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Robert C. Anderson†, Michelle M. Zaller‡, Yolanda R. Hicks§,
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    Abstract

Increasingly severe constraints on emissions, noise
and fuel efficiency must be met by the next
generation of commercial aircraft powerplants.  At
NASA Lewis Research Center (LeRC) a cooperative
research effort with industry is underway to design
and test combustors that will meet these
requirements.  To accomplish these tasks, it is
necessary to gain both a detailed understanding of
the combustion processes and a precise knowledge of
combustor and combustor subcomponent performance
at close to actual  conditions.   To that end,
researchers at LeRC are engaged in a comprehensive
diagnostic investigation of high pressure reacting
flowfields that duplicate conditions expected within
the actual engine combustors. Unique, optically
accessible flametubes and sector rig combustors,
designed especially for these tests, afford the
opportunity to probe these flowfields with the most
advanced, laser-based optical diagnostic techniques.
However, these same techniques, tested and proven
on comparatively simple bench-top gaseous flame
burners, encounter numerous restrictions and
challenges when applied in these facilities. These
include high pressures and temperatures, large flow
rates, liquid fuels, remote testing, and carbon or
other material deposits on combustor windows.
Results are shown that document the success and
versatility of these nonintrusive optical diagnostics
despite the challenges to their implementation in
realistic systems.

   Introduction

The next generation of aircraft powerplants will
operate at conditions resulting in much higher overall
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combustor inlet temperatures and pressures compared
with current designs.1  A thorough understanding of
combustion phenomena and combustor
subcomponent performance at actual operating
conditions is critical to the successful design and
construction of these powerplants.  Advances in non-
intrusive optical diagnostic methods and test rig
designs have now made it possible to acquire two-
dimensional optical data from within combustors and
flame tubes which closely simulate actual engine
conditions.  Performing experiments of this type,
however, requires circumventing or otherwise
overcoming inherent problems not typical of bench-
top experiments.  These problems, both logistical and
technical, involve not only the diagnostic
techniques, laser beam delivery, and data
acquisition, but the test rigs themselves.  Frequent
combustor configuration changes place an additional
burden on the diagnostic techniques requiring a
robust design and the ability to adapt to multiple test
rigs and frequent component modifications.  The
techniques  must also accommodate other standard,
less flexible measurement techniques such as gas
sampling by probe extraction. Foremost, these
techniques must be able to successfully translate
from the bench-top to the powerplant; in other words,
they must be capable of remote operation and of
performing dependably in a frequently hostile
environment.  

Many mature optical diagnostic techniques have
been used successfully on bench-top or laboratory
scale setups and have had a significant impact on
combustion studies.2-4  Raman techniques, such as
coherent anti-Stokes Raman spectroscopy (CARS),
have been used for years to study combustion
phenomenon and to elucidate information concerning
species and temperature.5  However, the point-wise
and alignment- critical nature of CARS places
severe limitations upon its application in an
environment where there is a high degree of
vibration, large temperature fluctuations, and the test
cell is inaccessible during operation.  Only recently
have advances in the development of spatially
resolved Raman spectroscopy been applied to
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combusting flowfields,6  although it has yet to be
demonstrated in an actual aero-combustor.
Similarly, degenerate four-wave mixing7 (DFWM)
and transient grating spectroscopy8 (TGS) have
shown great promise as diagnostic tools for high
pressure combusting flowfields. However, with
problems similar to those experienced by the CARS
method, these too have yet to be successfully used in
an actual combustor environment.
   

Laser-induced fluorescence (LIF), planar laser-
induced fluorescence (PLIF), and recently, analog
predissociative techniques have been used
successfully to examine a wide range of combustion
processes.  The two-dimensional nature of PLIF has
made it the more promising and useful of the two for
aerospace gas turbine combustor applications.
Additionally, its multi-species selectivity, flow field
imaging capabilities, and potential quantitative
nature make it a favorable candidate for flame
studies.

PLIF has been used previously to probe laboratory
scale low pressure and atmospheric pressure gaseous
flames for species concentration and distribution,9, 10

velocity11, and temperature12 measurement.  Shock
tube studies by PLIF methods13  have also enjoyed
significant success including temperature and
species measurement. Recently, laboratory scale
high pressure gaseous flames near 1.0 - 4.0 MPa,14, 15

and spray flames approaching 1.0 MPa16 have been
successfully examined via PLIF imaging.  PLIF
Measurements made using optically accessible
ground based power systems17, diesel18 and spark
ignition19 (SI) engines have been critical to
understanding the combustion processes in these
systems.  Recent two-dimensional fluorescence
imaging measurements which simulate proposed gas
turbine concepts but at atmospheric pressures have
also been successfully performed20.

While these investigations have produced significant
results and have added greatly to our understanding
of combustion processes, these experiments have
only simulated certain aspects of the combustor and
its operating conditions. What was needed was a
means to nonintrusively examine the combusting
flowfield, and to observe the performance of
combustor subcomponents, such as the fuel injector
and swirlers, operating at anticipated conditions of
pressure and temperature, using jet fuels. The test
rigs necessary to allow this type of testing present
many challenges to successful application of optical
diagnostics. Conditions approaching 6.1 - 10.1 MPa
in pressure, 2255 K in temperature, and mass flows
approaching 17 kg/s are under consideration for
future tests.  Furthermore, the very nature of this type
of testing requires remote operation of all aspects of

 the diagnostics procedures. This includes laser
operation, data/image acquisition, and test rig
operation.  Optical accessibility to the combustion
and fuel injection zones is also required,
necessitating the application of complex window
cooling technologies to prevent degradation and
potential melting of window materials.  

At NASA LeRC, efforts have been underway to
adapt and implement existing nonintrusive optical
diagnostics methods to examine the realistic,
reacting flow fields generated by advanced fuel
injector designs.  Two optically accessible
flametubes capable of operation up to 2.0 MPa in
pressure and 2033 K in temperature with flow rates
up to 3.68 kg/s are presently in use. A third, much
larger housing designed for 6.7 MPa operation, has
been delivered and installed but has not yet
undergone optical testing.  For these tests, optical
accessibility is the key.  Window materials must be
fully capable of withstanding the above conditions
while remaining optically clear for the acquisition of
meaningful data and images.

Due to testing costs and strict scheduling constraints
which precluded more time consuming individual
testing, each diagnostic had to be integrated with
the test rig in such a way as to allow simultaneous
data acquisition. The optically accessible rigs at
LeRC were designed to allow implementation of a
large number of optical diagnostic methods. PLIF
and Planar Mie scattering were chosen as the
primary methods since adequate laser energy exists
to make an acceptable laser sheet and the same UV
excitation wavelength can be used for both.
Furthermore, these techniques, in addition to having
high temporal and spatial resolution and high
sensitivity, allow an opportunity to examine both
intermediate and stable species.

    Hardware

The test facility at NASA LeRC delivers nonvitiated
air to the two unique, optically accessible combustor
test rigs utilized for this series of experiments and
described in detail elsewhere.21-22  The first, pictured
in Figure 1a, is a 21.6 cm x 21.6 cm radially-staged
gas turbine combustor.  This rig, called a sector rig,
is designed to test larger, multi-component injector
systems.  The second test rig, shown in Figure 1b,
measuring 7.6 cm x 7.6 cm, is a flame tube designed
to test single component injectors or small,
multi-component systems. Typical rig operating
conditions range from  inlet temperatures of 533 K -
866 K, inlet pressures of 0.55 MPa - 2.03 MPa,
and mass flows of 0.16 kg/s to 0.77 kg/s for the
flame tube, and 1.13 kg/s - 3.63 kg/s for the sector
rig.  Equivalence ratios (φ) range from
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Figure 1a. Optically accessible radially-staged gas turbine sector housing.

Figure 1b. Optically accessible flametube housing.
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0.30 to 0.60.  Initially JP-5 or JP-8 jet fuel was used
for testing but Jet-A is now used for all tests.

The window housings, which are identical for each
test rig, are equipped with UV grade fused silica
windows measuring 38 mm axially, 51 mm radially,
and 13 mm thick.  To counter the heat generated in
the combusting flow stream, the inner surface of the
windows are cooled with a thin film of nitrogen.  The
nitrogen flow comprises less than 10% of the
aggregate combustor mass flow and  maintains a
typical window inner surface temperature less than
977 K.  

Window breakage has not been a major problem.
Breakage, which typically occurs in the form of
shear cracks, has been experienced only on the
larger sector rig.  Cracks have not occurred during a
test run but only after the shutdown procedure has
been completed and the rig is cooling down.  Since
breakage does not happen often and not always at
the same location, it cannot be directly attributed to
any one cause.   However, it is assumed that the
breakage occurs as a result of uneven cooling of the
window mounts and the combustor thereby causing
uneven stresses.

Window deposits are a recurring problem at certain
test conditions.  While testing specific fuel injector
designs, it became necessary to periodically remove
deposits that accumulated on the windows.   This is
accomplished by first retracting the ICCD cameras
out of the way, then remotely sweeping a 50 mJ
sheet of focused, 532 nm output provided by a
Continuum "Surelite" Nd:YAG laser over both
detector windows.  In this manner, the deposits are
ablated from the interior window surfaces.  Cleaning
the laser beam insertion window was found to be
unnecessary since the continued panning of the
incident 281 nm laser sheet effectively keeps this
window clear.  

A direct result of test rig heating is axial growth.
Each rig demonstrates this characteristic to a varying
degree.  This growth is always in the upstream
direction since the downstream segment of the rig is
anchored to the test bed. Growth of up to 7-8 mm has
been observed.  Tracking and correcting for this
growth with the incident lasers and cameras under
remote control was an additional challenge during
these experiments. This is achieved by scribing the
combustor housing just below one of the imaging
windows in millimeter increments.  The output beam
from a helium neon laser was then spotted at the
origin of this ruling and monitored with a video
camera throughout the test run.  As the rig grows or
shrinks with changing conditions, this beam spot is
observed to drift along the scaled ruling.  The camera

and laser sheet delivery system are then shifted an
equal amount in the same direction, thereby
maintaining the original, pre-lightoff alignment.  

Various fuel injector designs have been fitted into
each test rig.  These injectors are positioned such
that the injector exit plane projects approximately 5
mm into window viewing area, thereby providing a
reference point for the resultant images and rig
coordinate system.  The rig coordinate system
defines x as the azimuthal or horizontal direction
with positive x to the right when looking upstream.  Z
is the axial coordinate, with z = 0 defined as the
injector exit plane and positive z in the downstream
direction.  Y is the radial or vertical coordinate with
positive values above the rig center line.

    Optical Setup

Figure 2 presents a cutaway of the test facility and
the experimental layout which is described in detail
elsewhere.23  The 10 Hz, 532 nm output from a
Continuum model ND-81C, Nd:YAG laser pumps a
ND 60 dye laser, the output of which is doubled by a
UVX ultra-violet wavelength extension system.  The
resulting 281 nm output, maintained at
approximately 20 mJ for the experiments described
herein, is delivered through 90 mm acrylic tubes to
the test cell by a series of remotely controlled high
damage threshold mirrors.  Since this laser provided
a divergence of only 5 mrads, the laser output is
allowed to freely expand over the beam path which
ranges from 12 meters for  the flame tube to 25
meters to the sector rig. The laser beam, prior to
entering the test section, is formed into a sheet by a
f = 3000 mm cylindrical lens.  The resultant sheet
size at the laser focal volume is approximately
22 mm by 0.3 mm.  A second beam path, not shown
in the figure, has recently been added to allow
simultaneous two color experiments or the use of a
second YAG laser for window cleaning operations.

Due to the distances involved, and to safety
considerations demanding that the test cell be
inaccessible to personnel during all test runs,
positioning of the laser sheet and cameras by remote
computer control is necessary.  For the nearer flame
tube rig, this requires controlling, effected by a
Parker Hannifin Compumotor model 3000, up to four
axes on the laser sheet positioning table suspended
immediately above the windowed test section (see
figure 2).  Control of two Aerotech 3-axes
positioners, each holding an ICCD camera, is
accomplished via two Unidex model 11 controllers.
For the more distant sector rig, a Compumotor model
4000 provides control for an additional  4  axes
which  are  required for laser sheet delivery into that
test section.
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Figure 2. Optically diagnostic gas turbine test rig facility.

Figure 3. Optical diagnostic experimental configuration.
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The complexity of this motion control system was
reduced by writing a computer program to coordinate
the simultaneous positioning of both the laser sheet
and camera detection systems. The
LabWindows/CVI  software development tool from
National Instruments was used to accomplish this
task.  The final program allows the user to select
which laser beam and detector configuration is to be
utilized for each test run from a possible ten
combinations.  The program also provides a high
degree of flexibility by allowing the user to specify
the type and orientation of each stage mounted in the
test cell and how these stages are to be connected to
the motion controllers.  The program controls the
distance and direction that each designated stage
moves and allows the user to define an origin.  The
program, through keyboard command,  positions the
laser sheet anywhere within the insertion window
with respect to the defined origin in terms of a
rectangular coordinate system.  The program records
the user's coordinates, test conditions, as well as
origin for future test runs or in case of a power
failure.

Figure 3 illustrates the typical diagnostic setup used
for this series of experiments.  Fuel or OH PLIF and
planar Mie scattering signals are collected normal to
the incident laser sheet by gated and intensified 16
bit ICCD cameras from Princeton Instruments, each
with a 384 x 576 pixel array.  The intensifiers,
adjusted to provide a 75 ns gate,  are synchronously
triggered with the laser pulse.  Each camera uses a
Nikon 105 mm f/4.5 UV Nikor lens focused on a
plane coincident with the incident laser sheet.  The
PLIF camera is equipped with both a Schott WG-305
filter and a narrow band interference filter centered
at 315 nm with a FWHM of 10.6 nm  yielding a
transmission efficiency of 16%.  The Mie scattering
camera is equipped with a narrow band interference
filter centered at 283 nm with a FWHM of 2 nm and
a transmission efficiency of 6%.  Both single shots
and on chip-averaging of successive images may be
obtained using this detection system.  

Figure 3  also shows the placement of a two-
component Aerometrics Phase/Doppler particle
analyzer (PDPA).  This instrument is used to
measure the light refractively scattered by fuel
droplets (30° forward scatter).  The PDPA system is
mounted onto a large 3-axis Accudex positioner from
Aerotech.  The two-line  488 nm and 514 nm output
is supplied by an argon ion laser from Coherent and
delivered by fiber optic to the transmitter unit.  The
transmitter  and receiver are aligned 15° from the
horizontal plane to maximize the number of
measurement sites within the test section.  The focal
lengths for both receiving and transmitting optics are
500 mm.  The transmitter beam separations are 40
mm.  Droplet size, velocity and number density

distributions may be obtained by shifting the data
acquisition site along the propagation direction of the
transmitter.  Since the PDPA device makes point
measurements within a small region, the probe
volume must be traversed under remote control
throughout the accessible flowfield to characterize
the spray.   

Originally each of these diagnostics were aligned
separately, which led to difficulties in spatially
correlating the data acquired from each method.
Subsequently a single, universal alignment tool is
used for each method.  This constitutes a flat plate
measuring 19 mm x 96 mm which is scribed on both
sides with a metric ruling, and arrows indicating both
the flow direction and the laser sheet path.  The plate
is inserted through the lower window location which
was fitted with a spark plug for these experiments,
and extends through the flow path a measured
distance from the fuel injector exit plane.  For
reference, the center line of the combustor is also
scribed into the plate. Holes measuring 3 mm in
diameter are located along this center line for the
purposes of aligning the PDPA instrument.
Following alignment, the plate is withdrawn and the
spark plug replaced.

   Image Acquisition and Processing

Image collection is accomplished using Princeton
Instrument's Winview software.  The collected
images are transferred to an SGI Indigo workstation
for processing.  Processing and image analysis on the
SGI is accomplished using PV-WAVE from Visual
Numerics, Inc.  The gray scale images from the
cameras are converted for display using a
pseudocolor scale consisting of 25 color plus black
(low intensity) and white (high intensity) where each
color represents a span of 10 counts in a linear span
of 255.  The colors in the pseudocolor scale have
been chosen to make it easier to see details in the
less intense portions of the images. Image processing
includes removal of noise spikes, background
subtraction, and, in some cases, correction for laser
sheet energy distribution.

We have also developed an additional, unique image
processing capability that allows us to obtain views
looking upstream into the fuel injectors.  These
views, called end-on or "cross flow" views, were
developed to examine the fuel spray pattern or
patternation of each fuel injector studied. In this
process, forty-one side-view images are acquired at 1
mm increments across the flow field at each test
condition. A computer program then configures these
41 images into an image stack.  The program
interpolates the region between each of the 41
individual images thereby filling in the gaps resulting
in a smoothed 3-D image block.  The image block
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can then be sliced in any desired orientation. Figure
4 illustrates this process for a lean direct injector
design installed in the sector rig.  In this figure the
flow exits the page to the right.  The left side of the
image shows, for the sake of simplicity, only a few
selected side-view fuel fluorescence images in the z-
y plane.  The right side of the figure shows a few of
the resultant cross flow views obtained in the manner
described.  The images in an image stack are scaled
together so that the highest signal level represents
the 99th percentile.  The images are displayed in this
manner in order to accentuate the lower light level
structures that would otherwise be lost in the glare of
the higher intensity features.  

3.7 mm
13 mm

22 mm-20 mm

-4 mm
9 mm

18 mm

side-view cross-flow

Figure 4.  Sequential image stacking of side-view (z-y
plane) fuel PLIF images acquired within the sector
combustor yielding cross-flow (x-y) views.  Test
conditions: λ exc = 281.5 nm, Tinlet  = 800 K, Pinlet  = 1.46
MPa, φtotal = 0.42

Because the injectors are positioned with their
injector exit planes projecting approximately 5 mm
into the window viewing area, a large amount of
incident laser light scatter from the injector face is
encountered.  This scatter is intense enough to allow
passage of a small but significant portion through the
selective filters of the detectors.  This scatter is
eliminated by placing an external beam block over
the top of the laser sheet insertion window
effectively blocking any light from hitting the face of
the fuel injector.

Since direct measurement of the laser sheet intensity
in the z direction is not practical, another technique
has been developed to correct for the fall off in laser
sheet power at the upstream and downstream edges.
We assume that the average intensity in the cross-
flow images over an area enclosing the jet should be
constant as we move downstream over the relatively
short axial range we can see. This is a reasonable
assumption because the viewable distance is
relatively short (approximately 40 mm).   This
assumption leads to the conclusion that any variation

in this average is due to laser sheet energy changes.
In our recent work, we have chosen to correct the xy-
images by a factor which causes the within-jet
average to be a constant over a range of z values.

The left-hand image in figure 5 shows a typical side
view, fuel fluorescence image obtained on the flame
tube rig for a two-circuit fuel injector concept.  The
test conditions were: Pinlet = 1.6 MPa, Tinlet = 680 K,
φtotal = 0.31, and λexc = 281.5 nm.  This image
illustrates one of the challenges encountered in these
experiments and brings out one of the many benefits.
The problem illustrated here is the obscuration of the
fluorescence signal by the buildup of soot on the
detector windows.  This deposition is seen here as a
dark mass in the upstream (left) center position, just
downstream of the injector location.   The benefit
illustrated is the ability to illuminate the detailed
flowfield structure.  This image, taken at the center
line of the injector clearly shows the spray from both
inner and outer fuel circuits.  This imaging data has
been used to calculate the full fuel spray angle at
condition and subsequently found to agree quite well
with the theoretical values at most test points.   The
soot buildup at low power condition, while
problematic, was easily removed by the ablation
method described earlier.

high
fuel

low
fuel

Side View Cross Flow

Pilot

Main

Figure 5.  Comparison of side-view and cross-flow
views acquired for a two-circuit injector installed in the
flametube.  Test conditions: λ exc = 281.5 nm, Tinlet  =
682 K, Pinlet  = 1.6 MPa, φtotal = 0.304

The right-hand image in figure 5 presents a cross
flow image derived using the above described
technique for a position 14 mm downstream from the
fuel injector exit plane.  The advantages of the cross
flow display are quite obvious.  Actual flow structure
and fuel spray symmetry are clearly illuminated.  In
the fuel PLIF image, two concentric rings of fuel,
either vapor and/or liquid, are seen to be coming out
of the page and expanding away from the two-circuit
injector with a high degree of uniformity.

Figure 6 shows the fuel PLIF cross flow image shown
in figure 5 (right) compared with a planar Mie
scattering cross flow image acquired simultaneously
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at the same axial position.  The fuel PLIF image
again shows two concentric rings of fuel from the
pair of injectors.  In contrast, the planar Mie image
shows only a single ring emanating from the inner
fuel circuit, the outer ring is absent.  The reason for
this is due to the outer fuel circuit's apparent greater
efficiency at vaporizing the fuel spray, which
explains the lack of droplet scattering centers in this
region.  This comparison offers a means by which to
address critical fuel vaporization issues which have
been examined by other methods24,25 but with limited
success.

Fuel PLIF Mie Imaging
z = 14 mm z = 14 mm

pilot

main

high
fuel

low
fuel

Figure 6.  Comparison of fuel PLIF and Planar Mie
scattering cross-flow images acquired at the same axial
position for a two-circuit injector installed in the
flametube.  Test conditions: λ exc = 281.5 nm, Tinlet  =
682 K, Pinlet  = 1.6 MPa, φtotal = 0.304

Another issue brought forward by considering figure 6
is the question of possible extinction effects.  The
right side in the PLIF image and the left side of the
planar Mie scattering image, each being the side
opposite their respective cameras, appear to show
some decrease in signal intensity.  This affect may
be attributed to the extinction of the incident light
sheet or to the extinction of the induced emission or
scattering by the intervening flowfield.  Since this
phenomenon is not ubiquitous, but only appears thus
far in test runs involving high pressures and large
mass flows, we have as yet not investigated the
extinction question thoroughly.  Obviously, with tests
scheduled to begin using the high pressure 6.08 MPa
rig where extinction effects may be more severe, the
investigation of these effects should be
accomplished.

Tests were performed in which PLIF, Planar Mie
scattering, and PDPA were each attempted.  These
tests were originally performed simultaneously with
good results.  However, due to the close tolerances in
positioning the three different diagnostics (see figure
3), a few instances of unwelcome collisions between
the various optical components occurred.  In these
collisions, optical alignment was invariably lost for

one or more of the detectors requiring shutdown of
the rig in order to re-enter the test cell to realign the
systems.   Subsequently, the PDPA diagnostics were
run only after moving the two ICCD cameras a safe
distance downstream following their data acquisition
run.

PDPA along -105∞ line
PDPA along -15∞ line
Fuel PLIF along -105∞ line
Fuel PLIF along -15∞ line

Mie along -105∞ line
Mie along -15∞ line

a.  Fuel PLIF b.  Mie Imaging

high fuel

low fuel

-15° line

-105° line

c.  3-d drop-line plot

Figure 7.  Comparison of fuel volume distribution as
measured by PLIF, Mie Scattering and PDPA acquired
at the same axial location.  Lines in the images
indicate the path along which PDPA measurements
were made.  Conditions:  λ exc = 281.5 nm, Tinlet  = 616
K, Pinlet  = 558 kPa, φtotal = 0.445

Figure 7 shows a comparison of the data acquired at
the same axial location, 12.7 mm from the fuel
injector exit plane, for each of the three techniques;
PDPA, PLIF and planar Mie. For this series of
experiments the flametube was equipped with a two-
circuit fuel injector with only the pilot operating
under the following flow conditions:   Tinlet = 616 K,
Pinlet = 558 kPa, φ = 0.445, λexc = 281.5 nm.  The white
lines labeled -105° and -15° on the PLIF and Mie
images denote the path along which PDPA mass flux
data was acquired.  The graph at the bottom of the
figure plots both the pixel intensity along the -105°
(open symbols) and -15° (solid symbols) lines from
the PLIF and Mie images and the mass flux data
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acquired from PDPA measurements. From the plot,
close agreement between the three different
techniques is seen to exist along the -105° line.
Along the -15° line, the agreement  holds only for the
data along the positive x axis.  Along the minus x
axis, the PDPA data falls off sharply.  There are two
possible causes for this observation; first may be the
obscuration of the PDPA receiver due to the severe
beam insertion angle involved.  The second potential
cause may be that of extinction of the scattered light
from the far side of the flametube by the intervening
flow.  This data falloff has been observed prior to this
on high pressure vaporizing sprays26.  The
approximate 1-2 mm shift between the maxima for
the three techniques on each of the plotted -105° and
-15° lines is a vestige of using separate alignment
methods.   This has subsequently been eliminated by
using the same alignment tool previously described
for each of the diagnostics.

    Conclusions and Future Considerations

We have demonstrated at NASA Lewis that various
relatively mature laser diagnostic techniques can
successfully be applied simultaneously to the
realistic flowfields of high pressure and temperature
aero-combustor test rigs.  Images have been obtained
through PLIF and planar Mie scattering
measurements providing heretofore never before seen
views of the combustion process and fuel injector
operation at actual conditions.  Our methods are
evolving with experience and changes are
continuously being made to improve or adapt
diagnostic techniques to these large scale rigs.  For
example a remotely controlled motorized filter wheel
is planned to be used on the ICCD cameras for all
future imaging.  The filter wheel, which holds up to
five, two-inch diameter filters, will effectively
increase our diagnostic capabilities by increasing the
number of species and other flow parameters that can
be examined in a single test run.  Additionally, it
will allow exact comparison between PLIF and
Planar Mie scattering results thereby eliminating the
need for corrections such as magnification, and pixel
response variations, required when two different
cameras are used.

Another example of continuous improvement is the
advent of a new 1.0 nm FWHM narrowband
interference filter making it possible to record OH
PLIF by eliminating a majority of the interference of
fluorescence signals in the region of the fuel injector
exit plane. Until recently fuel fluorescence was
examined rather than OH fluorescence because this
interference precluded good OH PLIF measurements.

Further planned  improvements  include  automating
the process by which cross flow views are generated.

This will speed up one of the most time consuming
aspects of the analysis.  Additionally, topographical
and three-dimensional plotting of image pixel
intensity, which provides an easier means to
examine the flow path, are also being automated.

The means to make corrections for laser sheet
inhomogenieties such as those recently reported27 are
also being investigated.  However, difficulties due to
mandatory remote operation, and the fact that both
the laser sheet and the resultant planar fluorescence
and scattering must both pass through different
windows of questionable transparency makes this a
daunting task.
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