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A HIGH FREQUENCY MODEL OF CASCADE NOISE 

Edmane Envia* 
Acoustics Branch, NASA Lewis Research Center 

Cleveland Ohio, USA 

ABSTRACT 

Closed form asymptotic expressions for computing high frequency noise generated by 
an annular cascade in an infinite duct containing a uniform flow are presented. There are 
two new elements in this work. First, the annular duct mode representation does not rely on 
the often-used Bessel function expansion resulting in simpler expressions for both the radial 
eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an 
explicit approximate formula for the radial eigenvalues obviating the need for solutions of 
the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are 
represented in terms of exponentials eliminating the numerical problems associated with 
generating the Bessel functions on a computer. The second new element is the construction 
of an unsteady response model for an ammlar cascade. The new construction satisfies the 
boundary conditions on both the cascade and duct walls simultaneously adding a new level 
of realism to the noise calculations. Preliminary results which demonstrate the effectiveness 
of the new elements are presented. A discussion of the utility of the asymptotic formulas for 
calculating cascade discrete tone as well as broadband noise is also included. 

INTRODUCTION 

Prediction of fan noise continues to be an 
integral part of the efforts aimed at analysis and 
suppression of turbofan engine noise. To that end, a 
number of schemes have been developed to calculate 
the contribution of various fan-associated noise 
sources. But, whether the goal is to predict rotor inlet 
noise (e.g., Mani [1973]), cascade self-noise (e.g., 
Glegg [1996]) or rotor-stator interaction noise (e.g., 
Envia et. al, [1996]), all of these schemes are 
predicated on computing the acoustic response of a 
blade row to incident flow perturbations. 

In strictly non-CFD based methods, which 
continue to be the principal tools of fan noise 
prediction, the blade row acoustic response is 
computed using simplified versions of the cascade 
geometry and/or the governing equations. At the 
simplest end of the spectrum, approximations in both 
the geometry and governing equations yield analytical 
or semi-analytical expressions for the acoustic 
response. Generally speaking, the approximations 
involve replacing the cascade with zero thickness flat 
plates and linearizing the governing equations about a 
uniform base flow. In this class of methods the 

acoustic response can be determined either directly by 
solving the governing equations or indirectly through 
the use of the annular duct Green

’

s 

functions which 
couple the unsteady surface pressure distribution on the 
cascade to the duct acoustic modes. 

However, even at that level of approximation, 
exact solutions are still difficult to obtain, so further 
simplifications are made. Some simplifications are 
based on replacing the annular cascade by a rectilinear 
one at some representative radius and computing the 
acoustic response for the resulting system (e.g., 
Goldstein [ 19761). In other simplifications, the annular 
geometry is retained but the cascade unsteady pressure 
distribution (henceforth, called the cascade unsteady 
response) is computed at a number of spanwise 2D 
strips and the resulting distribution assembled and 
coupled to the duct acoustic modes (e.g., Ventres et. al 
[ 19821). 

While in both cases useful information 
regarding general trends can be obtained, it is highly 
desirable to retain as much of the cascade and unsteady 
response three-dimensional&y as possible. Such 3D 
models have been explored by, among others, Namba 
[ 19771, Kobayashi [1978] and Schulten [1993], but 
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these approaches generally require the use of 
collocation techniques or numerical solutions of partial 
differential equations. 

In this paper, a closed form approximate 
model of cascade noise is presented which takes into 
account the annular geometry of the blade row 
throughout the analysis. The noise field is computed 
by coupling the cascade unsteady response to the duct 
acoustic modes in the standard manner. However, 
asymptotic methods have been employed to circumvent 
the need for munerical solution of the governing 
equations by tailoring the model to the high frequency 
noise regime. Given the current interest in high-speed 
fans, this high frequency specialization, far from being 
a limitation, is in fact an asset since the numerically 
based methods have inherent difficulties handling the 
high frequency response regime. 

In what follows, the development of two new 
elements in modeling of annular cascade noise will be 
presented. The first element involves a representation 
of annular duct modes that is not predicated on the use 
of the Bessel functions. The second new element 
addresses the construction of an unsteady response to 
incident flow perturbations (i.e., gusts) for an annular 
cascade where the finite-span effects as well as the gust 
three-dimensionality are taken into account. In each 
case, intermediate results will be presented which show 
the effectiveness of the new approximations. The two 
elements are then combined to provide the desired high 
frequency model of cascade noise. The paper is 
concluded with a discussion of the utility of the new 
model for predicting cascade tone and broadband 
noise. 

ANALYSIS 

The cascade is modeled as an ensemble of 
zero camber and thickness flat plates enclosed in an 
infinite hard-wall ammlar duct within which exits a 
uniform and isentropic medium. As shown in Figure 1, 
two coordinate systems will be employed in this work. 
The global system (x, r, 8) is cylindrical polar and is 

aligned with the axis of the duct with 0 measured 
positive counterclockwise. The local system (&q, <) 
is Cartesian and is aligned with the reference (i.e., 
zeroth) airfoil. With no loss of generality, we assume 
that the 8= 0 line and < axes are coincident and 
along the leading edge of the reference airfoil (see 
Figure 1). The relationship between the two systems is 
given by 

Figure I. Cascade geometry and coordinates systems. 

c= xcosa, +r&ina, 
v= --Xsina, +rBcosa, 

r-0 <=- 
1-O 

(1) 

where a, is the stagger angle of the cascade. Eq. (1) 
holds as long as 0 is small (i.e., near the reference 
airfoil). The axial and radial coordinates are 
normalized by the tip radius, as are the local 
coordinates. cr = rH /r, is the hub-to-tip radius ratio 

with rH and rT denoting the hub and tip radii. In 
what follows, it is most convenient to describe the duct 
acoustic field in terms of the global coordinate system, 
while the building block of the cascade unsteady 
response is most easily derived in the local coordinate 
system. 

The representation of the duct acoustic field is 
outlined first followed by the construction of the 
cascade unsteady response model. In both instances, 
we will take advantage of asymptotic methods to 
simplify the analysis. The connection between the two 
elements is then established using the Green

’

s 

function 
method. 
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Ammlar Duct Mode Exuansion leads to separate equations in x and r given by 

For the duct mode acoustic field calculations, 
we assume the base flow to be axial. The propagation 
of acoustic pressure waves in such a system is 
governed by the convected wave equation which, in the 
duct coordinates, takes the form 

(24 

(2b) 

-_a+,a Do _ 
Dt at 8x 

ar Duct 

PC) 

(24 

p

’

(x, 

r, 8, t) is the acoustic pressure, a0 the nominal 
speed of sound of the medium and U the base flow. 

Using the normal mode expansion approach 
the most general form of p

’ 

with harmonic time 
dependence is given by 

co 

p

’

(x,r,&t) 

= c jj;(X,r) e

’

w-Q4 

(3) 

where w is the frequency and m the spinning (i.e., 
circumferential) mode order. Depending on whether 
one is concerned with tone noise or broadband noise, 
there will be a sum or an integral over all frequencies 
of interest. The form of pressure given by Eq. (3) 
simplifies Eq. (2a) to 

[p

’

$+~~(r~)-$+2ikM-&+k.]i:, 

=0 

(44 

k,wr,, 
a0 

p=JI-Mz (4b) 

Here k is the reduced frequency and M is the Mach 
number of the mean flow. Introducing 

K (x3 r) = f, (xl g, (r) (5) 

p2$+2ikM$+(k2 -+c2) 1 f,,, = 0 

d2 Id m2 
--?;+--+K2-1 
dr r dr 

g, =o 
r 1 

dg, =o 
dr duct 

(6) 

0) 

0) 

The term ~~ in these equations is the separation 
constant. We solve for the second equation first and 
postpone the solution of the first one until later in the 
analysis. 

Since Eq. (7a) is the Bessel

’

s 

Equation, it is 
usually solved in terms of the Bessel Functions of the 
First and Second kind of index m The corresponding 
boundary value problem (i.e., Eq. (7b)) then leads to a 
transcendental equation for the eigenvalues of the 
annular duct (i.e., the permissible values of K ). The 
eigenvalues are generally obtained numerically by 
solving the transcendental equation iteratively. But 
here we pursue a different approach for computing 
K ‘

S. 

The integrating factor e -fif = r-1/2 for Eq, 
(7a) suggests the following change of dependent 
variable g, (r) = r-“2 g,,,(r). Rewriting Eqs. (7a & 
b) in terms of the new dependent variable yields 

[ 1 $+w2(r) Em =0 @a) 

W(r)= d WI 

PC) 

The distribution of the eigenvalues of the 
Bessel

’

s 

Equation is such that the smallest eigenvalue 
in the sequence is always greater than the index (i.e., 
Mifz(K) 2 m ) with the other elements of the sequence 
growing rapidly larger than m Therefore, as long as 
a>0 (i.e., rH ZO), w(r) will vary slowly with r for 

given K and m This suggests that the WKB method 
(Olver [ 19741) may provide a reasonable 
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approximation to the solution of Eq. @a) and its 
eigenvalues. The accuracy of the approximation will, 
of course, depend on the behavior of w(r), but as it 
will be shown the proposed approximation is 
surprisingly accurate, especially, for higher order 
eigenvalues as long as cr is not too close to zero. 

The asymptotic formula for the eigenvalues is 
derived in Appendix 1. The final result is 

K mn = 
n~~+~(n~~)Z+~(1-~)Z(2m

”

+3/2) 

2cr(l- a) 
(9) 

where K, is the non-dimensional eigenvalue and 
n = 0, 1, 2, f * * its “

radial

” 

index set corresponding to 
each circumferential index m. The symbol k 
indicates that K,, is an approximation to the exact 
eigenvalue. 

Eq. (9) is a simple formula but a remarkably 
accurate one as is shown in Figure 2. Here the exact 
(open bars) and approximate (solid bars) radial 
eigenvalues are plotted for two circumferential mode 
orders m = 6 and m = 30 for a hub-to-tip radius ratio 
of 0.5. The first 20 eigenvalues are shown in each 
case. Maximum approximation error is around 15% 
for low values of the radial index but as n increases 
the error diminishes rapidly. Given that the exact 
eigenvalues

’ 

must be determined numerically for each 
combination of m , n and 0, the advantage of having 
an explicit formula for computing the duct eigenvalues 
accurately becomes apparent. 

The corresponding eigenfunctions, also 
derived in Appendix 1, are given by the expression 

(lob) 

ri+, a) = 20 v/h (K, 0) + i (1Oc) 

* The exact eigenvalues are solutions of the transcendental 
equation Jk(K,,#) u; (Kmn) -J: (Kmn) r; (Kmnc) = t) 

0 5 IO I5 20 
n 

0 5 10 15 20 
n 

Figure 2. Comparisons of exact and approximate radial 
eigenvalue distributions for two circumferential 
mode orders. For this calculation cr = 0.5. 

The prime in Eq. (10~) denotes differentiation with 
respect to the radial coordinate r and the symbol % 
indicates the real part. 

Eq. (lOa) provides an efficient alternative to 
the exact** annular duct eigenfunctions which generally 
require recursive computation of the Bessel functions 
of various order. In Figure 3, a comparison of the 
exact and approximate eigenfunctions is shown. The 
first four normalized radial eigenfunctions are plotted 
for the circumferential mode m = 6 at cr = 0.5. 
Except for the lowest order approximate eigenfunction, 
which shows marked difference from the exact one, the 
rest are consistently close to the exact eigenfunctions 
with the agreement improving as n increases. The 
fourth one, in particular, is virtually indistinguishable 
from the exact eigenfunction. These results, and those 
shown in Figure 2, demonstrate that the formulas given 
by Eqs. (9) and (IOa) provide useful approximation that 

** The exact radial eigenfunctions are given by the expression 
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Figure 3. Comparisons of exact and approximate radial 
eigenfunctions (normalized) for the circumferential 
mode order m = 6 with (T = 0.5. Eigenfunctions 
corresponding to the first four radial orders are 
shown. 

can be used in place of the exact eigenvalues and 
eigenfunctions. 

Eqs. (9) and (lOa) together constitute the first 
of two main results of this paper. A detailed discussion 
of the behavior and analytic structure of these 
approximate eigenvalues and eigenfunctions is 
postponed to a future time. 

With the solution of the radial eigenvalue 
problem determined, the most general solution of Eq. 
(7a) is given by 

m 

(11) 

where C, ‘

s 

are acoustic mode amplitudes that will be 
determined later. 

Now, the solutions of Eq. (6) can be readily 
written down as 

where the plus sign indicates downstream running 
acoustic waves and the minus sign upstream running 
ones. Combining the expressions for f,,, and g, , the 
general representation for the acoustic pressure field 
inside the duct is given by 

- - 

P

’

(-Y~,~,~)= 

cc C, @

‘

mn 

ff) ei(ki, x+mo-mt) 

I?=-m n=O 

(13) 

For a given geometry and operating condition, 
only a finite number of terms in the double infinite 
sums will constitute propagating waves. Waves (i.e., 
modes), for which ki,, is complex, are cut-off and do 
not contribute to the acoustic field. 

Ammlar Cascade Unsteadv Resuonse Model 

The complications introduced by the annular 
geometry of the cascade generally require numerical 
solution of the equations governing the unsteady 
pressure distribution on the cascade. To avoid a 
numerical treatment, the unsteady response will be 
constructed in a manner similar to that developed by 
Envia and Kerschen [ 19863 for the radiated noise from 
a rectilinear cascade. 

Taking advantage of the weak coupling 
between the adjacent airfoils at high frequencies, these 
authors envisaged the cascade noise field as a sum over 
the individual airfoil fields with the blade-to-blade 
periodicity enforced. Here we modify the procedure to 
account for the annular geometry and deduce the 
unsteady pressure distribution on the cascade from the 
local acoustic field. The solution is of course 
approximate, but as was shown in the above reference, 
the approximation provides quite reasonable accuracy 
at high frequencies. 

The starting point for construction of the 
cascade response is the single airfoil solution. This 
solution is derived for the reference (i.e., zeroth) airfoil 
using the Wiener-Hopf technique in terms of “

leading 

edge

” 

and “

trailing 

edge

” 

responses that are combined 
to produce the response of the airfoil to incident flow 
perturbations. The details of the derivation, as well as 
a discussion of some sample calculations, are given in 
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Appendix 2. Here we present the final results 
expressed in the duct coordinate system. The solution 
is given by 

must hold between the responses of other airfoils and 
the response of the reference airfoil. That is to say, 

p;(x,r,B,t) = p;(x,r,8,,t) eiqpp (17) 

Adding up the contribution of all airfoils we find 
p

’

=-m 

v=o I=0 

x G, (x, r, B)ei

’

1(X,r,8) 

+ G,( x, r, B)eirz(y~r~B) 1 (14a) p:(x,r,B,t)= 2 p$x,r,O,,t) eiqpq, (18) 

rj(x,r,@)=XRj(x,r,@) 
q=cc 

M: -yg---(xi cosa, +r@sina,) 
p5 

(14b) 

Rj = JxS +(rB)2, Xj = ~-(j-l)c (14c) 

where c is the airfoil chord. The definitions for all the 
variables appearing in these equations can be found in 
Appendix 2. The triple summation provides the 
response over all possible gust modes that might exist 
inside the annulus as discussed in the beginning of 
Appendix 2. It should be emphasized that, at this point 
in the analysis, p; is the unsteady pressure field in the 
vicinity of the zeroth airfoil and not just on its surface 
alone. After the cascade solution is constructed, the 
final expressions will be evaluated on the surface of the 
cascade. 

Since the circumferential positions of any 
airfoil in the cascade is related to the circumferential 
position of the reference airfoil through 

8, = Q-W, q= 0, +I, +2, *.* (15) 

where pi is cascade response. The limits of the 
summation are set to infinity to ensure that the 
resulting solution and all of its derivatives are periodic 
around the ammlus. Had we limited the sum to only 
N terms (corresponding to N airfoils), only the 

periodicity of the solution itself would have been 
guaranteed. Furthermore, as it will shown later, the 
infinite sum in Eq. (18) ensures that all circumferential 
modes that can exist in the duct are accommodated. 

Taking advantage of the properties of the 
Dirac delta function, Eq. (18) can be rewritten as 

m ccl 

P:(vm) = 

cs 

pi(x,r,O,t) eiqm6(0-8,)dO 

q=-m -m 

(19) 

Interchanging the order of summation and integration 
and using the Poisson Sum formula (see Carrier et. al 
[ 19661) the sum in Eq. (19) can be converted to an 
equivalent sum (say, with index e ) having the form 

where p = 2~/ N (N is the nmnber of airfoils in the 
cascade), the acoustic response of any airfoil in the 
cascade can be related to the response of the reference 
airfoil. The required relationship can be established by 
noting that, on a per mode basis, the form of the 
incident gust on the q th airfoil expressed in the zeroth 
airfoil coordinates, is related to the form of the gust on 
the zeroth airfoil expressed in the q th airfoil coordinate 
system through 

ug,, (x7 r> 03 t)lq,&,, = %.,

” 

k 0,) “

)~onaitio,, 

eiMq 

(16) 

I * 
P:(x,cw) = ~ 

6, c 
ei(p+2tn/q7)B 

e=-a? 
m 

x 

1. 

pA( x, r,O, t) e-i(F+2tz

’

~)od0 

(20) 

Given the complicated form of ph(x, r,@,t) 

(see Eq. (14a)), the integral in Eq. (20) cannot be 
evaluated exactly, but it can be computed 
asymptotically using the method of steepest descent in 
the high frequency limit (i.e., for k >> 1). Substituting 
for p,!, (x, r, 0, t) and grouping terms together, Eq. (20) 
can be rewritten in canonical form as 

where we have taken advantage of the circumferential 
dependence of the gust as given by Eq. (A2.1) in 
Appendix 2. This suggests that an identical connection 
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I, = I\,(@) e

’

y@)+~JO) 

,i

’

z(o) 

d@ (21b) 1 
where the phase functions Yj contain all the phase 

terms that depend in the variable 0 and the amplitude 
terms A j include everything else in Eq. (14a). The 

phase functions are given by 

Yj (0) = x 4x; + (rq 

M5 -yg-r@sina, 
p5 

-(/f+2&+7)0 (22) 

with Xi = x - (j - 1)~ . The saddle points Oj,, (i.e., 

the roots of ~j / d@ = ‘

I

’

; 

= 0) are given by 

(23) 

Carrying out the remaining steps in the 
analysis leads to the asymptotic approximation of the 
integral I, The final result is given by 

I, E JG P4 

(244 

= 

Xzxj 

(24~) 

where yj

’ 

is the second derivative of the phase 

function given in Eq. (22). 

The waves implied by Eq. (24a) are cut-off 
whenever the square roots in the expressions for 

‘

k; 

01, ( I (i.e., Eq. (24b)) become imaginary. In 

particular, consider the case for tone noise generated by 
the interaction of mean wakes of a B -bladed rotor 
with a V -vaned stator. For this situation the 
circumferential structure of the gust implies that 
,u = pB where @ is an integer. If the stagger angle 

a, were zero, the cut-off condition for the lowest 
order spanwise mode (i.e., 1= 0 ) would imply 

(25) 

where we have taken advantage of the following facts: 

XI,=, = k,M 1 p = wrT I a,B, 

u=@BL-l, 

p=2wlV 

and R is the fan rotational speed. 

If the cut-off condition is satisfied for the tip 
radius, it will be satisfied for all other radii. Setting 
r = I in Eq. (25) and rearranging the resulting 
equation, we arrive at the familiar Tyler-Sofrin cut-off 
criterion (see Tyler and Sofrin [ 19623); 

where MT = R rT is the tip Mach number of the rotor. 
Modes for which the above inequality holds are cut-off 
and do not contribute to the cascade response field. 
For higher order spanwise modes and/or non-zero 
stagger angles the cut-off condition is somewhat more 
complicated. 
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Substituting for I, in Eq. (21a), the final 
expression for unsteady pressure field in the vicinity of 
the cascade is given by 

+ I 

JY

’

( 

02,) 

x er[(p+2Mq48-ot] Y-0 
cos lx- 

( ) l-0 
(27) 

The last step in obtaining the unsteady pressure 
distribution on the cascade involves evaluating p; on 
the airfoil surface. 

Eq. (27) is the second principal result of this 
paper. It provides a closed form expression for 
computing the asymptotic behavior of the unsteady 
pressure distribution on an ammlar cascade in the high 
frequency limit. The next step in the analysis involves 
relating the cascade pressure distribution to the duct 
acoustic modes. 

The methodology of Green

’

s 

function allows 
for the desired connection to be established between 
pi and the values of C, (in Eq. (13)). The 
mathematical statement of this connection is given by 
(see, for example, Meyer and Envia [ 19961) 

p; i,.V(Q,,(*) ei(khx+

‘

“B)) 

ds (2X) 

where i is the unit normal perpendicular to the surface 
of the reference airfoil. The integration is carried out 
over the surface of the reference airfoil. Once C, ‘

s 

are computed for each propagating mode according to 
Eq. (28) the duct acoustic field given by Eq. (13) is 
completely specified. 

In a typical computation, a description of the 
incident gust field inside the ammlus will be developed 
first. This will be done according to Eq. (A2.1) and 

then converted to an equivalent description in the local 
airfoil coordinate system as given by Eqs. (A2.2a 
through A2.2~). The resulting modal expansion will 
then be used as input to the cascade unsteady pressure 
formula (i.e., Eq. (27)). The result will be in turn 
integrated according to Eq. (28) to provide the modal 
pressure amplitudes C, ‘

s. 

These will then be 
inserted in the expansion given by Eq. (13) to provide a 
description of the acoustic field inside the duct setup by 
the interaction of the incident gust with the annular 
cascade. 

Eq. (13) gives a description of the acoustic 
field in terms of duct modal pressure. However, such 
quantities as acoustic power can be easily calculated 
using the applicable formulas from Eq. (13). 

In principle, the steps outlined above will 
apply whether one is interested in tone noise or in 
broadband noise. But, in practice, some reformulation 
of the formulas will be required for broadband noise 
calculations. In particular, since the description of the 
turbulent gust can only be given in terms of spatial 
correlations, the formulas derived in this paper must be 
recast in terms of expected values of acoustic power 
instead of acoustic pressure. The methodology, 
however, will remain exactly the same. In an 
upcoming paper, detailed computations using the 
formulas derived here will be presented. 

CONCLUSIONS 

In summary, closed form asymptotic 
expressions for computing the noise field of an ammlar 
cascade inside a duct containing a uniform flow have 
been developed. By tailoring the analysis to the high 
frequency regime, numerical treatment of the equations 
involved has been avoided altogether. 

There are two principal new results in this 
paper. The first is an alternative description of the duct 
acoustic modes that does not rely on the often-used 
Bessel function expansion. This results in simpler 
expressions for both the radial eigenvalues and 
eigenftmctions of the duct. In particular, the new 
representation provides an explicit approximate 
formula for the radial eigenvalues obviating the need 
for solutions of the transcendental annular duct 
eigenvalue equation. Also, the radial eigenfunctions 
are represented in terms of exponentials eliminating the 
numerical problems associated with generating the 
Bessel functions on a computer. 

The second new element is the construction of 
an unsteady response model for an annular cascade 
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using the single airfoil solution as the building block. 
The new construction allows for the boundary 
conditions on both the cascade and duct walls to be 
satisfied simultaneously adding a new level of realism 
to the noise calculations. Preliminary results were 
presented which demonstrate the utility and 
effectiveness of the new elements. 

Cascade discrete tone and broadband noise 
predictions using the new formulas will be presented in 
a future paper along with comparisons with results 
from simpler 2D-strip based models and rectilinear 
cascade models. 

APPENDIX 1 

Asymptotic Solution of the 
Radial Eigenvalue Problem 

The WKB approximate solution of Eq. @a) is 
given by 

i 

C,e 

w(r) dr 
+C,e 

subject to 

(Al.lb) 

where C, and C, are arbitrary constants and the 
symbol k denotes the approximate nature of the 
solution. The integration indicated in the phase of the 
exponential terms can be carried out explicitly, 
yielding 

YI(K, r) = 

Assuming that K >> 1, Eq. (Al.2) can be simplified by 
expanding it at that limit. The simplified phase 

function to 0 K-

’ 

( 1 is given by 

yJKJ) EKr +e (Al.3) 

where the subscript a indicates that E!q. (Al.3) is an 
approximation to Bq. (Al.2). The constant term in the 

expansion (i.e., the O(K

”

) 

term) is ignored since it 

only contributes a multiplicative constant to the 
expression for g, and therefore does not alter the 
subsequent results. 

Substituting vv, for ly in Eq. (Al. la) and 

noting that [w(r)]-“

’ 

= K-

“

~ 

+O(K-2), the boundary 

condition at r = o determines C, in terms of C, via 

c = c 
2 (Al.4a) 

W(K, 0) = 20 v/i (K, 0) + i (Al.4b) 

where the prime denotes the derivative with respect to 
r and the asterisk a complex conjugate quantity. 
Enforcing the boundary condition at r = 1 and 
substituting for C, from Eqs. (Al.4a & b) yields 

e2i[v,( . K I)-y,(~,o)] _ f+, 1) @+=) - 
+, 1) m*(V) 

(Al.5) 

which is the equation that determines the non- 
dimensional eigenvalue K In its present form, Eq. 
(Al.5) is transcendental in K and not amenable to an 
exact analytical solution. But if we take the logarithm 
of both sides and expand the resulting equation to 

o(K”), consistent with the level of approximation 

introduced in obtaining Y/~ , we find 

2[Vak 1) - Y,(K, c)] = y- (l-4+2nrr (Al.6) 

where n = 0, 1, 2, ... In view of Eq. (A1.3) Eq. 
(Al.6) is quadratic in K and can be readily solved to 
yield 

K mn = 

n~o+,/(n~~~)~+o(l-c~)~(2m

’

+3/2) 

2a(l- 0) 

(Al.7) 
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where only the positive root has been retained since 
only the positive eigenvalues are relevant here. Note 
that, the pair of indices m,n denotes a doubly infinite 
set. Eq. (A1.7) is a remarkably simple formula for the 
approximate eigenvalues of the annulus. The accuracy 
of this formula is investigated in the analysis section of 
this paper. 

hSeIting the eXpreSSiOnS for C, and K,, in 
Eq. (A 1. la), we find the most general representation of 

L(r) as 

us 

g,(r) - 
1 m I- 

I-4m2 
C 

K mn n=O 1 Ib(~,,r)~ mn 

where % denotes the real part of the quantity and C, 

is the constant C, renamed. To improve the accuracy 
of the eigenfunction approximation the next order term 

in the expansion of [~(r)]~

“

~ 

has also been kept 

resulting in the term in front of C, 

APPENDIX 2 

Asymptotic Solution Of 
The Single Airfoil Unsteady Pressure Distribution 

It is mathematically more convenient to solve 
this problem in terms of the acoustic velocity potential 
(denoted here by 4 ) instead of the pressure. Once the 
solution is obtained, the pressure can be calculated 
from 4 via the linearized momentum equation, i.e., 

D,# p

’ 

= -pDt where p is the ambient density. 

As was indicated earlier, the unsteady 
pressure response will be formulated and solved in the 
local coordinate system (6, T,I,~) . It is, therefore, 

necessary to represent the incident gust in these 
coordinates. The most general representation, in the 
global coordinate system, of the relevant component of 
the convected gust is given by 

m m 

p

’

=-co 

r-0 

(A2.1) 

where @,,

” 

‘

s 

are the radial eigenfunctions of the duct 

(see Eq. (loa)). The axial wavenumber is given by 
k, = kl M owing to the requirement that the gust be 

convected by the mean flow (Recall that k = wrr / a, ). 
A,, ‘

s 

denote the gust modal amplitudes. 

Along the leading edge of the reference airfoil 
0 is zero. Setting 0 = 0 in Eq. (A2.1) expressing the 
resulting equation in the local coordinate system, and 
expanding the 6 dependence in a Cosine Fourier 
series yields 

p

’

=-cc 

v=o 1mJ 

x cos(l7g) (A2.2a) 

yg = k,cosa,, y,, = -k,sina, (A2.2b) 

(A2.2~) 

Eq. (A2.2a) provides the general modal representation 
of the incident gust in the local coordinate system 

(6 77L) 

In view of Eqs. (A2.2a) through (A2.2~) the 
mathematical statement of the unsteady response of a 
single airfoil subject to a single incident gust mode is 
given by 

(A2.3a) 

a4 - z-e i(Y&mt) 
a0- 

cos(l&) on 0 ItI c (A2.3b) 
V=O 

p

’

Iz:I 

=0 on {>c (A2.3~) 

where c is the airfoil chord. The transverse wave 
munber y rl does not enter these equations owing to the 
form of the boundary condition in Eq. (A2.3b). The 

convective derivative is given by $$ = $+Ygq 
at 

where Vt = U cos a, is the speed of the uniform base 
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flow, which now is aligned with the airfoil chord. The 
last equation enforces the continuity of the acoustic 
pressure downstream of the trailing edge. These 
equations are supplemented by the Sommerfeld 
radiation condition at intinity and the continuity of 
derivatives of 4 off the airfoil. 

The exact solution of Eq. (A2.3a), subject to 
all of the specified boundary conditions, can not be 
obtained in closed form. But, it has long been 
established that the solution may be developed as a 
convergent series 4 = 4, + & +.-- in which each term 
is a solution of Eq. (A2.3a) but with one of the two 
edges moved off to infinity. As a result, for each term 
in this sequence, some of the boundary conditions can 
be ignored leading to a simpler problem which can be 
solved in closed form. Landahl [ 19581 has shown that 
the series converges for all frequencies with the rate of 
convergence increasing rapidly as the frequency is 
increased. It will be shown later that, for our purposes, 
the first two terms in the sequence provide suflicient 
accuracy. 

The Leading Edge Solution 

The leading edge solution 4, must satisfy Eq. 
(A2.3a) subject to 

-ci+

‘

~-mt)cos(l~r) 

on Olt<oo (A2.4) 

The introduction of the following change of variables 

simplifies Eqs. (A2.3a) and (A2.4) to 

( a2 + a2 - -_-+x2 &=o 
ap2 a7j2 1 

& = _,

‘

(Yc

’

B&

’ 

a7 
on O<c<oo 

V=O 

(A25a) 

(A25b) 

(A2.6a) 

(A2.6b) 

(A2.6~) 

A Fourier transform in c reduces Eqs. 
(A2.6a) to an ODE whose general solution is given by 

(A2.7a) 

i 
(A2.7b) 

where ;1 is the Fourier transform variable, s, the 

transform of 3, and Eq. (A2.7b) the transform of Eq. 
(A2.6b). The branch cuts of the square root in Eq. 
(A2.7a) are chosen so that the real part of the root is 
always positive. The unknown constant C, (I) can be 
expressed in terms of known functions by substituting 

for 2, in Eq. (A2.7b) and taking advantage of the 
requirement that the acoustic velocity be continuous 
everywhere. The resulting equation can then be easily 
solved through the use of the Wiener-Hopf technique 
(see Noble [ 19581). The final expression is given by 

c,(n)=- -/ 
1 

\ (A2.8) 

Substituting for C,(n) in Eq. (A2.7a) and applying an 

inverse Fourier transform to the resulting expression 
yields the solution for 3,. Reverting to the original 

dependent variable 4, and computing the acoustic 

pressure (i.e., p{ = -p J$ ) gives 

The pole in Eq. (A2.8) does not appear in the 
expression for pressure since it represents a solenoidal 
(i.e., pressure-free) velocity. The integral in Eq. (A2.9) 
can be evaluated explicitly in terms of elementary 
functions. The development is straightforward and, 
therefore, only the final answer will be given here. The 
solution is 
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P&F, %CJ> = - 
p V sgn( 7;1) eixi4 J&-J~q--cos~ 

x .i[ x d5

’

i+rl

’

-(YC

”

wS.wr] 

cos(lr<) (A2. loa) 

-I rl o

’

=tan 

- 
5 

(A2. lob) 

Eq. (A2.lOa) gives the pressure field 
associated with the leading edge everywhere. Note that 
the pressure has a square root singularity at the leading 
edge and decays algebraically away from it. The 
airfoil chord, c , does not appear in the leading edge 
solution since the trailing edge was moved off to the 
downstream infinity. The pressure distribution on the 
airfoil (i.e., for u

’ 

= 0 ) is given by 

P;*(rl?OLt) 

= T p VeinI e 
i{[X~(y~M52/BC)]5

’

-~u,} 

+I$--&~ J4; cos(L%

“

) 

tA2.1 I) 

The plus sign indicates the pressure on the upper 
surface and the minus sign the pressure on the lower 
surface. Since the leading edge solution cannot satisfy 
the Kutta condition at the trailing edge (i.e., p,

’ 

is not 
continuous there), the trailing-edge solution must be 
added to p,

’ 

to rectify this shortcoming. 

The Trailing Edge Solution 

Now we let the leading edge move off to the 
upstream intinity and place the origin on the trailing 

edge. The new chordwise coordinate 2 

2 = 4-c The trailing edge solution & 
satisfy Eq. (A2.3a), but the appropriate 
conditions are now given by 

( 0042 F”+ =o on - 
Pi-P- 

m )I 
620 

FO- 

is simply 

must also 
boundary 

A2.12a) 

(A2.12b) 

where p,

’ 

in Eq. (A2.12b) is the leading edge solution 
(i.e., Eq. (A2.11)) expressed in the shifted chordwise 

coordinate r 

Following the same procedure that was 
outlined for the leading edge solution, first a reduced 
potential is introduced, 

and then a Fourier transform in 2

’ 

(i.e., T

’ 

= T / PC) is 
1 

applied allowing the formal solution for 3, (the 

Fourier transform of 4, ) to be found. The result is 

z, = sgn( 77) C, ( A.)eemivi (A2.14a) 

subject to the transformed version of Eq. (A2.12b); 

Jz i fi{[X-(Y~

“

~

‘

BC)]C

’

+A

’

4} 

m .i(A+x)' _, 

i-r yg d -+X I o gzd5 
4 

FO+ 

=0 on 220 (A2.14b) 
v0- 

where the terms on the left-hand side are the Fourier 
transforms of the acoustic pressures associated with 4, 
and& , respectively, and I?= c lps 

The integral in Eq. (A2.14b) can be evaluated 
explicitly in terms of the Fresnel Integrals. But, since 
we are only interested in the pressure distribution 
upstream of the trailing edge, it s&ices to determine 
the behavior of the integral near the trailing edge (i.e., 

for F =O). Expanding the denominator of the 
integrand and integrating term by term yields the 
power series 

5 ei(A+x)5. _ ;^r Z

’

+c

’ 

d5

’ 

= Jp;(i+4 + 2&+x)2 
+@+x)-

‘

) 

(A2.15) 

of which only the leading term is kept in the 
subsequent analysis. This approximation simplifies the 
algebra significantly while still guaranteeing that the 
Kutta condition is satisfied at the trailing edge. 
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In a slightly more complicated Wiener-Hopf 
analysis, the unknown constant C, (2) in Eq. (A2.14a) 
is found to be 

(A2.16) 

With C,(n) known, Eq. (A2.14a) can be formally 

inverted. Switching back to the original dependent 
variable #2 and computing the acoustic pressure we 
find 

(A2.17) 

The above integral can be evaluated explicitly. After a 
fair amount of algebra, the final result, expressed in the 
leading edge coordinates (c, 7, <) , is given by 

(A2.18a) 

1 0 if 5

’

-C

’

S0 

&<

’ 

= 
1 if &

‘

-cc

’

>0 

(A2.18b) 

5 
m 

where F(z) = &da is the Fresnel Integral. Note 

that, unlike the aading edge solution, the trailing edge 
solution is not singular. 

representation of the unsteady pressure distribution on 
the airfoil. The result is 

x ~$5 F(:m)) (A2.19) 
1 

The combined solution satisfies the Kutta condition at 
the trailing edge (i.e., at c = c

’ 

) since 

F( 0) = JGP4 / 2 

In Figure 4 magnitude of the unsteady surface 
pressure as predicted by Eq. (A2.19) is plotted for 
typical (high) reduced frequency and Mach number 
values. The corresponding plots for p,

‘

, 

(r ,O, tJ, t) and 

pi, (r,O, <, t) are also shown for comparison. For this 

calculation the gust is assumed to be uniform along the 
span. Therefore, Figure 4 effectively shows the 
chordwise pressure distribution. 

I.5 . 

1.0 

0.3 0.5 0.8 

5

’

c 

Figure 4. Typical chordwise unsteady pressure distribution 
on a single airfoil. p,

’ 

and p; are leading edge 

and trailing edge solutions, and p

’ 

the combined 

solution. (yg,yg) = (10,O) and Mg = 0.5 for 

this calculation. 

Evaluating pi on the airfoil (i.e., 7 = 0) and 
combining it with Eq. (A2.1 l), yields the two-term 
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0.3 0.5 0.8 1.0 

5/c 

Figure 5. Predicted real and imaginary parts of the 3D 
unsteady pressure distribution on a single airfoil for 
a gust with radial structure. The gust has the form 

ug = (I)62 (r) e”S ) with yg=22 and M,=0.5 

Note that, pi ‘

s 

primary contribution is in the 
vicinity of the trailing edge where it enforces the Kutta 
condition by canceling out the leading edge 
contribution there. Everywhere else it is only a small 
correction to the leading edge solution. The third term 
in Landahl

’

s 

series will be correspondingly smaller in 
comparison with the leading edge solution. At high 
frequencies, therefore, the additional complexity 
incurred by adding the third term is hardly justified for 
a very small improvement in the accuracy of the 

Figure 6. Predicted real and imaginary parts of the unsteady 
pressure distribution for a single airfoil using 2D- 
strip approximation. The gust parameters are the 
same as those in Figure 5. 

solution. Hence, we shall truncate the series at this 
point and use the two-term representation in the 
subsequent analysis. 

In Figure 5 the predicted real and imaginary 
parts of the unsteady pressure distribution for a single 
airfoil (as given by Eq. (A2.19)) are shown for a more 

realistic gust distribution given by ug = Q6*(r) eiyC5 

with yg = 22 , (T = 0.5 and MC = 0.5. The radial 

structure of the gust means that there will be a 
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spectrum of spanwise wavenumbers as dictated by Eq. 
(A2.2a) and their associated spanwise amplitudes as 
given by Eq. (A2.2~). Only the first five terms in that 
series were taken into account for this calculation since 
the higher order terms result in cut-off waves (i.e., x, 
given by Eq. (A2.6~) is complex for 12 5). The 
corresponding amplitudes of the spanwise modes are 
given by (0.067, 0.127, 0.375, -0.028, -0.004). For 

the sake of comparison the corresponding 2D-strip 
approximation to the unsteady pressure distribution is 
plotted in Figure 6. For this calculation, the variation 
of the gust amplitude along the span was taken into 
account but not its spanwise wavenumber spectrum. 
While overall structure of the 3D and 2D-strip 
distributions look similar, they exhibit differences in 
their detail. A discussion of the importance of these 
differences and their effect on the noise fields is 
postponed to a later paper. 

In order to utilize the formulas developed in 
this appendix in the analysis outlined in the report, it is 
necessary to express them in the duct coordinates. 
After some simplification and grouping of terms, the 
final expressions are given by 

x J~,(x.

‘

.O)-~r] 

(A2.20a) 

% -Y<----(xcosa, +rBsina,) (A2.20b) 
PC 

A jd = 
a,, p V sgn[sin( 9 - as)] Pi4 

p&lT-FG 
(A2.20~) 

G,(w,r,B)=- 
cos( 9 / 2) 

fi 
(A2.20d) 

1 M2 
i ~(-R~+xcosa,+rsslna,)-~~fc_rri4 

2e fis I 
G&r,@) = 

&Z 

x F[x(R, +(x-c)cosa, +r@sina,)l/?g] (A2.20e) 

Rj =J~j+(rb

’

)~, 

Xj =x-(j-l)c (A.20f) 

8 = tan? 
i 

--Xsina, +rBcosa, 
xcosa, +rBsina, 1 

(A.2W 

where j = 1 gives the leading edge solution and j = 2 
the trailing edge solution. Eq. (A2.20a) represent the 
unsteady pressure field in the vicinity of a single airfoil 
bound by the walls of the duct with the index “ 0 ” on 
p;, indicating that the solution applies to the zeroth 

airfoil. 
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