
     and  β= 60, to fit LaRC data best.

An example of their predictions of centerline velocity (Fig. 12) and temperature (Fig. 13)
for different jet exit temperatures of Seiner’s [56] jet are shown.  The trends are predicted
reasonably well.

The use of compressible dissipation factor for supersonic jet flow predictions was also
studied by Balakrishnan et al [57].  They found that with the compressible dissipation
correction the reduced spreading rate of supersonic jets was successfully predicted (Fig.
14).  The prediction of pressure distribution in an under-expanded jet with and without
compressibility correction is shown in Fig. 15.  The improvements observed due to
compressibility correction factor in predicting turbulence intensities in an under expanded
jet are shown in Fig. 16. for two numerical algorithms.

[ ]42
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Renormalization group (RNG) theory [58] based k-ε model was incorporated into
NPARC code by Papp and Ghia [59].  They compared the solutions obtained with the
RNG based k-ε model with that of Chien’s model [39].  They found that while RNG
model produced slightly better results, the Chien’s model exhibited numerical stability
problems for certain grid resolutions.  RNG method appeared to be more robust.

Tubofan engine exhaust nozzle flows [60] and lobed mixer nozzle flows [61] have been
successfully calculated with standard k-ε model.

4.3 Algebraic Stress Model (ASM) Prediction

Now with the ability to use axisymmetric turbulence characteristics to compute noise
established [9] it is imperative that the Reynolds stress components should be calculated
accurately.  Algebraic stress model provides that possibility. An example of ASM model
prediction of a coaxial jet flow [62] is shown in Fig. 17 and 18.  The figures show u′ and
v′ profile variations with axial distance respectively.  The ratio of turbulence intensities,
∆u = u2

2/u1
2 and the ratio of transverse to longitudinal length scales can now be calculated

accurately for use in the axisymmetric turbulence model for noise calculation [9].

4.4 Reynolds Stress Transport Equations Model Prediction

This model can be used to compute the Reynolds stress components accurately.  This
model requires modeling of higher order correlations and additional computational efforts
to solve the transport equation for each component of the Reynolds stress.  For those
reasons this model is not as widely used as one would like to be.  Figure 19 shows the
three components of normal stress profiles in a round jet, computed using the Reynolds
stress transport equation model [22].

V.  LOCATION OF INLET BOUNDARY AND BOUNDARY CONDITIONS

The inlet boundary condition specification plays a crucial role in turbulence model
predictions [63,64].  One can locate the inlet boundary for the jet flow calculations at the
jet exit and specify the inlet conditions there, as for example was done by Thies and Tam
[51].  Such a choice, avoids the complexities associated with the boundary region such as
the near wall modeling and wall limiting behavior of turbulence quantities. However,
formodern complex and novel designs such as those with internal mixing device, ejector,
etc. the jet exit flow conditions can not easily be generated accurately (or known from
measurements).  In such complex nozzle flow cases, the nozzle internal flow has to be
computed with appropriate near-wall modeling in the nozzle-mixer-elector flow path.
Chien’s model [39] has been used successfully [6,9] for several jet flow configurations.
But, it is essential to incorporate correct wall limiting behavior turbulence quantities by
employing a model such as that of Myong and Kasagi [35].  The use algebraic Reynolds
stress model (ASM) will provide an accurate description of Reynolds stress components
[62].
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VI.  NUMERICAL SOLUTION ALGORITHM AND TURBULENCE MODEL

Studies have shown that the same turbulence model incorporated into different codes
produce different turbulence characteristics [57,59,65,66].  This may arise due to several
factors such as the numerical solution algorithm, grid dependence, turbulence model
methodology and implementation, and near-wall model.  Flow solvers and turbulence
models need careful bench mark testing for jet flow computations so that they can be
used with confidence for acoustic assessment of new nozzle designs.

VII.  CONCLUDING REMARKS

A brief account of turbulence models that are relevant to provide turbulence
characteristics needed for jet mixing noise calculations is presented.  Length and time
scales should be predicted accurately to estimate the sound pressure levels correctly.  The
use of compressibility correction due to Sarkar results in correct spreading rates in
supersonic jets.  For axisymmetric configurations, vortex stretching parameter correction
due to Pope provides the correct jet spreading rate.  It is recommended that a near-wall
model that produces correct wall-limiting behavior of Reynolds stress components be
used. Anisotropic turbulence information should be incorporated in the small scale
mixing noise calculation to improve the far-filed noise level estimates and spectral
distribution.

 Jet flow computations that present the components of Reynolds stress are scarce (as
indicated by sections 4.3 and 4.4).  It is perhaps due to the fact there was no immediate
use for them.  Moreover models such as algebraic stress models and Reynolds stress
transport models were mostly used for complex flows such as non-circular duct flows,
curved flows, flows with large separated regions, etc.  Recently, it has been shown that a
knowledge of the magnitudes of the Reynolds stress components is essential for accurate
evaluation of jet noise levels [7,9].  Turbulence models that can provide the distribution
of Reynolds stress components must now be considered for jet flow computations.  In
this regard, algebraic stress models and Reynolds stress transport models are good
candidates.  Reynolds stress transport models involve substantially more modeling, and
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computational effort and time compared to algebraic stress models (section 2.1). Hence,
it is recommended that an algebraic Reynolds stress model be implemented in the flow
solvers (such as NPARC code) and validated.  Anisotropic turbulence characteristics
obtained using such a turbulence model would substantially improve the confidence
levels in jet mixing noise predictions.
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