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Abstract

Traditional optical methods that include interferometry, Schlieren, and shadowgraphy have been used
successfully for visualization and evaluation of various media.  Aerodynamics and hydrodynamics are
major fields where these methods have been applied.   However, these methods have such major
drawbacks as a relatively low power density and suppression of the secondary order phenomena.  A
novel method introduced at NASA Lewis Research Center minimizes disadvantages of the “classical”
methods.  The method involves a narrow pencil-like beam that penetrates a medium of interest.

The paper describes the laser pencil beam flow visualization methods in detail.  Various system
configurations are presented.  The paper also discusses interfaces between media in general terms and
provides examples of interfaces.

1. Introduction

Flow visualization methods have been used for years to evaluate parameters of various flows.
Descriptions of these methods, which utilize interferometers, Schlieren, and shadowgraphs, can be found
in a number of references1-3.  The methods are based on the accumulative variations either in the phase of
an optical beam propagating through a medium or in its derivatives. With an interferometer, the changes
in the density of the medium along the beam propagation are evaluated.   On the other hand, Schlieren
methods are employed to detect changes in the first derivative of density distribution.  Finally,
shadowgraphs are used to visualize the second derivatives of the density.   It is obvious that for very slow
variations in the density interferometric systems are the most appropriate.  Shadowgraphs are the best for
visualization of flows with very rapid changes of density.  For instance, shocks, which are characteristic
of supersonic flows, are observed the best by shadowgraphs.  These three basically different flow
visualization methods have one thing in common.   They all usually require a large diameter collimated
beam.  This requirement leads to a relatively low spatial power density and consequently low contrast.
To compensate for a low contrast the power of the light source has to be increased.    Another problem
arises from the fact that a large diameter collimated beam suppresses the second order phenomena that
accompany the wave propagation.  An example of such phenomena is light diffraction from
inhomogeneities.

Inhomogeneities in the medium cause the beam to deviate from its original path.  The deviation is
often accompanied by such optical phenomena as diffraction and interference.  The pattern of transmitted
light carries information about inhomogeneities in the medium.  Furthermore, information about the
medium itself may be extracted from the pattern.  The issue is closely related to inhomogeneities.
Interfaces can be abrupt or distributed. An interface may be described mathematically by a derivative of a
particular physical property with respect to space.  An abrupt interface is the boundary between two
distinct fluids.  The two fluids then exhibit different physical properties across the interface.   The spatial
derivatives of the physical properties, in this case,  have singularities at the interface.  An air bubble in
water forms an abrupt interface.   The physical properties across a distributed interface change gradually
and the corresponding spatial derivatives are finite.  The type of interface determines the dominant
optical phenomenon that accompanies the beam propagation through the medium. Thus, evaluation of the
resultant optical pattern may help to retrieve information about  the interface itself.
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2. Theory and Analysis

Propagation of electromagnetic waves is governed by the four coupled Maxwell’s equations.
Solutions of these equations that also satisfy appropriate boundary conditions describe analytically the
phenomenon of wave propagation.  For nonmagnetic dielectric spatially inhomogeneous media with no
electric charges or currents two second order partial differential equations result.  These equations
describe the propagation phenomena in terms of either electric or magnetic fields.   Just one of these
equations is sufficient for analytical and computational purposes.   The equation presented in terms of the
electric field vector in the Cartesian coordinate system is given by:

                                                                                       .

 The second term on the left side of this equation reflects a presence of inhomogeneities in the
medium.   If ε does not vary in space the equation assumes the form of the wave equation.   Spatial
variations in the permittivity ε could be presented mathematically and inserted in the above equation.
That could lead to further simplifications and to more manageable partial differential equations.   The
incident electromagnetic field also plays a role in the simplification process.   For instance, assume that
the incident field is a plane wave that propagates in the Y direction.  We can decompose this incident
plane wave into two mutually orthogonal linearly polarized waves.  Select these waves in such manner
that the electric field of one of them is transverse to the plane of incidence (the XY plane).  This is a TE
wave with the electric field vector in the Z direction and the magnetic field vector in the X direction.
The other wave, with the magnetic field vector being transverse to the XY plane, is a TM wave with the
electric field vector in the -X direction and the magnetic field vector in the Z direction.  Assume also that
the medium has one-dimensional variations in the permittivity that occurs in the X direction.  This
describes a case when the one-dimensional inhomogeneities occur in a direction normal to the direction
of the wave propagation.  Then the following partial differential equation for the magnetic field vector of
the TM wave results:

A similar expression could be derived for the electric vector of the TM wave.
In general, an inhomogeneous medium of interest may be treated as a combination of homogeneous

media with transition regions between them.  Those transition regions are interfaces.   The interfaces
could be either abrupt or distributed.   In case of an abrupt interface between two homogeneous media
solutions of the wave equation are sought separately in each of the media. The solutions are then coupled
on the interface using matching conditions for normal and tangential components for the electric field
and magnetic fields.   For a distributed interface the process is more complicated.  Depending on the
“profile” and geometry of the interface and a mutual orientation of the interface and the incident EM
field, the governing equations could take various degrees of simplification 4, 5 .  In some simple cases an
exact analytical solutions may be obtained.  However, in the most cases the equations cannot be solved
exactly.  Even when the solution can be written in an algebraic or closed form, the practical impact of
having such solution is minimal unless there are numerical values associated with the solution.

The arguments presented in the last paragraph emphasize the importance of modeling and numerical
computations of the electromagnetic wave propagation through media with interfaces. The in depth
analysis of wave propagation through inhomogeneous media, various modeling approaches, and
numerical methods may be found in the literature 6, 7.  One of the reported methods includes computing
the passage of a Gaussian beam through an inhomogeneity and then propagating the resultant wavefront
into the far field using the Fresnel diffraction equation 8.   Such numerical methods as the FD-TD 9,
integral 10, and a ray optics approximation 11  have been proposed to compute propagation through the
inhomogeneity with a shock-like profile of the refractive index. Computational results of a Gaussian
beam propagating through an inhomogeneity of a cylindrical shape are shown in Fig. 1.   The results
were obtained using the finite difference-time domain (FD-TD) method.  Among other candidate
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methods an anomalous diffraction approximation could also be used if variations in the refractive index
across the interface are very small 12.  The use of laser pencil beams with the Gaussian profile has certain
advantages.  The obvious one is very high power density that a laser has.  Another advantage comes from
the fact that the laser power density is confined, especially within the Rayleigh zone, to a profile
described by a Gaussian.   When such incident beam strikes an interface or inhomogeneity, the resultant
diffracted and scattered waves propagate beyond its spatial domain defined by a Gaussian.   Separation of
the scattered field from the total one results and a more detailed structure of the pattern can be observed
and evaluated 13.

3. Experiments and Applications

A simple setup has been constructed to demonstrate the principle of pencil beam propagation through
a medium with various interfaces.  It consisted of a laser beam striking the interface at a grazing
incidence.  A conventional shadowgraph could be added for visualizing the interface.  Descriptions of
such experimental setup may be found in the References sited above.  Schematic of the setup is given in
Fig. 2.  It depicts a Gaussian beam striking an interface between two media at a grazing incidence.  This
configuration permitted observation of various phenomena associated with light propagation through
normal and bow shocks.  In both cases the beam splitting and spreading were seen.  Large angle
scattering on a bow shock was also observed.   An example of a laser beam splitting by a bow shock is
shown in
Fig. 3.   The bow shock was obtained in a supersonic tunnel by placing a blunt body in the flow.  The
laser beam was sent through a transparent section of a tunnel normal to the flow direction.  The picture
shows the pattern seen by a camera (Fig. 3a) and the relative distribution of light intensity (Fig. 3b). An
example shown in Fig. 4 displays intensity distributions across two patterns resulted from a laser beam
propagating through a water chamber with a thermal gradient.  One pattern is generated by a negative
temperature gradient inside the chamber (19.9 oC at the top and 59.9 oC at the bottom).  The other pattern
corresponds to a case with a positive gradient (56.6 oC at the top and 20.3 oC at the bottom).
     In addition to flow evaluation a similar system has been used to study abrupt interfaces produced by
air bubbles in water.  The bubble is generated in test chamber 14  filled with distilled water.  The laser
pencil beam penetrates the chamber through transparent walls, grazes the air-water interface, and upon
the exit from the chamber produces a pattern.  The water temperature is controlled using two thermostatic
circulators.  One circulator maintains a constant temperature at the top of the surface inside the chamber
and the other at the bottom.  Thus, a constant temperature is maintained inside the chamber or a
temperature gradient can be introduced.   Different patterns have been observed under different thermal
conditions inside the chamber.

The system configuration used to analyze experimentally the mentioned above phenomena has
utilized a stationary laser beam.  In order to enhance capabilities of the pencil beam method a scanning
mechanism may be added to allow the laser beam to change its position in space.  Various scanning
techniques have been reported.   Various mechanical, electro- and acousto-optical scanners 15  as well as
their applications to flow visualization 16   have already been discussed.

Another embodiment shown in Fig. 5 utilizes a spectral scanner.  Major components in spectral
scanners are a tunable light source and an optical dispersive element.  Examples of the dispersive
elements are dispersion prism and diffraction gratings.  These components are installed in the
transmitting part of the sensing system, which also includes a controller.  The tunable source generates a
narrow beam of light (i.e., a pencil beam) whose optical frequency changes in time in a prescribed
manner.  It is a known fact that the direction of a light beam after interaction with a fixed dispersive
element depends on the optical frequency of the light.  This space-frequency or space-wavelength
scanning generates a “rainbow” with the difference that each “color” appears in its place at a given time.
The dispersive element is placed in the focal plane of a collimating lens.  This arrangement converts a
cone of light of different colors into a series of mutually parallel pencils of light of corresponding colors.

The pencil beam may contain several individual beams with different optical frequencies
(wavelengths).  The wavelengths may be cooperatively or independently changed in a time-prescribed
manner.  Thus, the fixed dispersive element produces several “rainbows”.  The term “fixed” is used to
indicate spectral scanning by a stationary dispersive element in contrast with other embodiments in
which the light beam is physically translated or otherwise manipulated.
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The optical dispersive element may also replace a reflecting mirror or prism in the angular scanner.
Such a hybrid system combines a spectral scanner with an angular electromechanical one.  The hybrid
scanner may also employ a plurality of optical beams with different wavelengths.  These optical beams
strike the angular scanner that has its reflecting element, mirror or prism, replaced by the dispersive
element.  A multiplicity of spectral cones or “rainbows” will result.
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Fig. 1: Propagation of a Gaussian beam through
           inhomogeneous media under a grazing
           incidence (computational results).

Fig. 2:  Schematic diagram of a Gaussian beam
           striking an interface at a grazing incidence

                         a)                                                          b)

Fig. 3:  Laser beam splitting by a bow shock:
a)  pattern observed by a camera;
b)   intensity distribution across the pattern.

In ter faceGaussian
Beam
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a) b)

Fig. 4: Diffraction patterns of a Gaussian beam propagated through diffused interfaces generated by two
            different temperature gradients:

a)  negative temperature gradient (top temperature: 19.9 oC,    bottom temperature: 59.9 oC);
b)  positive temperature gradient  (top temperature: 59.6 oC,    bottom temperature: 20.3 oC).

Fig. 5: Diagram of a spectral scanner.
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