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Abstract

Without resorting to special treatments for each individual test case, the 1D and 2D CE/SE
shock-capturing schemes described in Part I [1] are used to simulate flows involving phenomena
such as shock waves, contact discontinuities, expansion waves and their interactions. Five 1D
and six 2D problems are considered to examine the capability and robustness of these schemes.
Despite their simple logical structures and low computational cost (for the 2D CE/SE shock-
capturing scheme, the CPU time is about 2 ysecs per mesh point per marching step on a Cray
C90 machine), the numerical results, when compared with experimental data, exact solutions or
numerical solutions by other methods, indicate that these schemes can accurately resolve shock
and contact discontinuities consistently.
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1. Introduction

The ability to generate finely resolved shocks and contact discontinuities at correct
locations without introducing numerical oscillations is an important requirement of an
accurate solver for high speed inviscid flows. Few established solvers (if indeed they exist)
can meet this requirement consistently without resorting to special treatments (such as
tuning some ad hoc parameters) for each invidual case. The purpose of this paper is to
show that, despite their simple logical structures and low computational cost, the 1D and
2D CE/SE shock-capturing schemes described in Part I [1] generally can meet the above
requirement consistently with no special individual treatments required.

It was shown in [2] that the 1D CE/SE shock-capturing scheme is highly accurate in
solving Sod’s shock-tube problem. Recently, its accuracy in solving Harten’s shock-tube
problem was also evaluated against other schemes by Batten et al. [3]. They concluded
that “The result (see Fig. 7) is quite remarkable, considering that the internal details
of the Riemann fan are never used and, indeed, are never needed, because the entire
Riemann fan is contained within the region of integration.” In this paper, the accuracy
of the present 1D scheme will be further evaluated using additional test problems. The
results to be presented will further substantiate another conclusion reached in [3], i.e., “In
fact, solutions produced with this scheme are broadly comparable to conventional MUSCL
schemes ....”

As the first step, three standard test problems involving an infinitely long shock tube
are used to evaluate the performance of the 1D CE/SE shock-capturing scheme. Flow phe-
nomena associated with these test problems include shock waves, contact discontinuities,
expansion fans and their interactions. In the second step, two test problems involving a
shock tube with two closed ends are used to evaluate the capability of the 1D CE/SE
shock-capturing scheme to simulate shock reflection accurately. '

Finally, six 2D test problems are used to evaluate the performance of the 2D CE/SE
shock-capturing scheme. The phenomena associated with these problems include complex
shock-wave interactions, and multiple reflections of shock waves from solid bodies. One can
conclude from the numerical results that the CE/SE method maintains its advantage over
the traditional methods in simplicity, generality and accuracy even in a multidimensional
space.

In the following sections, the boundary conditions used will be specified prior to the
description of the numerical results. Note that the symbols and notations used in Part I
[1] are inherited in Part II.
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2. Boundary Conditions

2.1. Boundary Conditions for 1D Test Problems

Note that numerical simulations of the first three 1D test problems to be discussed
in Sec. 3 are terminated before the region of nonuniform flow reaches the right and left
boundaries of the computational domain. As a result, the boundary conditions used in
these problems are immaterial as long as they are compatible with the uniform nature of
the solution at each boundary. For simplicity, the steady-state boundary conditions are
imposed at both boundaries. The solid-wall boundary conditions imposed at the closed
ends of the shock tube involved in the last two 1D test problems are discussed here.

Consider Fig. 1. Let (i) z; = zo + jaz with 2, being a given constant and j a half or
whole integer, (ii) the mesh point with j = n = 0 not belong to the set 2, (iii) 75 > 0 be a
half or whole integer, and (iv) the right and left boundaries of the shock tube be located at
z = zj, and z = z_j,, respectively. The solid-wall boundary conditions at each boundary
will be constructed by assuming that, at any time £, the flow fields to the right and left
of the boundary are the mirror images of each other. This assumption coupled with the
definitions of u1, u2 and us given in Eq. (4.1) of [2] implies that, at any time ¢ and for any

z, (i)

Oupm, Oup,
Um(Zj, + 2,t) = um(z4j, —2,¢) and —éw—(mijb + z,t) = —a—w(wijb —z,t) (2.1)

where m = 1,3; and (ii)

o 9
uz(z4j, + 2,t) = —uz(zsj, —z,t) and %(wijb + z,t) = —;?Z(wijb —z,t)  (2.2)

Let (i) » = 1/2,3/2,5/2,... if j, is a half integer; and (ii) » = 0,1,2,...if j; is a
whole integer. Then the numerical boundary conditions corresponding to Egs. (2.1) and
(2.2) are

(um)ijbil/Z = (um)g‘:]b:Fl/Z and (ume)g:gb:{:l/z = h(“mm)lﬁ,q:l/z, m = 1’3 (2'3)

and

(“2)?:]'5:&1/2 = *(u2)ijb:|:1/2 and (UZz)ijbﬂ/z = (“2:"«)7;:3'6;1/2 (2.4)
respctively. Note that, according to Fig. 1, the boundary points (+j;,n) ¢ Q if n and j,
are related by either of the relations (i) and (ii) given preceding Eq. (2.3).

Let jp be a half integer, then (£75,0) € Q. As a result, the initial data should be
specified at the mesh points (3,0), j = —j5, —Js+1,...,55 — 1, j5. Note that the data must
be consistent with the requirement that velocity vanishes at j = +7,.

Let j, be a whole integer, then (£73,0) ¢ Q. As a result, the initial data should be
specified at the mesh points (5,0), j = —js + 1/2, —js + 3/2,...,75 — 3/2,75 — 1/2.
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Given the above initial data and the boundary conditions Eqs. (2.3) and (2.4), the
marching variables at all (j,n) € Q with 5, > j > —j, and n > 0 can be obtained by using
the 1D CE/SE shock-capture scheme, i.e., Eqs. (2.32) and (2.65) of Part I [1].

2.2. Boundary Conditions for 2D Test Problems

The steady-state oblique shock problem suggested by Yee and others [4] is one of
the 2D test problems to be discussed in Sec. 3. This test problem will be used as the
prototypical case in the following discussion.

The computation domain and the shock locations (AE and EF) are depicted in Fig. 2.
The lower boundary is a solid-wall. Assuming v = 1.4, the exact Euler solution to this
problem is:

(a) In the region ABE,
u=29, v=0, p=10, p=10/14 (2.5)
(b) In the region AEFD,
w=26193, v=-0.50632, p=1.7000, p=1.5282 (2.6)

(c) In the region ECF,

uw=24015, v=0., p=2.6872, p=2.9340 (2.7)

The mesh used in the current numerical calculations is depicted in Fig. 3. Again a
mesh point (j,k,n) € Q; (ie., n = 1/2,3/2,5/2,...) is marked by a solid circle; while a
mesh point (j,k,n) € Qy (ie., n = 0,1,2,...) is marked by a hollow circle. The mesh
is a special case (b = 0) of that depicted in Figs. 7-9 in Part I [1]. Note that only the
mesh points € Q; are present at the inflow and outflow boundaries. Moreover, a mesh
point and the corresponding marching variable will be identified by the time-level number
n, and two new mesh indices r and s which are given in Fig. 3 as a pair of integers
enclosed in parentheses. Note that, for the mesh points € Q, » = 1,2,3,...,R,R+1, and
8 =2,4,6,...,25. On the other hand, for the mesh points € Q5, r = 1,2,3,...,R,R+1,
and s =1,3,5,...,25 — 1,259 + 1.

With the above preliminaries, the initial and boundary conditions can now be spec-
ified. At all mesh points (r,s,0), it is assumed that (i) wp, m = 1,2,3,4 are evaluated
using Eq. (2.5), and (ii)

ub o =ut, =0, m=1,2,3,4 (2.8)
Furthermore, for n = 1,2,3,..., the above conditions (i) and (ii) are applied at all mesh

points at the inflow boundary AB (see Fig. 3).

At the upper boundary AD, for all n = 1/2,1,3/2,2,..., (i) wm are evaluated using
Eq. (2.6), and (ii) u;g. and u'*"'m are evaluated using Eq. (2.8).
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The solid-wall boundary conditions at BC will be constructed by assuming that, at
any time ¢, the flow fields below and above BC are the mirror images of each other. By
using the definitions of um,, m = 1,2,3,4, given in Eq. (6.1) of Part I [1] and the fact that
y = 0 at any point on BC, it can be shown that the last assumption implies that

Um(z, =Y, 1) = um(z,y,t), m=1,2,4, and us(z,-y,t)= —usz(z,y,t) (2.9)

—g(m,—y,t) = %—(m,y, t) a.Ild —87(33, '—y,t) = —%(w,y, t), m = 1,2,4 (2.10)
and 9 9 9 9
(753 _ us Uus . _ Uus
B—m(w’ —y,t) = B (z,y,t) and By (z,—y,1) By (z,y,1) (2.11)

Consider the mesh depicted in Fig. 3. Then the numerical boundary conditions corre-
sponding to Egs. (2.9)-(2.11) are -

(um)2+1,s = (um)z,s, m=1,2,4, and (u3)2+1,s = —(us)g’s (2.12)
(umz)TI;+1,s = (umm)g’s and (umy)g—l—l,s = _(umy);;’s) m = 172’4 (213)

and
(u33)2+1,s = _(uh);,s? and (u3y)R+1,s = (“33/)12,3 (2.14)

respectively. According to Fig. 3, the range of s in Egs. (2.12)—(2.14) is dependent on the
time level n. Let (i) §' = S if § is even; and and (ii) §' = § — 1 if S is odd. Then (i)
s =4,8,12,...,25" if n = 1/2,3/2,..., and (ii) s = 1,5,9,...,25' + 1if n = 1,2,....
Furthermore, by using Eq. (C.4) of Part I [1] with b = 0, it can be shown that Eqgs. (2.13)
and (2.14) are equivalent to

n n
+ _ n +\° o+ _
(umc> Rte umn)R’s and (umﬂ)R+1,s = (umg) R m=1,2,4 (2.15)

and
+ " _ +\7 +\m . n
(usc) Rits (usn)R’s , and (u3’7)R+1,s = — (u;C)R ) (2.16)

’

respectively. Equations (2.12), (2.15) and (2.16) are the boundary conditions at the lower
wall (a solid-wall). In other words, the marching variables associated with the mesh points
below the solid-wall will be determined using these equations.

At the outflow boundary C'D, for any n = 1,2,3,...,and r = 1,2, 3,..., R, we assume
that

(um):,25+1 = (“m):,;;/z’ m=1,2,3,4 (2.17)
(umz):,zsﬂ =0, m=1,2,3,4 (2.18)
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and

(umy):25+1 = (umy):;;/2’ m = 1)27 374 (2.19)

By using Eq. (C.4) of Part I [1] with b = 0, it can be shown that Eqgs. (2.18) and (2.19)

are equivalent to

n 1 n—1/2
<“;C)rzs+1 T2 ("34 - "%)MS o m=1,2,3,4 (2.20)
and
+ \"n 1 + + n—1/2
umﬂ)r,25+1 5 (umn . umc>r25’ ) m=1,2,3,4 (2.21)

Thus the marching variables at the outflow boundary will be determined using Eqs. (2.17),
(2.20) and (2.21). Note that, according to the numerical results to be presented in Sec. 3,
the outflow boundary conditions are non-reflecting in nature.

With the aid of the above initial and boundary conditions, the marching variables at
any time level can be determined by using the 2D CE/SE shock-capturing scheme.

In the oblique shock problem described above, only a horizontal solid wall is present.
In other 2D test problems to be described later, both horizontal and vertical solid-walls may
be present. As will be shown immediately, imposing the solid-wall boundary conditions
at a vertical wall over a uniform mesh similar to that depicted in Fig. 3 is slightly more
complicated than that at a horizontal wall.

Consider the mesh depicted in Fig. 4(a). Let BC and CD be solid-walls. Note
that, given any exterior mesh point (R + 1,s,n) that lies immediately below BC, one
can find an interior mesh point that lies at the same time level and also is the mirror
image (relative to BC) of the exterior mesh point. As a result, the solid-wall boundary
conditions Eqgs. (2.12)—(2.14) can be imposed. Contrarily, given any exterior mesh point
(r,28+1,n),n =0,1,2,... that lies immediately to the right of CD, one can not find an
interior mesh point that lies at the same time level and is the mirror image (relative to
CD) of the exterior mesh point. As a result, the mirror image conditions for the vertical

wall D, i.e.,

(um):,25+1 = (“m):,zs’ m=1,3,4, and (uz):25+1 = _(u"’):,zs (2.22)
(um‘”):zs—{-l = _(um”’):zs and (umy):,zs+1 = (umy)::zsa m = 17 3a4 (2'23)

and
(“Zz)r,zsﬂ = (uzz)r,zs’ and (“2y)r,2s+1 = _(u2y)r,2s (2.24)

can not be used directly as the solid-wall boundary conditions.

Two approaches can be used to overcome the above difficulty. In the first approach,
the following approximate forms of Eqs. (2.22)—(2.24) are used as the solid-wall boundary
conditions:

n

(4m)ra5p1 = (Wm)rgss m=1,3,4, and (w2)yg501 = — (W) 7 s (2.25)
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(um-’c):zsﬂ - _(u"‘”):;;/z and (umy):,zSH = (umy):;;/z, m=1,3,4 (2.26)
and 12 vz
n n— n n—
(uzw)r,2s+l = (u“)r,zs , and (uzy)r,zs.,t.l = _(uzy)r,zs (2.27)

Here (uin)fz g m = 1,2,3,4, are evaluated using the known marching variables at the
mesh point (r,25,n — 1/2) with the aid of the first-order Taylor’s expansion.

In the second and generally more accurate approach, the present marching procedure
is applied over a dual mesh. It was explained in Sec. 8 of Part I that a dual mesh can be
considered as the combination of two staggered space-time meshes, i.e., mesh 1 (Fig. 4(a))
and mesh 2 (Fig. 4(b)). As shown in Fig. 4(b), a mesh point of mesh 2 is also identified
by two spatial indices » and s, and the time-level number n. Furthermore, a mesh point
(r,ys,n) of mesh 2 is marked by (i) a solid triangle if n = 1/2,3/2,5/2, ..., and (i) a hollow
triangle if n = 0,1,2,....

Let (i) r and s be any pair of whole integers and n be any whole or half integer such
that (r,s,n) represents a mesh point of mesh 1, and (ii) »' = n +1/2. Then, according to
Figs. 4(a) and 4(b), (r, s,n') represents a mesh point of mesh 2 at the n'th time level with
its spatial location being identical to that of (r,s,n). Furthermore, (i) for n = 0,1,2,...,
(1,25 + 1,n) is a mesh point of mesh 1 while (r,25,n) is a mesh point of mesh 2, (it) for
n=1/2,3/2,5/2,...,(r,28+1,n)is a mesh point of mesh 2 while (r,25,n) is a mesh point
of mesh 1, and (iii) for n = 0,1/2,1,3/2,..., the mesh points (,25 + 1,n) and (r,28,n)
lie at the same time level and, relative to C'D, are mirror images of each other. As a
result, the solid-wall boundary conditions at CD can be imposed using Egs. (2.22)—(2.24),
with n = 0,1/2,1,3/2,.... Note that the marching variables associated with meshes 1
and 2 are now coupled through these boundary conditions. Also note that the Egs. (2.23),
(2.24), (2.26) and (2.27) can easily be converted to the versions associated with the (¢,m)
coordinates by using Eq. (C.4) of Part I [1] with 4 = 0.

Imposing the conditions Eqs. (2.22)—(2.24) directly requires the use of a dual mesh. As
a result, it has the disadvantage of doubling computational cost. However, the extra cost
no longer becomes an issue if the use of dual meshes is mandated by other considerations.
As will be explained in future papers, this indeed is the case for many practical applications
including those requiring the use of unstructured triangular meshes.
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3. Numerical Results

3.1. One-Dimensional Problems

As a preliminary, a subtlety related to the specification of numerical initial conditions
will be discussed here. As an example, we consider a shock-tube problem defined by the
conservation law Eq. (2.19) in Part I [1] and the exact initial conditions: at ¢ =0,

Uvtr, ifz>d
U, = Um(z,0) o

(3.1)
U, fz<d

Here (i) %m, m = 1,2,3, are the flow variables that appear in the 1D Euler equations
Eq. (2.18) of Part I [1], and (i) U}, and U, (UL # UZ), m = 1,2,3, and d are given
constants.

To proceed, consider a computational mesh (see Fig. 1) with the properties that (i) 7 is
a whole number, and (i) a mesh point (j,0) € Q if and only if j € {£1/2,£3/2,..., +(jp—
1/2)}. For each (j,0) € Q, the line segment joining the two space-time points (z; £az/2,0)
is part of SE(7,0). As a result, the space-time fluxes passing through the above line segment
can be evaluated using either the exact or numerical initial conditions. The resulting two
values are identical if and only if

zj+Az/2 zj+Az/2
/ ut (z,0;7,0)dz = f um(z,0)dz, m=1,2,3 (3.2)
z;j—Az/2 zj—Azxf2

Because of its flux-based nature, accuracy of the CE/SE Method generally will suffer
(particularly if the exact initial conditions are not continuous) if the numerical initial
conditions specified does not satisfy Eq. (3.2).

Let d = z;,, with jg € {0,£1,42,...,%(j5 — 1)}. Then (74,0) is the mid-point of the
line segment joining the mesh points (jg +-1/2,0) € Q. As a result, Eq. (3.2) is satisfied if
the numerical initial conditions are: (i) :

'U,,',';, ifjde+1/2,jd—|—3/2,...,jb—1/2

(um)j = um(z;,0) = (3.3)
Un_w ifj:jd-—1/2,jd—3/2,...,—jb—|—1/2
and (ii)
(umz)g = %lfwﬁ(:cj,O) =0 for j=41/2,43/2,...,2(»—1/2) = (3.4)

Note that (i) with (um)} being defined by Eq. (3.3), Eq. (3.2) is satisfied regardless what
the values are assigned to (¥mz)}, and (ii) the impact on numerical results as a result of

replacing Eq. (3.4) with other choices for (umw)g generally fades away quickly after a few
time steps.
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Let d = z;,, with jg € {£1/2,£3/2,...,£(js — 1/2)}. Then (j4,0) represents a mesh
point € {). Furthermore, according to Eq. (3.1), ., and Ou,,/8z are not defined at the
location of this mesh point. As a result, the initial conditions Egs. (3.3) and (3.4) are no

longer applicable. However, it can be shown easily that Eq. (3.2) is satisfied if, for any j
with (7,0) € Q, we have (i)

um(z;,0), if 7 # jq
(um)g = (3.5)
UL +UR)/2, ifj=ja

and (i)
(Ume)§ =0 (3.6)
Note that (i) with (um)? being defined by Eq. (3.5), Eq. (3.2) is satisfied regardless what

the values are assigned to (4mz)?, and (ii) the impact on numerical results as a result of
replacing Eq. (3.6) with other choices for (ums )% generally fades away quickly after a few
time steps.

Next we will compare the total number of the space-time mesh points involved in a
CE/SE simulation and that involved in a simulation using a typical regular-mesh scheme
which requires only one marching step to advance by a time period at. Let (i) L be the
spatial dimension of the computational domain, (ii) T be the total simulation time, and
(iii) £y and no be the whole integers with I = fyaz and T = ngat. Then, for the staggered
mesh under consideration (£, = 2j, in this case), the total number of the space-time mesh
points involved in a CE/SE simulation (excluding those that lie on the initial line and
spatial boundaries) is (2£y — 1) - ng. On the other hand, the corresponding number for a
regular-mesh scheme is (€y — 1) - ng, i.e., about one half of that involved in the CE/SE
simulation. The difference is due to the fact that it requires two marching steps to advance
over each time period at in the CE/SE method.

Furthermore, we shall assume in this section that (i) p, u, p, ¢, M,, and v(= 1.4) denote
the mass density, velocity, static pressure, sonic speed, shock wave Mach number and
specific heat ratio, respectively, and (ii) CF L denotes the maximum value of (|u|+c)at/az
reached during a numerical simulation. Also, for each test problem, (i) a mesh similar to
that depicted in Fig. 1 will be used in numerical simulation, and (ii) the exact solution (af
it exists) will be plotted (as a solid line) along with the numerical solution in every figure.

Also, note that o (see Eq. (2.65) in Part I [1]) is the only adjustable parameter in the
1D CE/SE shock-capturing scheme. Generally, numerical wiggles near a discontinuity are
satisfactorily suppressed by setting o = 1. However, in some cases, complete suppression
may require the use of a larger value of «a (e.g., o = 2,3).

With the above preliminaries, the numerical results of five 1D test problems will
be presented. The first three involve shock tubes of infinite length. They are selected
to demonstrate the 1D CE/SE shock-capturing scheme’s robust capability for capturing
shock and contact discontinuities as well as for simulating expansion waves. The last two
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test problems involve shock tubes with closed ends. They are selected to demonstrate that
the present solver is an accurate tool to study the end effects of shock-tube flows.

3.1.1. Sjogreen Problem
This problem is taken from [5]. The initial conditions at ¢ = 0 are:

(1.0,0.4,—2.0), ifz < 0.5

(p,p,u) = (37)
(1.0,0.4,2.0), ifz>0.5

The CE/SE solution at ¢ = 0.1 (Fig. 5) is generated assuming o = 1, z_j, =0,z =1,
£y =100 (i.e., Az = 0.01), and at = 0.002 (CFL = 0.55).

The initial velocity discontinuity causes two rarefaction waves to propagate in opposite
directions, leaving in between a region of high vacuum. It was mentioned in [6] that several
Godunov-type schemes failed in this problem due to extremely low pressure in the middle
region. It can be seen that the present solution agrees very well with the exact solution,
without showing negative pressure in the middle region. Its accuracy is comparable to
that obtained by Xu et al. [6] using a gas-kinetic scheme with £, = 200.

3.1.2. Shu-Osher Problem

The interaction of a moving shock (M, = 3) with a sinusoidal density wave is examined
in this problem [7]. The initial conditions at t = 0 are:

(3.857,10.333,2.629), if z < —4

(pipyu) = (3.8)
(1+40.2sin52,1.0,0.0), if z > —4

The CE/SE solution at ¢ = 1.8 (Fig. 6) is generated assuming o = 1, T_j = —b, z;, =5,
fo = 800 (i.e., Az = 0.0125) and at = 0.0015 (CFL = 0.582).

This problem does not have a known exact solution. Several upwind schemes have
been used to solve this problem to compare their ability in resolving the peaks appearing
in the solution [8].- The present solution is comparable to those obtained in [8] by using

the TVD1 and TVD2 schemes with £, = 800.
3.1.3. Merging of Two Shock Waves

The phenomenon considered in this problem involves two shock waves propagating
to the right in an infinitely long tube with a shock of M, = 3 behind a weaker shock of
M, = 1.5 (pp. 131-134 of [9]). The initial conditions at ¢ = 0 are:

(7.1823,25.4016, 3.84265), if z < —2.0
(p,pyu) = { (1.8621,2.4583,0.8216), if —2.0 <z < 1.5 (3.9)

(1.0,1.0,0.0), if15<z
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A CE/SE simulation is carried out assuming a = 2, r_j =—3,z;, =7,4 =100 (i.e.,
Az = 0.1) and At = 0.0135 (CFL = 0.82). The numerical results at ¢ = 0.675,1.1205 and
1.62, shown in Figs. 7-9, respectively, agree very well with the exact solutions. The two
shocks remain separated until ¢ = 1.1205. After that, one shock catches up with another
and they merge into a stronger shock. The latter propagates to the right at a higher speed,
leaving behind it a contact surface and a left-moving expansion fan (see Fig. 9).

Note that there is a small pressure overshoot near the shock in Fig. 9. As shown in
Fig. 10, practically identical numerical results at ¢t = 1.62 are obtained if & = 2 is replaced
by a = 3. However, the overshoot is no longer present in Fig. 10.

3.1.4. Woodward-Colella Problem

This problem, concerning the interaction of two blast waves in a tube with closed
ends, was proposed by Woodward and Colella [10]. It has no known exact solution. The
initial conditions at ¢ = 0 are:

(1.0,1000,0), if z < 0.1
(p,p,u) = { (1.0,0.01,0), if0.1<z < 0.9 (3.10)

(1.0,100,0), if 0.9 < z

The two ends are, respectively, at z = 0 and z = 1 where the reflecting boundary conditions
are imposed.

The CE/SE solution at ¢ = 0.038 (Fig. 11) is generated assuming o = 1, £y = 800
(i-e., az = 0.00125) and at = 1.25 x 10~% (CFL = 0.3524). The flow field at ¢ = 0.038
(containing three contact surfaces and two shock waves) shows that the contact surfaces
are more smeared than the shock discontinuities. The current numerical results are at
least as accurate as those [11] generated by using the AUSM™, Roe, Van Leer, AUSMDV
and AUSM*-w splitting schemes (see Fig. 12).

3.1.5. Waves in a Shock Tube with Closed Ends

The flow phenomena studied by this problem (see Fig. 13) include (i) the reflection
of a shock wave and an expansion wave, and (ii) the interaction of the reflected waves and
contact surface. The tube has closed ends at # = 0 and = = 1, respectively. At ¢ = 0, a

diaphragm located at x = 0.25 separating two gases at different conditions is burst (pp.
205-208 of [9]). With the initial conditions

(20.0,20.0,0.0), if z < 0.25
(ppyu) = (3.11)
(1.0,1.0,0.0), ifz > 0.25

the breaking of the diaphragm creates a shock wave and an expansion wave separated by
a contact surface.

NASA/TM—1998-208844 11



To demonstrate the present solver’s capability to maintain its accuracy after a long
running time, the present simulation with a = 2, Az = 0.01 and At = 0.003 is carried out
for a period that is long enough to show successive reflections and interactions of shock
waves, expansion waves and contact surfaces. When ¢t = 0.09, the waves have not yet
reached the ends as shown in Fig. 14. When ¢ = 0.3, the left-moving expansion waves
have been reflected from the left end while the shock wave is still moving to the right (see
Fig. 15). At t = 0.4, the shock wave has already completed its reflection from the right
end and the reflected shock wave is moving to the left (see Fig. 16). This reflected shock
interacts with the right-moving contact surface to create a left-moving transmitted shock,
a right-moving contact surface, and a right-moving shock wave that, when reaching the
right end, is reflected again. At ¢ = 0.585, there exist in the flow field two shock waves, one
contact surface, and a region of expansion waves (see Fig. 17). Numerical results plotted in
Fig. 14-17 correctly display the flow phenomena described in Fig. 13 at the four designated
time instants.

3.2. Two-Dimensional Problems

In this part, six problems involving shock reflection, diffraction, and interaction are
solved using the 2D CE/SE shock-capturing scheme. The first is a steady-state problem
while the rest are time-dependent. A steady-state solution is obtained as the converged
solution of the time-marching procedure [12]. Numerical results are compared with the
exact solutions, experimental data or numerical solutions obtained by using other methods.
In all of the following numerical simulations, a = 2 is assumed throughout the entire
computational domain. Because « is the only adjustable parameter in the present scheme
(see Sec. 6 in Part I [1]), the same scheme is applied at all interior mesh points regardless of
the presence of flow discontinuities. Also the approximate reflecting boundary conditions,
which were discussed in Sec. 2 and can be implemented without using a dual mesh, will
be imposed on a vertical solid-wall boundary unless specified otherwise.

To pave the way for the following presentation, a further discussion of the space-time
mesh depicted in Fig. 3 is in order. According to Fig. 3, at each time level n = 0,1,2,...,
there are S + 1 staggered columns of mesh points (marked by hollow circles) with each
column containing R + 1 mesh points. Thus there are (S + 1) x (R + 1) mesh points at
each of these time levels. Furthermore, because two neighboring columns are separated
by a distance w while two neighboring mesh points in any column are separated by a
distance 2h, we have § = W/w and R = H/(2h) where W and H are the width and hight
of the computational domain, respectively. If the first, the third, the fifth, --- columns
were moved upward a distance h, then the mesh points marked by hollow circles form a
regular Cartesian spatial mesh with S and R mesh intervals in the z- and y- directions,
respectively. As a result, the mesh formed by the mesh points marked by hollow circles
will be referred to as a S x R mesh.

Similarly, at each time level n = 1/2,3/2,..., there are S staggered columns of mesh
points (marked by solid circles) with each column containing R+ 1 mesh points. Again two
neighboring columns are separated by a distance w and two neighboring mesh points in
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any column are separated by a distance 2h. In this paper, the mesh formed by these mesh
points will also be referred to as a § x R mesh. In general, regardless of how its columns of
mesh points are positioned, a spatial mesh covering a rectangular computational domain of
width W and height H will be referred to as a (W/w) x (H/(2h)) mesh if two neighboring
columns of mesh points are separated by a distance w and two neighboring mesh points
in any column are separated by a distance 2h.

For a dual mesh referred to earlier, there are two set of mesh points at one time level.
If each set forms a (W/w) x (H/(2h)) mesh, then the dual mesh will be referred to as a
dual (W/w) x (H/(2h)) mesh.

From the above analysis and the fact that it requires two marching steps to advance
by a time period at in the CE/SE method, the total number of space-time mesh points
involved in a 2D CE/SE simulation is approximately equal to (27'/at) x § x R, i.e., about
twice that of a 2D single-step regular-mesh simulation if each simulation uses a § x R
mesh and both have the same values of at and total simulation time T'. Note that, in the
special case that a dual § X R mesh is used, the total number of mesh points involved in
a CE/SE simulation is approximately equal to (47/at) x § x R.

3.2.1. Oblique Shock Problem

The computational domain, mesh structure and initial/boundary conditions used in
the current simulations of this problem were described in Sec. 2. A numerical simulation
is carried out using.a 60 x 20 mesh with At = 0.01. The resulting steady-state pressure
contours and the pressure coefficient Cp (= 2(p/peo — 1)/(YM2) with My, = 2.9 and
Poo = 1.0/1.4 being the inflow Mach number and pressure, respectively) at y = 0.5 are
plotted in Fig. 18, where the solid line represents the exact solution. The improvement
on shock resolution by using a finer 120 x 40 mesh can be seen in Fig. 19. No numerical
oscillations are detected near either the incident or the reflected shocks, and the computed
C)p agrees very well with the exact solution.

'3.2.2. 2D Supersonic Flow Past a Step

Consider the supersonic channel flow of M, = 3.0 past a step depicted in Fig. 20,

- which is a standard benchmark problem in the literature. The flow exhibits complicated
phenomena such as Mach stem, slip surface, expansion fan, and their interactions and
reflections. It was used to test Harten’s TVD ULT1C scheme [13], Giannakouros and
Karniadakis’s spectral element-FCT (flux-corrected transport) method [14], and Van Leer’s
ultimate conservative difference scheme [15]. It was also used by Woodward and Colella [10]
to compare the accuracy of different numerical methods in handling a shock discontinuity.

Note that the upper corner of the step is the center of a rarefaction fan and hence
is a singular point of the flow. According to Woodward and Colella [10], unless special
numerical treatments are applied near the corner of the step, the computed solutions would
be seriously affected by large numerical errors generated just in the neighborhood of .this
singular point. Specifically, these errors cause a boundary layer to form just above the step
in the wind tunnel. A shock then interacts with this boundary layer, and the qualitative
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nature of the flow in the tunnel is altered more or less dramatically, depending upon
the difference scheme and the mesh used. It will be shown immediately that satisfactory
numerical solutions can be obtained by the present scheme without employing special
treatments at the upper corner of the step.

The mesh used in the current simulation is also depicted in F ig. 20. Note that no
mesh point is placed at the singular point at the upper corner of the step. The initial
conditions are set to be the free stream conditions. Furthermore, the constant free stream
conditions are imposed at the inlet while the nonreflecting boundary conditions Eqgs. (2.17),
(2.20) and (2.21) are imposed at the exit. In addition, the reflecting (solid-wall) boundary
conditions are imposed at all other boundaries.

To show the improvement in flow solutions with decreased mesh spacing, the density
contours of the solutions obtained by the present solver with 60 x 20, 120 x 40 and 240 x 80
meshes are shown respectively in Fig. 21. Note that the values of At used in the above
computations are identical to those used in [10], i.e., 0.0075, 0.005 and 0.0025, repectively
(CFL = 0.8). From Fig. 21, it is seen that the Mach stem, triple point, slip surface,
expansion fan at the corner, and the interaction between the reflected shock and the
rarefaction waves are accurately simulated in the present solutions. Note that an alternate
simulation in which the dual-mesh reflecting boundary conditions Egs. (2.22)-(2.24) are
imposed at the vertical step wall yields almost identical results.

3.2.3. Blast Wave Problem

A blast flow field generated at an open-ended cylindrical shock tube, which was de-
scribed in the experiment by Schmidt and Duffy [16], has been studied by Wang et al. [17]
using an axisymmetric version of the present solver. The cylindrical shock tube configu-
ration and the initial conditions are depicted in Fig. 22. An unsteady flow field is created
at ¢ = 0 by the sudden removal of a diaphragm at the lip of the tube, which separates a
compressed fluid in region 2 inside the tube from the surrounding stagnant fluid in region
1. The direct contact of the high and low pressure regions results in a rarefaction wave
propagating back into the tube and, in the meantime, a shock wave blasting away from
the tube lip into the ambient open space. The comparison between experimental results
-and CE/SE solutions presented in [17] shows that the unsteady blast wave development
was captured very well in the numerical solutions.

Consider the planar-flow version of the above problem where it is assumed that the
configuration of the planar-flow version is such that its cross section is identical to that of
the axisymmetric-flow version. In other words, the tube in the original problem is replaced
by two slabs in its planar-flow version. A numerical simulation of the new version was
carried out using the 2D CE/SE shock-capturing scheme. The computational domain is
depicted in Fig. 23 with the understanding that the axis of symmetry is represented by
the lower boundary. For illustrative purposes, some CE/SE mesh points are also shown
schematically in the same figure.

The computation was performed over a 160 x 120 mesh with at = 0.0025. The non-
reflecting boundary conditions are imposed at the inlet and outlet, while the reflecting
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boundary conditions are imposed at the lower and upper boundaries, and at all slab walls.

To show the time history of flow development, numerical solutions at eight time levels
are shown in Figs. 24 and 25, in which the pressure and density contours ranging from
0 to 5.88 with a constant interval of 0.049 are plotted. The sequential plots reveal that
as the blast wave initiated from the open end of the region between two slabs propagates
to the right, a vortex is developed at the lip of the slab wall, and it moves downstream
with an ascending motion. When the blast wave reaches the upper wall, it is reflected as
shown in the plot at ¢ = 1.0 msec. In the meantime on the axis of symmetry a normal
shock is formed ahead of the vortex and moves slowly in the downstream direction, while
a jet shear layer is created at the lip of the region between two slabs. At t = 1.5 msec, the
portion of the blast wave that is reflected from the upper wall is shown to move toward
the vortex. After passing the vortex, the blast wave becomes curved and keeps moving
forward to interact with the normal shock below, as shown in the plots at t = 1.7 msec. At
t = 1.9 msec, the flow pattern reveals that as a result of the interaction, the blast wave is
broken into two parts while several new vortices are created. More complex flow patterns
are shown at ¢ = 2.1 and 2.3 msec, describing further reflection and interaction of shock
waves and vortices.

Despite the difference between planar and axisymmetric configurations, the computed
flow fields agree extremely well with those shown in the shadowgraph pictures of the test
results [16] taken at ¢ = 0.1996 and 0.4937 msec, respectively.

3.2.4. Diffraction of Shock Wave down a Step

Two experimental cases, described in [p. 148, 18], about the diffraction of a plane
shock wave down a step, are simulated here. The computational domain (0<z,y<3.5)is
depicted in Fig. 26 with the upper boundary being a solid wall. The shock wave is located
at the corner of the step at ¢t = 0. The reflecting boundary conditions are imposed at the
upper and lower walls as well as all step walls. The non-reflecting boundary conditions
are imposed at the inlet and outlet. In the first case in which a weak shock wave with
M, = 1.3 is considered, the numerical simulation is carried out using a 140 x 70 mesh with
At = 0.01. The computed solutions at ¢ = 0.42, 1.12, and 1.82 are also shown in Fig. 26,
in which the density contours are plotted from 0.8 to 1.55 with an interval of 0.025. A
comparison of the computed solutions with the first set of the photographs shown on p.148
of [18] (reproduced here as Fig. 27) reveals that there is general agreement in flow pattern,
except for those phenomena induced by the viscous effect. The observed shock waves, slip
lines and vortices are very well captured in the numerical solutions.

In the second case in which a stronger shock wave with M, = 2.4 is considered, the
numerical simulation is carried out using a 180 x 70 mesh (0 < z < 4.5 and 0 < y <3.5)
with aA? = 0.005. The computed solutions at ¢ = 0.275, 0.875, and 1.375 are shown in
Fig. 28, in which 30 density contours are plotted with the coutour values increasing from
the minimum of 0.5 with a constant interval of 0.095. The flow patterns exihibited in
Fig. 28 are more complicated than those in Fig. 26. In large measure they are also similar
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to those observed in the second set of the photographs shown on p.148 of [18] (reproduced
here as Fig. 29).

3.2.5. Shock Reflection from a Dust Layer

Here a practical problem of shock reflection from a dust layer is studied. Following
the wedge model described in [19], we consider a plane shock moving to the right with
Mach number M, = 1.41 toward a wedge whose surface is inclined at angle 6,,, as shown
in Fig. 30. Square protuberances of size L/2 are placed at equal distances I apart on the
surface to simulate dust particles. The common origin of the two coordinate systems (z,y)
and (z',y') is situated at the tip of the wedge, with the ' and y' axes being parallel and
normal to the wedge surface, respectively.

As depicted in Fig. 31, the computational domain (—0.5 < z'/L < 7.0 and 0 < y'/L <
4) contains seven protuberances. The front of the incident shock thus makes an angle 0,
with the y' axis. Att = 0, the computational domain is divided into two flow regions by the
shock front that intersects the z'-axis at z'/L = —0.4. Standard stationary atmospheric
conditions are assumed in the region to the right of the shock front, while constant fluid
conditions with M; = 1.41 are assumed in the other region. Reflecting boundary conditions
are imposed at all solid walls, while non-reflecting boundary conditions are implemented
at both the inlet and outlet, and on the part of z' axis with —0.5 < z'/L < 0, through
which waves can move freely. On the upper boundary (y'/L = 4), where the reflected
waves have not reached before the end of all simulations, numerical values are assigned
ahead of and behind the plane shock according to the exact solution. Computations were
carried out for 8,, = 20°,30°, and 40°, respectively, using a 300 x 180 mesh with at = 0.01,
where ¢ is made dimensionless using L as the reference length and the speed of sound in
the undisturbed region as the reference speed. o o

In order to show a clear comparison between the experimental and computed results,
the CE/SE solutions are plotted in the (z,y) coordinates through a coordinate transforma-
tion. First, to show the unsteady evolution of wave patterns resulting from the reflection of
shock waves over the dusty wedge, computed density contours at four different time levels
for 6,, = 30° are plotted in Fig. 32. The effect of varying wedge angle on wave pattern
can be observed in the density contour plots shown in Fig. 33 for 6, = 20° at ¢t = 3.8
and in Fig. 34 for 6, = 40° at ¢ = 3.0, when the incident shock wave is standing at the
upper right corner of the 6th protuberance. The schlieren photographs taken from [19] are
reproduced in Figs. 35-37 to show representative wave patterns for the cases 6, = 20°, 30°
and 40° at different instants. In these photographs, (i) Model B and Model D represent
the laboratory models with L = 8 and 2 mm, respectively, and (ii) T denotes the triple
point generated by the reflection of shock waves from the first protuberance. The location
of T} in the z direction is indicated by the numerical value of z/L in each figure. It is
seen that, as the incident shock wave moves forward, a compression wave is reflected from
each protuberance and an expansion wave is generated from its back. Gradually, the indi-
vidual compression waves accumulate to form an envelope C. and a stronger compression
- wave C{ (see Fig. 36). For the cases with 6,, = 20° and 6,, = 30°, the developments of
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wave patterns are almost the same, while for ,, = 40°, a kink point K appears as shown
in Fig. 37. A comparison between experimental and numerical results indicates that the
photographed wave patterns are correctly captured in the CE/SE solutions. The close
resemblance between Fig. 33 and Fig. 35 and that between Fig. 32(d) and Fig. 36 in terms
of both wave and vortex structures are clearly recognizable.

3.2.6. Implosion/Explosion of Polygonal Shock Waves in a Box

The problem concerning the implosion/explosion of a polygonal shock wave in a square
box studied in [20] is investigated here. Not only the early stage of the implosion /explosion
process, but also its later development, which was not studied in [20], are simulated here.
It further demonstrates the robustness of the current Euler scheme in its ability to model
multiple shock reflections and interactions.

All simulations are carried out using (i) a dual 240 x 240 mesh covering a square box
(=2 < 2,y < 2), and (ii) a CFL number = 0.9. The reflecting boundary conditions are
imposed at the four sides of the square box with the understanding that the more accurate
dual-mesh reflecting boundary conditions Egs. (2.22)—(2.24) are used at the vertical walls.

The initial shock wave configuration is a regular polygon. It is assumed that (i) the
polygon shares with the square box the same geometric center (located at (0,0)), (i) one of
the vertices of the polygon is located at (0,0.84/3), and (iii) there is a low pressure region
inside the polygon with a pressure ratio of 10 across the shock. Note that, as a result of
(i) and (ii), the vertices of the polygon are points on the circumference of the circle that
has a radius = 0.84/3 and is centered at (0,0).

As the first step, the early flow field is studied for three cases in which the initial
shock wave configurations are an equilateral triangle, a square and a regular pentagon,
respectively. The computed pressure and density contour plots at different time levels
are shown in Figs. 38 and 39. Wave patterns similar to those shown in Figs. 1-5 of
[20], obtained using a TVD method on a 359 x 359 mesh, are clearly observed in the
CE/SE solutions, displaying detailed features such as Mach stems and polygon-shaped
flow discontinuities.

As the second step, the implosion/explosion of a hexagonal shock wave is simulated
until the second implosion of the shock wave is observed in the box. More complex flow
phenomena can be seen in the pressure and density contour plots of Figs. 40 and 41,
including the reflections of shock waves, shock-shock interaction, and shock-contact surface
interaction. It is interesting to note that the shape of the contact surface centered at the
center of the box remains unchanged even after the passage of shock waves. Further
development of the implosion/explosion process can also be simulated using the same
solver.
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4. Conclusions and Discussions

By comparing the current numerical results with experimental data, exact solutions
or numerical solutions generated by other methods, it has been shown that the 1D and 2D
CE/SE shock-capturing schemes can accurately resolve shock and contact discontinuities
consistently. Furthermore, it has also been shown that the present schemes are genuinely
robust, i.e., unlike many other shock-capturing schemes, their accuracy are achieved with-
out resorting to special treatments for each individual case.

Because of their simple logical structures and totally explicit nature, the present
schemes are also highly computational efficient. As an example, consider a vectorized code
implementing the single-mesh 2D CE/SE shock-capturing scheme. For a 300 x 120 mesh,
the CPU time on a Cray C90 required to execute 180 marching steps (T = 180 x (at/2))
is only 14 seconds, i.e., about 2.16 psecs per mesh point per marching step.

A disadvantage of the present schemes is that the total number of space-time mesh
points involved in each single-mesh (dual-mesh) CE/SE simulation is about twice (four
times) that of a typical single-step regular-mesh simulation if each simulation uses a § x R
mesh and both have the same values of S, R, at and total simulation time T'. However,
this disadvantage can be compensated for by other advantages the present scheme has,
such as higher accuracy and lower computational cost per mesh point per marching step.
As an example, consider the test problem discussed in Sec. 3.2.6. The TVD results given

‘in [20] are generated using a 359 x 359 mesh while the CE/SE results are generated using
a dual 240 x 240 mesh. Assuming that the same C FL number is used in both simulations,
then the value of At used in the CE/SE simulation is 359/240 times that used in the
TVD simulation. It can be shown easily that the total number of space-time mesh points
involved in the CE/SE simulation is only about 20% more than that used in the TVD
simulation. The slight disadvantage of the present scheme can be further compensated for
not only by its possible lower computation cost per mesh point per marching step, but
more importantly, by its ability to simulate the implosion/explosion process long past the
early stage simulated by the TVD method.
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a steady-state oblique shock problem (R =S=4).
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Figure 4. The spatial locations and the mesh indices (r, s) of mesh points used in a problem
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Figure 5: The CE/SE solution and the exact solution of the §égreen problem.
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Figure 6: The CE/SE solution of the Shu-Osher problem.
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Figure 7. The CE/SE solution and the exact solution of the shock-wave merging
problem (t = 0.675,a = 2).
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Figure 10: The CE/SE solution and the exact solution of the shock-wave merging
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Figure 15: The CE/SE solution and the exact solution of the wavesin a
shock-tube with closed ends problem (t = 0.3).
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Figure 16: The CE/SE solution and the exact solution of the wavesin a
shock-tube with closed ends problem (t = 0.4).
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Figure 18: Pressure contours and pressure coefficient at y = 0.5 of the
oblique shock problem (60x20 mesh).
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Figure 19: Pressure contours and pressure coefficient at y = 0.5 of the
oblique shock problem (120x40 mesh).
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Figure 22: Theinitial conditions and geometry (cross section) of acylindrical shock tube
for the blast wave problem.
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Figure 23: The computational domain and mesh-point distribution of the blast wave
problem (planar-flow version).

NASA/TM—1998-208844 39



3.0 T T T T T T T 30

25F 9 25
(a)t=0.1996 msec (b)t=0.4937 msec

20F

Y/D
Y/D

1.5F

-1.0-05 00 05 10 15 20 25 3.0

X/D
3.0
250
2.0
g € 15}
kel = .
1.0
05
-1.0-05 00 05 1.0 1.5 20 25 3.0 -1.0-05 00 05 1.0 1.5 20 25 3.0
X/D X/D
3.0 3.0
2.5 250

o

Y/D
Y/D

2. k 20 \\\\ _
15k ’1 . 15F ~ \\ L@;
U, e SR NN~ ie=2a 3

~1.0-05 00 05 1.0 1.5 2.0 2.5 3.0 ~1.0-05 00 05 1.0 15 20 2.5 3.0
X/D X/D
3.0
25F
2.0f
€ 15E N
kel ! kel

1.0

0.5

o I

-1.0-05 00 05 1.0 15 20 25 3.0 -1.0-05 00 05 1.0 15 20 25 3.0
X/D X/D

Figure 24: Pressure contours of the blast wave problem at eight different time levels.
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Figure 25: Density contours of the blast wave problem at eight different time levels.
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Figure 26: The computational domain and density contours at three different
time levels of the diffraction of shock wave down a step problem (first case).
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Figure 27: Experimental results of the diffraction of shock wave down a
step problem (first case—three different time levels).
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Figure 28: The computational domain and density contours at three different time
levels of the diffraction of shock wave down a step problem (second case).
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Figure 29: Experimental results of the diffraction of shock wave down a
step problem (second case—three different time levels).
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Figure 30: Shock moving past a wedge with a dust layer.
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Figure 31: The computational domain of the dust layer problem.
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Figure 32: Density contours for the dust layer problem (4, = 30°) at four
different timelevels. (a) t=0.5, (b) t =1.75, (c) t =3, (d) t = 4.
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Figure 32: (continued)
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Figure 34: Density contours at t = 3.0 for the dust layer problem ( g, = 40°).
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Figure 35: A schlieren photography for (4, = 20°).
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Figure 36: A schlieren photography for (4, = 30°).
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Figure 37: A schlieren photography for (4, = 40°).
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Figure 38: Pressure contours for implosion/explosion in a square box with
different initial shock wave configurations.

() anequilatera triangle. (b) asquare.

(c) aregular pentagon.
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Figure 39: Density contours for implosion/explosion in a square box with
different initial shock wave configurations.

(&) anequilateral triangle. (b) asquare.

(c) aregular pentagon.
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Figure 40: Pressure contours for implosion/explosion of a hexagonal shock in a
square box.
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Figure 41: Density contours for implosion/explosion of a hexagonal shock in a
square box.
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