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Abstract combustor inlet temperatures and pressures compared
with current designs. A thorough understanding of
Increasingly severe constraints on emissionsise  combustion phenomena and combustor

and fuel efficiency must be met by thaeext subcomponent performance at actual operating
generation of commercial aircrafiowerplants. At conditions is critical to the successful design and
NASA Lewis Research Center (LeRC)caoperative construction of these powerplants. Advanceson-
research effort with industry is underway design intrusive optical diagnostic methods and test rig
and test combustors that will meetthese designs have nownade it possible to acquirtvo-
requirements. To accomplish these tasks, it iglimensional optical data from within combustors and
necessary to gain both detailed understanding of flame tubes which closely simulate actuahgine
the combustion processes and a precise knowledge efnditions. Performing experiments of thigpe,
combustor and combustor subcomponent performandeowever, requires circumventing or otherwise
at close to actual conditions. To thatnd, overcoming inherent problems not typical of bench-
researchers at LeRC are engaged in a comprehensit@p experiments. These problems, both logistical and
diagnostic investigation of high pressureacting technical, involve not only the diagnostic
flowfields that duplicate conditiongxpected within techniques, laser beam delivery, andata
the actual enginecombustors. Unique,optically  acquisition, but the test rigs themselvefrequent
accessible flametubesind sector rigcombustors, combustor configuration changes place aatditional
designed especiallyfor these tests,afford the burden on the diagnostic techniques requiring a
opportunity to probe these flowfields with thmost  robust design and the ability to adapt to multipdst
advanced, laser-based optical diagnostic techniquesigs and frequent component modifications. The
However, these same techniques, tested and provéechniques must alsaccommodateother standard,
on comparatively simple bench-top gasedisme less flexible measurement techniques such as gas
burners, encounter numerous restrictions andampling by probe extraction. Foremosthese
challenges when applied in these faciliti€Bhese techniques must be able to successfulhanslate
include high pressures and temperatures, ldlge  from the bench-top to the powerplant; in other words,
rates, liquid fuels, remote testing, and carbon oithey must be capable of remote operation and of
other material deposits on combustavindows. performing dependably in a frequenthhostile
Results are shown that document theccess and environment.
versatility of these nonintrusive opticaliagnostics
despite the challenges to their implementation ifMany mature optical diagnostic techniquémve
realistic systems. been used successfully on bench-top or laboratory
scale setups and have had a significant impact on
Introduction combustion studies! Raman techniques, such as
coherent anti-Stokes Raman spectrosc¢fARS),

The next generation of aircraft powerplants will "@ve been usedor years to study combustion

operate at conditions resulting in much higher overalP€nomenon and to elucidate information concerning
species and temperature However, the point-wise

and alignment- critical nature of CAR®laces

""Senior Research Engineer, Aeropropulsion Systems Dept. severe limitations  upon it_sapplica_tion in an
* Senior Research Engineer, Optical Instr. Tégtanch environment where there is a high degree of
* Research Engineer, Optical Instrumentation Tech., Branch vibration, large temperature fluctuations, and thst

$ Research Engineer, Combustion Technol&gnch e ; ; ;
! Copyright © 1998, The American Institute of Aeronautics and cell is |nacceSS|bIedur|ng operation. Onlyecemly

Astronautics Inc. All rights reserved. have advances in the development sxﬁatia}lly
resolved Raman spectroscopy been applied to
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combusting flowfield$, although it has yet to be
demonstrated in an  actual aero-combustor.
Similarly, degeneratefour-wave mixing (DFWM)
and transient grating spectroscbpyTGS) have
shown great promise as diagnostic todts high
pressure combusting flowfields. However,
problems similar to those experienced by ARS

the diagnostics procedures. This includésser

operation, data/image acquisition, and test rig
operation. Opticalaccessibility to the combustion
and fuel injection =zones is also required,

necessitating the application of complexindow

with cooling technologies to prevent degradation and

potential melting of window materials.

method, these too have yet to be successfully used in

an actual combustor environment.

Laser-induced fluorescence (LIF), planar
induced fluorescence (PLIF), and recentimalog
predissociative  techniques have been

laser-diagnostics methods

usecthjector

At NASA LeRC, efforts have been underway to
adapt and implement existing nonintrusiegtical
to examine theealistic,
reacting flow fields generated by advanced fuel
designs. Two optically accessible

successfully to examine a wide range of combustiorflametubes capable of operation up to 2.0 MPa in

processes.

The two-dimensional nature of PLIF hapressure and 2033 K in temperature wilkbw rates

made it the more promising and useful of the two forup to 3.68 kg/s are presently in use. A thinduch

aerospace gas turbine combust@pplications.
Additionally, its multi-species selectivityflow field
imaging capabilities, and potential quantitative
nature make it a favorable candidafer flame
studies.

larger housing designetbr 6.7 MPa operation, has
been delivered and installed but has not yet
undergone optical testing. For these tesiptical
accessibility is the key. Windowmaterials must be
fully capable of withstanding the above conditions
while remaining optically clear for the acquisition of

PLIF has been used previously to probe laboratoryneaningful data and images.

scale low pressurand atmospheric pressugaseous
flames for species concentration and distributfot?,
velocity!!, and temperatuté measurement. Shock
tube studies by PLIFnethod$® have alsoenjoyed
significant success including temperature

species measurement. Recentligboratory scale
high pressure gaseous flames near 40-MPal* *°
and spray flames approachirigd MP&® have been
successfully examined via PLIF imaging.
Measurements made using opticallgpccessible
ground based powersystem¥’, diesel® and spark
ignition® (SI) engines have been critical

understanding the combustion processes tliese
systems. Recent two-dimensiondluorescence

to excitation

Due to testing costs and strict scheduling constraints
which precluded more time consuming individual
testing, each diagnostic had to be integrated with

andhe test rig in such a way as to allssimultaneous

data acquisition. The opticallyaccessible rigs at
LeRC were designed to allow implementation of a
large number of optical diagnostic methods. PLIF

PLIF and Planar Mie scattering were chosen as the

primary methods sincadequate laser energxists
to make an acceptable laser sheet and the same UV
wavelength can be wusetbr both.

Furthermore, these techniques, in addition to having
high temporal and spatial resolution and high

imaging measurements which simulate proposed gasensitivity, allow an opportunity t@xamine both

turbine concepts but at atmospheric pressirage
also been successfully performigd

While these investigations have producgdnificant
results and have added greatly dar understanding
of combustion processes, these experimenéve

intermediate and stable species.

Hardware

The test facility at NASA LeRC deliversonvitiated
air to the two unique, opticallpccessible combustor

only simulated certain aspects of the combustor angbst rigs utilizedfor this series of experiments and
its operating conditions. What was needed was &escribed in detail elsewhefe?? The first, pictured
means to nonintrusively examine the combustingn Figure 1a, is a 21.6 cm x 21.6 amdially-staged
flowfield, and to observe the performance ofgas turbine combustor. This rigalled a sector rig,

combustor subcomponents, such as the fogctor

is designed to test larger, multi-componengector

and swirlers, operating at anticipated conditions okystems. The second test rig, shown in Figure 1b,

pressure and temperature, using feels. The test
rigs necessary to allow this type of testipgesent
many challenges to successful applicationopfical
diagnostics. Conditions approaching 6.106.1 MPa
in pressure, 2255 K in temperature, and méews

measuring 7.6 cm x 7.6 cm, is a flame tudesigned
to test single component injectors osmall,
multi-component systems. Typical rigpperating
conditions range frominlet temperatures of 533 K -
866 K, inlet pressures of 0.55 MPa 2.03 MPa,

approaching 17 kg/s are under consideration foand mass flows of 0.16 kg/s to 0.77 kdftr the

future tests. Furthermore, the very nature of thise

of testing requires remote operation of all aspects ofig,

NASA/TM—1998-208649
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0.30 to 0.60. Initially JP-5 or JPj8t fuel wasused and laser sheet delivery system are then shifted an

for testing but Jet-A is now used for all tests. equal amount in the same direction, thereby
maintaining the original, pre-lightoff alignment.

The window housings, which areentical for each

test rig, are equipped with UV grade fusedica Various fuel injector designs have been fitted into

windows measuring 38 mraxially, 51 mmradially, each testrig. These injectors are positioneslich

and 13 mm thick. To counter the heat generated ithat the injector exit plane projects approximately 5

the combusting flow stream, the inner surface of thenm into window viewingarea, therebyproviding a

windows are cooled with a thin film of nitrogen. The reference pointfor the resultant images and rig

nitrogen flow comprises less than 10% of thecoordinate system. The rig coordinatgystem

aggregate combustor madlew and maintains a defines x as the azimuthal or horizontal direction

typical window inner surfaceemperature lesshan  with positive x to the right when looking upstream. Z

977 K. is the axial coordinate, witle =0 defined as the
injector exit plane and positive z in the downstream

Window breakage has not been a majooblem. direction. Y is the radial or vertical coordinate with

Breakage, which typically occurs in thtorm of  positive values above the rig center line.

shear cracks, has been experienced only on the

larger sector rig. Cracks have not occurred during a Optical Setup

test run but only after the shutdown procedure has

been completed and theg is coolingdown. Since  Figure 2 presents a cutaway of the test facility and
breakage does not happen often and not always @he experimental layout which is describeddetail
the same location, it cannot be directly attributed tQsjsewheré® The 10 Hz, 532 nm outpufrom a
any one cause. However, it is assumed. that thegntinuum model ND-81CNd:YAG laser pumps a
breakage occurs as a result of uneven cooling of thgp g0 dye laser, the output of which is doubled by a
window mounts and the combustor theretgusing  yyx ultra-violet wavelength extension system. The
uneven stresses. resulting 281 nm  output, maintained at
) ] ) ) approximately 20 mJor the experimentsdescribed
Window deposits are a recurring problem ca#rtain  perein, is delivered through 90 macrylic tubes to
test conditions. While testing specific fueliector  the test cell by a series of remotely controlled high
designs, it became necessary to periodically removgamage thresholdirrors. Since this laser provided
deposits that accumulated on tvndows.  This is 5 divergence of only 5 mrads, the laser output is
accomplished byfirst retracting the ICCDcameras  gjiowed to freely expand over the beam path which
out of the way, then remotely sweeping5@ mJ  yanges from 12meters for the flame tube to 25
sheet of focused, 532 nm output provided by ameters to the sectorig. The laser beam,prior to

Continuum  "Surelite” Nd:YAG laser over both entering the test section, is formed into a sheet by a
detectorwindows. In thismanner, the deposits are {=3000 mm cylindrical lens. The resultasheet

the laser beam insertiowindow was found to be 22 mm by 0.3 mm. A second beam path, stuown
unnecessary since the continued panning of thg, the figure, has recently been added atow

incident 281 nm laser sheet effectively keeps thisimyitaneous two color experiments or the use of a
window clear. second YAG laser for window cleaning operations.

A direct result of test rig heating iaxial growth. pye to the distances involved, and teafety
Each rig demonstrates this characteristic to a varyinggonsiderations demanding that the test cell be
degree. This growth is always in thepstream jnaccessible to personnetiuring all test runs,
direction since the downstream segment of the rig iositioning of the laser sheet and camerasrebyiote
anchored to the test bed. Growth of up to 7-8 mm hagomputer control is necessary. For the nefigme
been observed. Tracking and correctify this  tpe rig, this requires controlling, effected by a
growth with theincident lasers and cameras underpgrker Hannifin Compumotor model 3000, upfdar
remote control was an additional challengering  axes on the laser sheet positioning table suspended
these experiments. This &hieved by scribing the jnmediately above thavindowed test sectior{see
combustor housing just below one of th@aging figure 2). Control of two Aerotech 3-axes
windows in millimeter increments. The outpg¢am positioners, eachholding an ICCD camera, is
from a helium neon laser was then spotted at theccomplished viawo Unidex model 11 controllers.
origin of this ruling and monitored with &ideo  Eqor the more distant sector rig, a Compumatardel
camerathroughout the testun. Asthe rig grows or 4000 provides controfor an additional 4 axes

shrinks with changing conditions, this beam spot iSyhich are required for laser sheet delivery ititat
observed to drift along the scaled ruling. The camergast section.

NASA/TM—1998-208649 4
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The complexity of this motion control system wasdistributions may be obtained by shifting tliata
reduced by writing a computer program doordinate  acquisition site along the propagation direction of the
the simultaneous positioning of both the laséreet transmitter. Since the PDPA device makes point
and camera detection systems. Themeasurements within a small region, the probe
LabWindows/CVI software development toflom  volume must be traversed under remote control
National Instruments was used to accomplisiis  throughout theaccessibleflowfield to characterize
task. The final program allows the user select the spray.
which laser beam and detector configuration is to be
utilized for each testrun from a possible ten Originally each of these diagnostics weaéigned
combinations. The program also provides a highseparately, which led to difficulties irspatially
degree of flexibility by allowing the user tepecify correlating the data acquirefom each method.
the type and orientation of each stage mounted in thBubsequently a single, universal alignment tool is
test cell and how these stages are to be connected usedfor each method.This constitutes a flaplate
the motion controllers. The program controls themeasuring 19 mm x 96 mm which is scribed on both
distance and direction that each designastdge sides with a metric ruling, and arrows indicating both
moves and allows the user to define an origin. Thehe flow direction and the laser sheet path. The plate
program, through keyboardommand, positions the is inserted through the lower winddacation which
laser sheet anywhere within the insertimindow  was fitted with a spark pludor these experiments,
with respect to the defined origin in terms of aand extends through the flow path measured
rectangular coordinate system. The program recorddistance from the fuel injector exit plane. For
the user's coordinates, test conditions, as well aseference, the center line of the combustorliso
origin for future test runs or incase of apower scribed into the plate. Holes measuring 3 mm in
failure. diameter are located along this center liioe the
purposes of aligning the PDPA instrument.
Figure 3 illustrates the typical diagnostic seuged Following alignment, the plate is withdrawn and the
for this series of experiments. Fuel or OH PLIF andspark plug replaced.
planar Mie scattering signals are collected normal to
the incident laser sheet by gated and intensified 16 Image Acquisition and Processing
bit ICCD camerasfrom Princeton Instrumentsgach

with a 384 x 576 pixel array. Théentensifiers, |mage collection is accomplished usirRyinceton
adjusted to provide a 75ns gate, are synchronousinstrument's Winview software.  Theollected
triggered with the laser pulse. Eachmera uses a ijmages are transferred to &Gl Indigo workstation
Nikon 105 mm f/4.5 UV Nikorlens focused on a for processing. Processing and image analysis on the
plane coincident with the incident laser sheet. ThesG| is accomplished using’V-WAVE from Visual
PLIF camera is equipped with both a Schott WG-3OENumeriCS, Inc. The gra}sca|e imagesfrom the
filter and a narrow bandnhterference filtercentered cameras are convertedfor d|sp|ay using a

at 315 nm with a FWHM of 10.6 nm vyielding a pseudocolor scale consisting of 26lor plus black
transmission efﬂmenqy of 16%. The Mgattering  (low intensity) and white (high intensity) where each
camera is equippedith a narrow bandnterference color represents a span of 10 counts in a liresn
filter centered at 283 nm with a FWHM of 2 nm andof 255. The colors in the pseudocolscale have

a transmission efficiency of 6%. Both single shotsheen chosen to make it easier to see details in the
and on chip-averaging of successive images may bigss intense portions of the images. Image processing
obtained using this detection system. includes removal of noise spikes, background

] subtraction, and, in some cases, correcfmmlaser
Figure 3 also shows thglacement of atwo-  sheet energy distribution.

component Aerometrics Phase/Doppleparticle

analyzer (PDPA).  This instrument is used towe have also developed an additional, unique image
measure the light refractively scattered by fuelprocessing capability that allows us to obtain views
droplets (30 forwardscatter). The PDPA system is |ooking upstream into the fuel injectors.These
mounted onto a large 3-axis Accudex positiofiem  views, called end-on or "cross flow" viewswere
Aerotech. The two-line 488 nm and 514 nm OUtpUTdeve|oped to examine the fuel spray pattern or
is supplied by an argon ion laskom Coherent and patternation of each fuel injector studied. this
delivered by fiber OptiC to the transmitter unit. The process, forty-one side-view images are acquired at 1
transmitter and receiver are aligned®° ¥som the mm increments across tHow field at each test
horizontal plane to maximize thenumber of condition. A computer program then configutégse
measurement sites within the test section. fdwl 41 images into an image stack. Th®ogram
lengths for both receivi_ng and transmitting_ optics arénterpolates the region between each of the 41
500 mm. The transmitter beam separations are 4fhdividual images thereby filling in the gaps resulting
mm. Dropletsize, velocity and numbedensity in a smoothed 3-Dmage block. The imagdlock

NASA/TM—1998-208649 6



can then be sliced in any desired orientation. Figurén this average is due to laser sheet energy changes.

4 illustrates this proces®r a lean direct injector
design installed in the sectoig. In this figure the

In our recent work, we have chosen to correct the xy-
images by a factor which causes the within-jet

flow exits the page to the right. The left side of theaverage to be a constant over a range of z values.

image showsfor the sake of simplicity, only a few

selected side-view fuel fluorescence images in the Z¥he left-hand image in figure 5 shows a typisaie
y plane. The right side of the figure shows a few ofview, fuel fluorescence image obtained on freane

the resultant cross flow views obtained in thanner
described. The images in an image stack sm@ed

together so that the highest signal level representg,,= 0.31,

tube rigfor a two-circuit fuel injector concept. The
test conditions were: R =1.6 MPa, T.= 680 K,
and A, =281.5 nm. This image

the 99th percentile. The images are displayed in thiglustrates one of the challenges encounterethese

manner in order taccentuatethe lower lightlevel

experiments and brings out one of the many benéefits.

structures that would otherwise be lost in the glare offhe problem illustrated here is the obscuration of the

the higher intensity features.

18 mm
9 mm
-4 mm,

-20 mm

side-view cross-flow

Figure 4. Sequential image stacking of side-view (z-y
plane) fuel PLIF images acquired within theector
combustor yielding cross-flow (x-y) views. Test
conditions:A . = 281.5 nm, T, = 800 K, R, = 1.46
MPa, @ = 0.42

Because the injectors are positionedth their
injector exit planes projecting approximatelymm
into the window viewingarea, a large amount of
incident laser light scattefrom the injector face is
encountered. This scatter is intense enougalltow

passage of a small but significant portion through the

selective filters of the detectors. This scatter is

eliminated by placing an external beam block over

the top of the laser sheet insertiowindow
effectively blocking any light from hitting the face of
the fuel injector.

fluorescence signal by the buildup of soot on the
detector windows. This deposition is seen here as a
dark mass in the upstream (left) center position, just
downstream of the injector location.  ThHeenefit
illustrated is the ability to illuminate theetailed
flowfield structure. Thigmage, taken at theenter
line of the injector clearly shows the spray from both
inner and outer fuel circuits. This imaging data has
been used taalculate the full fuel spray angle at
condition and subsequently found to agree quitd|
with the theoretical values at most test points.
soot buildup at low power condition,while
problematic, was easily removed by treblation
method described earlier.

The

high
fuel

Main

low
fuel

Side View Cross Flow

Figure 5. Comparison of side-view anctoss-flow
views acquired for a two-circuit injector installed in the
flametube. Test conditionsk,, = 281.5 nm, [, =
682 K, Pt = 1.6 MPa,@,,,, = 0.304

inlet

The right-hand image in figure 5 presents a cross
flow image derived using the aboveescribed
technique for a position 14 mm downstream from the

Since direct measurement of the laser sheet intensifipel injector exit plane. The advantages of the cross

in the z direction is nopractical, anothetechnique
has been developed to correct for the &dflin laser
sheet power at the upstream and downstredges.
We assume that the average intensity in ¢thess-

flow display are quite obvious. Actual flostructure
and fuel spray symmetry are clearly illuminated.
the fuel PLIF imagetwo concentricrings of fuel,
either vapor and/or liquid, are seen to be coming out

In

flow images over an area enclosing the jet should bef the page and expanding away from tha-circuit

constant as we move downstream over rihl@tively
shortaxial range we can see. This isr@asonable

injector with a high degree of uniformity.

assumption because the viewable distance ifigure 6 shows the fuel PLIF cross flow image shown
relatively short (approximately 40 mm). This in figure 5 (right) compared with a planar Mie
assumption leads to the conclusion that any variatioscattering cros§low image acquired simultaneously

NASA/TM—1998-208649



at the same axial position. The fuel PLifmage
again shows twaconcentricrings of fuel from the
pair of injectors. In contrast, the planar Mimage
shows only a single ringmanatingfrom the inner
fuel circuit, the outer ring is absent.
this is due to the outer fuel circuit's appargnéater

efficiency at vaporizing the fuel spray, which

explains the lack of droplet scattering centers in this"ih e

region. This comparison offersraeans by which to
address critical fuel vaporization issues whichve
been examined by other meth&ds but with limited

success.

high Fuel PLIF Mie Imagning
fuel z =14 mm z=14m

Figure 6. Comparison of fuel PLIF and Planar Mie
scattering cross-flow images acquired at #ame axial
position for a two-circuit injector installed in the

flametube.
682K, P,

inlet

Test conditionsk,,, = 281.5 nm, T,
= 1.6 MPa,@,,, = 0.304

Another issue brought forward by considering figure 6
The
right side in the PLIF image and the left side of the

is the question of possible extinction effects.

planar Mie scattering image, each being thide
opposite their respective cameras, appearshow
some decrease in signal intensitythis affect may
be attributed to the extinction of the incident light
sheet or to the extinction of the induced emission or
scattering by the interveninfowfield. Since this
phenomenon is not ubiquitous, but only appears thus

one or more of the detectors requiring shutdown of
the rig in order to re-enter the test cell to realign the
systems. Subsequently, the PDPA diagnhostiese
run only after moving the two ICCbameras asafe

The reason fodistance downstream following their dag&quisition

run.

low fuel

a. Fuel PLIF b. Mie Imaging

PDPA along -105wline
PDPA along -15»line

Fuel PLIF along -105ine
Fuel PLIF along -15wline
Mie along -105wline

Mie along -15e line

|

|

1

i

1,
st l

c. 3-d drop-line plot

Figure 7. Comparison of fuel volume distribution as
measured by PLIF, Mie Scattering and PDPA acquired
at the same axial location. Lines in the images
indicate the path along which PDPAeasurements

were made. ConditionsA,,, = 281.5 nm, T, = 616
K, Pinet = 558 kPa @, = 0.445

inlet

far in test runs involving high pressures alatge
mass flows, we have as yet not investigated the

extinction question thoroughly. Obviously, witsts i, re 7 shows a comparison of the data acauired at
scheduled to begin using the high pressiu@ MPa thg same axial Iocafi)on, 12.7 miirom the ?uel

rig where extinction effects may be more severe, thgecior exit planefor each of the thre¢echniques:
investigation ~ of these effects should Dbepppa PpLIF and planar Mie. For this series of
accomplished. experiments the flametube was equipped wittwa-
circuit fuel injector with only the pilot operating
under the following flow conditions: ;= 616 K,
et = D58 kPa@ = 0.445,A,,.= 281.5 nm. The white
nes labeled-105° and -138 on the PLIF and Mie
hages denote the path along which PDPA nfass
data was acquired. The graph at the bottom of the

Tests were performed in which PLIF, Planar Mie
scattering, and PDPA were each attemptetihese
tests were originally performed simultaneously with“
good results. However, due to the close tolerances
positioning the three different diagnostics (Jegire

3), a few instances of unwelcome collisionstween figure plots both the pixel intensity along th&0S’

the various optical components occurred. these hen symbols) and -15solid symbols) linesfrom
collisions, optical alignment was invariably lost for ho pLIF and Mie images and the mdas data
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acquiredfrom PDPA measurements. From thglot,  This will speed up one of the most time consuming
close agreement between the three differenaspects of the analysis. Additionally, topographical
techniques is seen to exist along thE05° line. and three-dimensional plotting of imagixel
Along the -158 line, the agreement holds only for the intensity, which provides an easier means to
data along the positive x axis. Along the minus xexamine the flow path, are also being automated.
axis, the PDPA data falls off sharply. There are two

possible causes for this observation; first may be th&he means to make correctionfor laser sheet
obscuration of the PDPA receiver due to #@vere inhomogenieties such as those recently rep&iiaice
beam insertion angle involved. The secqratential also being investigated. However, difficulties due to
cause may be that of extinction of the scattered lightnandatory remote operation, and the fact that both
from the far side of the flametube by the interveningthe laser sheet and the resultant plathaorescence
flow. This data falloff has been observed priothés and scattering must both paskrough different
on high pressure vaporizing sprdys The windows ofquestionable transparency makes this a
approximatel-2 mm shiftbetween the maxima for daunting task.

the three techniques on each of the plotted X0l

-15° lines is a vestige of using separafignment References
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