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Abstract
A conceptual device is introduced which would utilize
unsteady wave motion to slow and turn flows in the
diffuser section of a centrifugal compressor.  The
envisioned device would substantially reduce the size of
conventional centrifugal diffusers by eliminating the
relatively large ninety degree bend needed to turn the
flow from the radial/tangential to the axial direction.
The bend would be replaced by a wall and the flow
would instead exit through a series of rotating ports
located on a disk, adjacent to the diffuser hub, and fixed
to the impeller shaft.  The ports would generate both
expansion and compression waves which would rapidly
transition from the hub/shroud (axial) direction to the
radial/tangential direction.  The waves would in turn
induce radial/tangential and axial flow.  This paper

presents a detailed description of the device.  Simplified
cycle analysis and performance results are presented
which were obtained using a time accurate, quasi-one-
dimensional CFD code with models for turning, port
flow conditions, and losses due to wall shear stress.
The results indicate that a periodic wave system can be
established which yields diffuser performance
comparable to a conventional diffuser.  Discussion
concerning feasibility, accuracy, and integration follow.

Introduction
Pressure exchange devices, which transfer energy
within a fluid system by means of unsteady gasdynamic
waves have been proposed or constructed to perform a
variety of thermodynamic cycles1-9.  Sometimes called
wave rotors, their potential applications include topping
cycles for gas turbines, turbocharging for automobiles,4

ejectors (e.g. pressure equalizers), and pressure
dividers.6  For topping and turbocharging cycles, where
the unsteady waves replace conventional rotating
blades, wave rotors offer the potential advantages of
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self-cooling, low rotational speed, and relative
simplicity.  For ejector cycles, unsteady waves replace
the dissipative viscous work transfer mechanisms of
their steady flow counterpart.  The result is a substantial
improvement in measured effectiveness.  The simplicity
of the steady ejectors is lost however, and it must be
assessed for a particular application whether the
enhancement benefit outweighs the complexity
detriment.10

This paper presents an investigation to ascertain
whether pressure exchangers can be used to replace or
augment other fluidic devices.  In particular, the
potential use of a pressure-exchange based diffuser for
centrifugal compressors is examined. Conventional
centrifugal diffusers are long, adding additional
diameter to the overall engine layout due in part to the
90 degree turn which transitions the flow from the
radial/tangential to the axial direction.  The pressure-
exchanger, or wave augmented diffuser may offer
substantial reduction in overall size by utilizing
gasdynamic waves to temporarily bring the flow to rest
and pressurize it before it takes the turn.  The device,
shown schematically in Fig. 1, would be mechanically
complex compared to a conventional steady diffuser;
however, if space is at a premium, the benefit may be
substantial.  The wave augmented diffuser concept will
be presented.  A quasi-one-dimensional CFD based
simulation will then be described which has been used
to analyze the concept.  Simulation results for a
particular design will then be presented, and the
implications discussed.

The Wave Augmented Diffuser Concept
The proposed operation of the wave augmented diffuser
is illustrated in Fig. 2 which shows an enlarged diffuser
passage from Fig. 1.  In principle, the flow in the
section would be brought to rest by a compression wave
initiated by passing of the rotating port (e.g. closing the
rotary valve) on the hub wall.  Although shown as a
plane wave in the figure, it is noted that the actual

compression wave would initially be highly three
dimensional.  Since it is initiated at the hub wall, and
since the valve occupies less than the full pitch of the
passage, information would propagate and reflect
several times in both the axial and circumferential
directions before anything approaching a plane wave
formed.  After the wave has traveled part way down the
section toward the inlet, the rotating valve would open,
initiating an expansion wave which would travel faster
than, and eventually overtake the compression wave.
During this period flow would then exit the diffuser
section through the valve while the expansion wave
caught and canceled the compression wave before it
reached the diffuser section entrance.  At this point the
rotary valve would close and another cycle would
begin.

The potential advantage of the concept lies in the notion
that the majority of fluid which must navigate the 90
degree turn during a cycle has been brought to rest at
high pressure.  This leads to a low-loss turning process.

Simulation and Analysis
Accurate simulation of a device like that shown in Fig.
1 requires a time-accurate, viscous, three-dimensional
CFD code.  Although such codes are available, they are
not practical for preliminary analysis due to the large
time requirements necessary to obtain a solution.  For
preliminary analysis a highly simplified model was
developed based on the following assumptions:

1. The diffuser section may be replaced by a
simple symmetric wedge as shown in Fig. 3.

2. The dominant wave phenomena occur along
the x-axis (see Fig. 3).

3. All other flow aspects can be modeled.

The wave augmented diffuser may thus be  simulated
using a quasi-one-dimensional, perfect gas flow solver
with additional source terms to account for viscous

Inflow from impeller

Outflow at 90 degrees to impeller flow

Compression Wave

Expansion Wave

Rotating valve

Stationary passage

Figure 2  Wave Augmented Diffuser Section
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Figure 3  Envisioned Q-1-D Computational Domain
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effects and flows from the passage normal to the mean
flow direction.  Such a code has been developed by the
authors and described in detail in the literature.11

For reference, the numerically integrated governing
equations may be written in non-dimensional form as:
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The distance, x' has been normalized by the passage
length, L.  The time, τ has been normalized by the
characteristic wave transit time, L/a*, where a* is the
reference speed of sound.  The pressure, p' and density,
ρ' have been normalized by their respective reference
values and the axial velocity, u' has been normalized by
a*.  The passage height, h' has been normalized by the
reference value h*.  The ratio of specific heats is
denoted by γ.

The source term S w( ) contains expressions for the
effects of wall friction and for flow through the rotary
valve.  It is written as
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where α is the ratio of hv to h (see Fig. 3), b is the
constant passage width, Dh is the hydraulic diameter,
CD, and σ1 and σ2 are fluid and/or geometric constants.

The function f
p

p
v′
′







 is St. Venant’s orifice equation.12

The back pressure ′pv is specified.  It is assumed in this

formulation that flow from the diffuser section carries
all of the x-direction momentum with it.

Numerical  Integration
The scheme used to numerically integrate Eqn. (1) has
been detailed in Ref. 11.  It is an upwind,  Lax-
Wendroff scheme which utilizes Roe’s approximate
Riemann solver13 to obtain flux estimates at the
numerical cell faces.  The source vector, Eqn. (4) is
dealt with in a consistent, second order fashion, with the
spatial height derivative estimated using central
differencing.  For all of the results to be shown, 100
numerical cells were used with a corresponding non-
dimensional time step of ∆τ=0.003.

Turning Loss  Estimate
In order to estimate the losses encountered in turning
the flow at a sharp right angle to exit the diffuser
passage, the following model was used.  At any instant
of time the properties in the rotary valve are obtained
using a constant pressure mixing calculation over all of
the numerical cells for which the mass flow source term
is non-zero, i.e.
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The instantaneous, mixed state (Eqn. 5) is then
integrated over the entire time that the valve is opened
and used to obtain a mixed time averaged state via
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The value J in Eqn. 7 is the number of discrete time
steps during which the valve is open.  This modeling of
the turning loss represents a very conservative estimate
in that both of the mixing calculations in Eqns. 5-6 and
7-8 produce entropy and the flow is assumed at the
outset to lose all of the x-direction (in Fig. 3)
momentum as it enters the rotary valve.

Baseline Steady Diffuser
Although a high degree of accuracy is not expected
from the simulation, it seems reasonable to test it, and
the wave augmented diffusion concept against a
representative baseline steady diffuser.  The diffuser
chosen is similar to that for an 8 to 1 pressure ratio
compressor tested at NASA Lewis Research Center.14

For the simplified geometry shown in Fig. 3, the
relevant target performance parameters are shown in
Table 1.  It was arbitrarily assumed that of the total loss
coefficient shown in Table 1, 67% was due to viscous
loss in the passage, and 33% was due to losses
associated with the 90 degree turn.  For simulation of
the baseline diffuser, the rotary valve was held in the
opened position.  The lengthwise extent of the valve,

′xv  was 10% of the total passage length.  Values of

passage slope 
dh

dx

′
′
(assumed constant), valve height

′hv , friction coefficient σ2, discharge coefficient, CD

and back pressure′pv  were adjusted to meet as closely

as possible the requirements of Table 1.  The values for
these parameters are listed in Table 2.

Computed Mach number, normalized static pressure,
and total pressure loss coefficient profiles for this
baseline diffuser are shown in Fig. 4.  Also shown are
the loss coefficient and Mach number after the 90
degree bend mixing calculation.  It was not possible to
match the Table 1 target total pressure loss coefficient
parameter because the loss associated with the turn was
too large.  This is somewhat reassuring however, as it
indicates that under the modeling simplifications
described, a steady state diffuser and 90 degree turn of
this design would perform poorly; which is obviously
true.

Unsteady Diffuser
Many different configurations for the placement, and
size of the rotating valve were been examined.  All of
the simulations utilized the same friction coefficient, σ2,
discharge coefficient, CD and passage geometry as the
baseline diffuser.  The timing (opening or closing) of
the valve was restricted to be integer multiples of the
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Figure 4 Distribution of Baseline Diffuser Flow
Properties

Table 1  Baseline Diffuser Target Performance
Parameters

Inlet Mach Number 1.20
Exit Mach Number 0.40

Mach Number After 90° Turn 0.30

Target Loss Coefficient,f
P P

P pL
in v

in in

≡
−
− 0.30

Number of Passages 22
Non-dimensional Impeller Rotation Period

τ imp
Ta

L
≡

* 7.30

Table 2  Baseline Diffuser Simulation Parameters
for Eqn. 4

α=hv/h 0.700
b/L .0588
dh

dx

′
′ 0.90

Lengthwise Valve Extent, ′xv 0.100

Discharge Coefficient, CD 0.800
Friction Coefficient σ2 0.170

Valve Back Pressure, ′pv 0.742
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impeller rotation period given in Table 1 divided by a
typical number of diffuser passages (chosen as 44).
Variable parameters were the valve height ′hv , the back

pressure ′pv , the lengthwise extent of the valve, and the

timing.  The objective was to maintain the 1.2 inlet
Mach number and 0.3 mass and time averaged rotary
valve Mach number of the baseline case while
maximizing the total pressure in the rotary valve.

The configuration which has yielded the best results to
date is illustrated using the contour plots shown in Fig.
5.  Other relevant parameters are listed in Table 3, the
most important of which is the substantially reduced
(0.35 to 0.3) loss coefficient.

Figure 5 shows computed contours of static pressure,
total pressure, s1 in Eqn. (4), and Mach number over
two wave cycles.  Darker shades indicate lower values
of a quantity.  The numbers next to each contour show
the minimum and maximum of the plotted quantity
observed during a cycle.  The pressure values have been
scaled by the diffuser inlet stagnation value.  Unlike
other pressure-exchange devices, the waves here are not
particularly strong; however, they are not acoustic
either.  Note in particular that the stagnation pressure is
20% higher than the inlet value at some point in the
cycle.  It can be seen in the contour of s1 that the rotary
valve extends 47% of the passage length, with some
slight phasing between the forward and aft portions.
Thus, this configuration would appear very similar to
Fig. 1.

Figure 6 shows the time-averaged (over one cycle)
Mach number and loss coefficient distribution in the
passage.  It is interesting to note that this loss
coefficient is lower than the baseline diffuser along
nearly the entire length of the passage.

Discussion
Given the simplicity of the simulation and analysis,
there are many aspects which can be debated.  It should
be kept in mind however, that the objective of the
present work was simply to assess the plausibility of a
concept, which appears to have potential.  At the very
least, the results thus presented warrant further
investigation, perhaps with multidimensional CFD
codes.  Nevertheless, some comments regarding the
concept and analysis are in order.

Boundary Layer and Mixing Effects
A major cause of stagnation pressure loss in typical
diffuser passages comes from boundary layer separation
and mixing.  The present simulation achieves the
equivalent loss through the friction term in Eqn 4.
Obviously, such simplistic modeling cannot capture the
effects which the unsteady wave diffuser flowfield will
have on the boundary layer.  Viewed another way, the
time-averaged flow deceleration shown in Fig. 6
presumably could not be achieved within the specified
geometry in a steady flow diffuser (e.g. the flow would
separate considerably).  There is no strong evidence one
way or the other that it could be done in the unsteady
flowfield, though that is assumed in the present
simulation.  In fact, the entire question of non-steady
boundary layer and separation behavior is an open one.

Figure 5   Property Contours for Two Cycles of the Wave Augmented Diffuser
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It is at least plausible however, that unsteadiness such as
that envisioned for the wave augmented diffuser may
forestall separation to some degree.

Integration
If the aerodynamic performance is indeed born out
through more detailed analysis, the question of practical
integration remains.  The reduction in radius is a
compelling benefit.  The rotary valve however, while
directly coupled to the impeller in concept, presents
sealing and radial expansion difficulties, as well as
increased disk friction due to the additional surface
moving relative to the diffuser passages, which may
offset the potential gains.

Low Speed Application
The results thus far presented pertain to a high speed
centrifugal compressor diffuser.  There is no reason
however, that the concept could not be applied to a low
speed machine.  The traveling waves would
undoubtedly lead to small pressure perturbations at the
inlet to the diffuser due to the typical subsonic flow
there; however, with careful design, this could be
minimized.  Investigations of this application are
planned.

Conclusions
A new concept to reduce diffuser size in centrifugal
compressors has been described.  A numerical
simulation has been developed with which to analyze it.
Despite numerous simplifying assumptions, the
simulation results indicate that the wave augmented
diffuser is a viable concept which warrants further
investigation.
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Table 3  Wave Augmented Diffuser Simulation
Parameters

α 0.382
Non-Dimensional Cycle Time

τcyc
cycT a

L
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*
0.664

Lengthwise Valve Extent, ′xv 0.470

Loss Coefficient, f
P P

P pL
in v

in in

≡
−
− 0.303

 Rotary Valve Back Pressure, ′pv 0.737
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A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser
section of a centrifugal compressor.  The envisioned device would substantially reduce the size of conventional centrifu-
gal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to
the axial direction.  The bend would be replaced by a wall and the flow would instead exit through a series of rotating
ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft.  The ports would generate both
expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/
tangential direction.  The waves would in turn induce radial/tangential and axial flow.  This paper presents a detailed
description of the device.  Simplified cycle analysis and performance results are presented which were obtained using a
time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall
shear stress.  The results indicate that a periodic wave system can be established which yields diffuser performance
comparable to a conventional diffuser.  Discussion concerning feasibility, accuracy, and integration follow.


