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ABSTRACT

Thick thermal barrier coating systems in a diesel engine experience severe thermal low

cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the
mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.%Y2O3 thermal barrier

coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high
power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe

coating surface cracking, microspallation and accelerated crack growth, as compared to the pure

LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also

facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue

damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced

cracking and splat pull-out bending during cycling, were observed especially for the combined

LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating

sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling.

The failure associated with HCF process, however, is mainly associated with a surface wedging

mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative

importance of LCF and HCF in crack propagation are also discussed based on the experimental

evidence.

INTRODUCTION

Ceramic thermal barrier coatings have received increasing attention for advanced gas

turbine and diesel engine applications. The advantages of using ceramic coatings include a

potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-

based ceramics are the most important coating materials for such applications because of their

low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties.

                                                
† National Research Council—NASA Research Associate at Lewis Research Center.
  Keywords: Thermal High Cycle and Low Cycle Fatigue, Ceramic Sintering and Creep, Fatigue
Mechanisms
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However, durability of thick thermal barrier coatings under severe temperature cycling conditions

remains a major question. It is known that two types of thermal fatigue transients exist in a diesel

engine [1-3] . The first type of transient, which is associated with the start/stop and no-load/full-

load engine cycle, generates thermal low cycle fatigue (LCF) in the coating system. The second

transient type, which is associated with the in-cylinder combustion process, generates a thermal

high cycle fatigue (HCF) with typical frequency on the order of 10 Hz (i.e., 1000-2600 RPM).

The HCF transient can induce a temperature fluctuation of more than 200°C that will

superimpose onto the steady-state engine temperature at the coating surface[2, 3] . Therefore, the

failure mechanisms of the thick thermal barrier coatings are expected to be different from the thin

coatings under these temperature transients. The coating failure is related not only to coating

thermal expansion mismatch and oxidation of the bond coats and substrates [4-6] , but also to the

steep thermal stress gradients induced in the coating systems [2, 4, 6-10]  . Although it has been

reported [7, 11]   that stresses generated by thermal transients can initiate surface and interface

cracks in a coating system, the detailed mechanisms of the crack propagation and of coating

failure under the complex LCF and HCF conditions are still not understood. In this paper, the

thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated

thermal LCF and HCF engine conditions is investigated. The interaction between LCF and HCF

cycles, and the impact of relative amplitudes of the LCF and HCF transients on the coating

fatigue crack initiation and propagation are also discussed based on the experimental results and

observations.

EXPERIMENTAL MATERIALS AND METHODS

A two layer thermal barrier coating system, consisting of a ZrO2-8wt.%Y2O3 ceramic

coating and an intermediate Fe-25Cr-5Al-0.5Y bond coat, was plasma-sprayed onto steel angle

iron (203 ×  side width 25 ×  wall thickness 4 mm) and rectangular bar (127 × 32 ×12.7mm)

substrates. The angle iron and rectangular substrate configurations were especially chosen to

study the effect of specimen geometries such as corners, edges and flat surfaces on cracking

patterns of the thermal barrier coating after thermal fatigue testing. The plasma spray conditions

have been reported elsewhere [12] , as summarized in Table 1. The thicknesses of the ceramic

coating and the bond coat were about 1.6 mm and 0.28 mm, respectively. Thermal LCF and

HCF tests were conducted using a 1.5 KW high power CO2 laser, as described previously [10, 13]

. The CO2 laser is especially suited for testing ZrO2-based thermal barrier coatings because it can

deliver a well-characterized and well-controlled heat energy to the surface of the ceramic coating.

Since zirconia is opaque at the 10.6 µm wavelength of laser beam [14] , the light energy is

absorbed by the coating surface rather than penetrating into the coating. In order to produce a
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lower power density suitable for simulating diesel engine conditions, and also to cover a larger

test specimen area, a Plano Concave ZeSe lens with focal length -330 mm was used to expand

the laser beam to 32 mm in diameter. The laser test rig was controlled by a PC programmed to

generate various LCF heating and cooling cycles. Backside air cooling was used to maintain

desired temperature gradients across the coating system. Coating surface and backside metal

temperatures were measured by a special 8 µm infrared pyrometer and a type-R thermocouple,

respectively. In laser LCF and HCF tests, the ceramic surface temperatures were set at 850°C and

950°C, respectively, and the backside metal temperature were at 250°C. The pure LCF cycles

were generated by the continuous wave (CW) laser mode, and the HCF combustion cycles were

simulated using the pulsed laser mode, as shown in Fig. 1. The LCF cycles, in either the pure

LCF test or the combined LCF and HCF tests, were 5 minute or 30 minute heating cycles with a

total heating time of 256 hours. Because the high energy laser pulse was used, an HCF

component was inherently superimposed on the LCF cycles in the combined LCF and HCF tests.

The laser pulse period and pulse width were fixed at 92 and 6 milliseconds (ms) respectively. The

crack lengths were measured after the tests. The effect of pure HCF component on crack

propagation was also investigated by a laser thermal shock test that has been described previously
[10, 13]  . In this pure HCF test, the laser power was set at either 1600 or 900 W, and the laser

pulse heating time was set at 100 ms. The pure HCF conditions generated maximum surface

temperature swings of about 750°C and 420°C. The sufficient cooling time allowed the specimen

substrate temperature to remain cool throughout the testing. The crack lengths in the ceramic

coating were also measured periodically up to 5000 cycles. The LCF and HCF tested coating

surfaces and cross-sections were examined under both optical and scanning electron microscopes

to obtain information on crack density and depth.

Table 1 Plasma spray parameters for ZrO2-8wt%Y2O3 top coat and FeCrAlY bond coat

Coatings
materials

Torch
power

KW

Plasma
gas flow

rate
Standard
liter/min.

Carrier
gas flow

Standard
liter/min.

Spray
distance

mm

Feed
rate

g/min.

Torch
translatio

n rate
mm/s

Air
cooling

condition
Psi

Substrate
temperature

°C

FeCrAlY
PRAX-AIR

FE213
44-74 µm

35
(9mB

plasma
torch, GH
nozzle)

Ar: 56.6
N2: 9.4

Ar: 8.3 127 68 1300 50 250

ZrO2-8%Y2O3
ZIRCOA
9507/46

44-74 µm

40
(9mB

plasma
torch, GH
nozzle)

Ar: 14.2
N2: 7.1

Ar: 3.2 101.6 20 1000 50 250
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Fig. 1 High power laser simulated the pure LCF and combined LCF/HCF cycles in thermal

barrier coating systems. (a) Schematic diagram showing LCF and superimposed LCF

and HCF cycles; (b) and (c) Experimental measured temperature—time profiles during

5 minute heating/3 minute cooling LCF, and combined LCF/HCF tests, respectively.

Note that in the HCF superimposed case in (c), the pyrometer response time is not fast

enough to show the actual temperature response at the ceramic surface.
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When pulsed laser heating is used, a severe thermal transient will be induced even in the

absence of LCF cycling. This temperature fluctuation under the HCF conditions was modeled

using a finite difference approach [12, 13]  . The modeled results indicate that the HCF transient

occurs only at the surface of the ceramic coating. This layer may be defined as the HCF

interaction depth at which appreciable temperature fluctuation (greater than about 10% the surface

temperature swing) will occur. The temperature swing, generated by the pulsed laser, increases

with increasing laser power density and pulse width. The HCF interaction layer depth, which is

independent of laser power density, increases with laser pulse width. Under the HCF condition of

6 ms heating, the interaction depth is about 0.15 mm. The temperature profiles generated by the

pulsed laser under a peak heat flux of 4.95 MW/m2 are illustrated in Fig. 2. This temperature

fluctuation induces high-frequency cyclic stresses on the coating surface, with the predicted HCF

stress amplitude of about 100 MPa at 4.95 MW/m2 [12] , as shown in Fig. 3. The dashed line in

Fig. 3 represents the ceramic surface stress at the average steady state surface temperatures under

the corresponding average heat flux 0.323 MW/m2.
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Fig. 2 Predicted temperature profiles generated by pulsed laser heating (pulse width 6 ms).

Under the HCF condition of 6 ms heating, the interaction depth with a considerable

temperature swing is about 0.15 mm (dashed line represents the time-averaged surface

temperature).
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Fig. 3 Predicted stress distributions in the ceramic coating under pulsed laser heating

conditions. The overall stress is the summation of the thermal stress and residual stress

in the coating system (the compressive residual stress in the ceramic coating is assumed

to be about 27 MPa after processing). Besides a constant stress gradient generated by

the steady state heating, high frequency HCF cyclic stresses are present near the ceramic

coating surface. (a) Stress distributions in the ceramic coating; (b) HCF cyclic stress

variations at the coating surface as a function of time.
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EXPERIMENTAL RESULTS

Surface cracking was observed for all specimens which were tested to a total heating time

of 256 hours. Compared to the pure LCF tested specimen, the combined LCF/HCF tests

produced higher crack densities. At the angle iron corners, nearly parallel cracks which run across

the corners were formed. In contrast, equiaxial crack networks were generated by the laser tests at

the rectangular specimen surfaces. At the edges of the rectangular specimens, parallel cracks

similar to those found on the angle iron corners were observed with crack direction perpendicular

to the edges. The general features of the fatigue cracking in the coating, however, are similar for

both specimen configurations. The previous work has reported [10, 13]   that the HCF component

can initiate lateral crack branching and multiple delaminations under HCF bending moments

along the inter-splat planes of weakness. Fig. 4 shows typical micrographs of the crack

morphologies in the ceramic coating after the combined LCF/HCF testing. The HCF thermal

loads resulted in severe surface damage. The deep vertical crack also induced lateral crack

branching and delamination near the ceramic/bond interface.

Surface crack growth rates (the crack growth rates from the surface towards the interface)

for the ceramic coatings under both LCF and LCF/HCF test conditions have been determined by

measuring various crack lengths observed in single specimens after each test. Statistical analysis

has been used to compare these results. As shown in Fig. 5, the measured crack length in the

ceramic coating system increases with the LCF cycle number and surface temperature. The HCF

component tends to increase the overall coating crack length, especially when crack branching is

considered. It seems that the fatigue crack growth rate in the ceramic coating strongly depends on
the characteristic HCF cycle number, NHCF

* , which is defined as HCF cycle numbers per LCF

cycle. As can be seen in Fig. 6, the average fatigue crack growth rate, based on crack depth in the

coating, increases with the characteristic HCF cycle number. The crack growth rate is increased
from 0.36 µm/LCF cycle for a pure LCF test ( NHCF

* =0) to 1.8 µm/LCF cycle for a combined

LCF and HCF test ( NHCF
*  =20,000), when the surface temperature Ts is 850°C. The crack

growth rate is approximately 2.8 µm/LCF cycle when the surface temperature Ts is 950°C. The

increased crack growth rate in the ceramic coating with characteristic cycle number may be

attributed to the pure HCF interaction effect and increased sintering effect due to longer heating

cycle or higher temperature. In the separate thermal shock tests which simulate the pure HCF

process with an interaction depth of 0.3 mm, the crack growth rates were about 0.18 µm/HCF

cycle and 0.02 µm/HCF cycle for the temperature swings of 750°C and 420°C, respectively.
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(a)

Fig. 4 Micrographs of the ceramic coating on the angle iron after the combined LCF and HCF

testing (surface temperature 950°C, 30 minute heating and 6 minute cooling cycle, 510

LCF cycles and 10 ×106 HCF cycles). (a) SEM micrograph showing surface crack

morphology; (b) and (c) Optical micrographs of the cross-section of the coating

showing the severely damaged surface region, and the crack propagation and

delamination at the ceramic/bond coat interface.
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(b)

Fig. 4 (Continued) Micrographs of the ceramic coating on the angle iron after the combined

LCF and HCF testing (surface temperature 950°C, 30 minute heating and 6 minute

cooling cycle, 510 LCF cycles and 10 ×106 HCF cycles). (a) SEM micrograph

showing surface crack morphology; (b) and (c) Optical micrographs of the cross-

section of the coating showing the severely damaged surface region, and the crack

propagation and delamination at the ceramic/bond coat interface.
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(c)

Fig. 4 (Continued) Micrographs of the ceramic coating on the angle iron after the combined

LCF and HCF testing (surface temperature 950°C, 30 minute heating and 6 minute

cooling cycle, 510 LCF cycles and 10 ×106 HCF cycles). (a) SEM micrograph

showing surface crack morphology; (b) and (c) Optical micrographs of the cross-

section of the coating showing the severely damaged surface region, and the crack

propagation and delamination at the ceramic/bond coat interface.
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DISCUSSION

The experiments demonstrate strong interactions between LCF, HCF and ceramic coating

creep. It is known that in plasma-sprayed ZrO2-Y2O3 ceramic coatings, the primary creep stage

is significant due to the porous and microcracked nature of these coatings [15-17] . This creep

behavior is probably related to stress-enhanced ceramic sintering, splat sliding, and the stress

redistribution around the splats and microcracks. The time and stress-dependent deformation can

result in coating shrinkage and thus stress relaxation at temperature under the compressive
stresses. The strain rate ε̇ p  can be generally written as

ε̇ p
i = A ⋅exp − Q

RT




 ⋅ σth

0 − ε p
i−1 Ec

1− νc







n

⋅ ti−s (1)

where ε̇ p
i  and ε p

i−1 are the creep strain rate at time ti , and the total accumulated strain at the

previous time step ti−1, respectively, A, n and s are constants, Q  is the activation energy, T  is

temperature, R  is the gas constant, σth
0  is the initial thermal stress in the coating, and Ec  and νc

are the elastic modulus and Poisson's ratio of the ceramic coating. The stress relaxation effect on
the creep strain rate is accounted for by the ε p

i−1 term in Equation (1). The total creep strain, with

stress relaxation considered in the coating, can thus be expressed as [17]

ε p = σ0 − σ0
1−n − A ⋅ Ec 1− n( )

1− νc( ) 1− s( )
⋅exp − Q

RT




 ⋅ t1−s











1

1−n
















⋅1− νc

Ec
(2)

For the purpose of demonstration, the modeling for the creep strain and stress calculations

in this paper, has been assumed a coating modulus value representing of the as-processed

coating. The significant change in coating modulus that may be experienced during service will be

addressed in future publications by the present authors [17] . Fig. 7 illustrates the modeled coating

creep strains in the ceramic coating as a function of coating depth at various times with different

coating creep constants. It can be seen that the creep behavior of the coating exerts a significant

influence on the shrinkage strains.
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Fig. 7 Simulated coating creep strains as a function of coating depth at various times (constant

ceramic coating modulus 27.6 GPa, ceramic surface temperature 872°C, n stress

exponent, s time exponent, and Q activation energy). The creep strains will induce

tensile stresses in the coating during cooling.
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The pulsed laser induced temperature swing can generate high compressive stresses that

can result in the coating surface fracture. More importantly, the surface tensile stress, mainly

generated by coating shrinkage due to coating sintering and creep at temperature, could also

induce cracking during cooling. Fig. 8 shows that for a given heat flux and average surface

temperature, the HCF component will generate a considerably higher creep rate at the coating

surface compared to the pure LCF mode. Since the laser HCF component will promote both

coating surface creep and surface compressive cracking, accelerated crack initiation and higher

surface crack density at the coating surfaces are expected, as confirmed by this experiment.
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Fig. 8 Predicted instantaneous creep strains under LCF and HCF conditions (stress and time

exponents are 0.48 and 0.82 respectively, activation energy 114 KJ/mol)
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Under the conditions of the low ceramic/metal interfacial temperatures in this study, the

oxidation of bond coat and substrate is not important. The thermal expansion mismatch between

the ceramic coating and bond coat is also minimized at the low temperatures even in non-graded

coatings. Therefore, the LCF mechanism in the thick thermal barrier coatings is closely associated

with the coating sintering and creep at high temperature. These creep strains in the ceramic

coating will lead to a tensile stress state during cooling, thus providing the major driving force for

the crack growth under LCF conditions. On the other hand, the HCF is closely associated with

the cyclic stresses originating from the high frequency temperature fluctuation at the ceramic

coating surface. The HCF thermal loads act on the crack by a wedging mechanism [12] , resulting

in the continuous crack growth at temperature. As shown in Fig. 9, the HCF stress intensity

factor amplitude predicted by this model increases with increasing the interaction depth and

temperature swing, and decreases with increasing the crack depth. The HCF damage effect also

increases with increasing the thermal expansion coefficient and Young's modulus of the ceramic

coating [12] . It should be noted that, depending on the coating stress state at high temperature, the

HCF may affect crack propagation far beyond the laser interaction depth. This has been

demonstrated experimentally in pure HCF cycling where high temperature swings were

generated near the surface of the ceramic coating [13] . In the present case, the high surface

thermal loads resulted in significantly higher crack growth rate.
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Fig. 9 The HCF stress intensity factor amplitude as a function of normalized crack length. (a)

The influence of interaction depth on the HCF stress intensity factor amplitude; (b) The

influence of temperature swing on the HCF stress intensity factor amplitude.
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The LCF/HCF interactions are expected to be complex. As illustrated in Fig. 10 for the

proposed LCF/HCF mechanisms, alternating HCF and LCF loading at temperature and during

cooling would increase the overall crack growth rate in the combined LCF/HCF tests. The relative

magnitudes of the LCF and HCF components for crack propagation depend on the time, the

crack length and the crack tip location within the coating, because the LCF and HCF stress

intensity factor amplitudes are expected to vary with these parameters, as will be discussed in the

Appendix. Fig. 11 shows examples of the LCF stress distributions after cooling in the coating

system. It can be seen that in general, the tensile stresses in the coating are highest at the surface,

and increase with cycle time. Fig. 12 illustrates the estimated HCF and LCF stress intensity factor

amplitudes as a function of coating depth at various times. The results indicate that the HCF

dominates initially, especially near the surface region, whereas the LCF prevails for longer times

and greater depths. It is also noted that, due to the ceramic-bond coat elastic mismatch, the stress

intensity factor amplitudes tend to drop to zero when the crack approaches the ceramic/bond coat

interface because of the relatively stiff bond coat. This asymptotic behavior of the stress intensity

factor amplitudes near the ceramic/bond coat interface under the present LCF and HCF loading

conditions, as shown in Fig. 12, is obtained by invoking the Zak-Williams singularity at the

interface, using the approach described in literature [18] . Therefore, the crack will be expected to

deflect along the interface, thus leading to interface delamination under subsequent LCF and HCF

loading. The delamination phenomena due to vertical cracks in the ceramic coatings have often

been observed in the experiments [6]  .

The thermal LCF and HCF crack growth is also greatly influenced by the HCF loading-

unloading process. The HCF cyclic loading and bending moments on the coating could cause

extensive relative displacements at the crack wake surfaces, thus generating extensive crack

branching and multiple delaminations by asperities/debris contact cracking and splat pull-out

bending mechanisms. The stresses induced locally by these crack wake interactions could also

accelerate the major crack propagation even during the LCF and HCF unloading stage. The

surface HCF thermal loads will exert profound but detrimental influences on the coating thermal

fatigue resistance.
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CONCLUSIONS

This paper presents a detailed analysis concerning mechanisms of fatigue crack initiation

and propagation, and coating delamination under high heat flux thermal cycling conditions. The

coating creep and fatigue interactions are also described based on experimental evidence. The

results obtained from the laser thermal fatigue tests help to better understand the thermal fatigue

processes of the coating system.

It was found that surface cracks in the ceramic coating initiate and propagate continuously

under complex thermal low cycle and high cycle fatigue stresses. Due to the ceramic-bond coat

elastic mismatch, these vertical cracks can deflect along the ceramic/bond coat interface, thus

eventually leading to coating delamination under subsequent LCF and HCF loading. The failure

mechanism associated with LCF is closely related to coating sintering and creep at high

temperatures. The creep strains that are developed at high temperature induce tensile stresses in

the ceramic coating during cooling, thus providing the major driving force for the crack growth

under LCF conditions. The failure mechanism associated with HCF is mainly related to the cyclic

stresses originating from the high frequency temperature fluctuation, as described by a surface

wedging process.

The combined LCF/HCF tests tend to generate more severe coating surface cracking,

microspallation and accelerated crack growth, than the pure LCF test. Lateral crack branching and

the ceramic/bond coat interface delamination can also be facilitated by HCF thermal loads, even in

the absence of severe interfacial oxidation. The increased HCF damage phenomena are attributed

to the enhanced surface sintering and crack initiation, the surface wedging and increased loading-

unloading fatigue damage at crack wake surfaces.

The relative magnitudes of the LCF and HCF components for crack propagation depend

on the time, the crack length and the crack tip location within the ceramic coating. The HCF effect

dominates initially, especially near the surface region, whereas the LCF effect prevails for longer

times and greater depths. The profound interactions between LCF, HCF and ceramic coating

creep are observed from the crack propagation kinetics under various test conditions.
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APPENDIX STRESS INTENSITY FACTOR AMPLITUDES OF THERMAL HIGH

CYCLE FATIGUE AND LOW CYCLE FATIGUE

During a superimposed thermal LCF/HCF testing, the surface vertical crack in the thick

thermal barrier coating can propagate under both LCF and HCF loads. The crack growth rate with

respect to LCF cycle number can be generally expressed as [12]

da

dN




 LCF

= C1 ∆KILCF( )m + C2 ∆KIHCF( )m

0

NHCF
*

∫ dNHCF (A1)

where m , C1 and C2 are constants, NHCF
*  is the characteristic HCF number, ∆KILCF  and

∆KIHCF  are stress intensity factor amplitudes of the crack under LCF and HCF loads,

respectively. The stress intensity factor amplitudes are functions of crack geometry, crack length,

stress magnitudes and distributions. It can be seen from Equation (A1) that the crack propagation

rate depends not only on coating properties, but also on LCF and HCF parameters which define

stress states and fatigue mechanisms.

The Low Cycle Fatigue Stress Intensity Factor Amplitude

The mode I stress intensity factor amplitude for LCF crack growth can be generally

written as [12]

∆KILCF = Y ⋅ σLCF − σth[ ]⋅ π ⋅ a(i) (A2)

where Y  is a geometry factor related to the crack configuration, for a surface crack, Y = 1.1215.

σth  and σLCF  are the thermal stress at temperature and LCF stress during cooling in the coating.
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The compressive thermal stress will relax extensively with time, especially near the surface high

stress and temperature region [12, 13]. In contrast, the tensile LCF stress, which is associated with

the time dependent, non-elastic strains in the ceramic coating at temperature, will increase with

time. To a first approximation, the LCF stress under the assumed biaxial stress condition after

cooling can be written as

σLCF = ε p (σth ,T, t) ⋅ Ec

1− νc
(A3)

where ε p (σth ,T, t) is the total accumulated creep strain in the ceramic coating, as has been

described previously by Equation (2). The bond coat and metal substrate creep is not considered

because of the low temperatures at the interfaces during the thermal fatigue testing. Examples of

LCF stresses as a function of time and coating depth for a coating system has been illustrated in

Fig. 11. Assuming that the crack does not grow under the compressive thermal stress σth , the

stress intensity will depend primarily on σLCF  and the crack length a(i) . Therefore, the LCF

crack growth rate will increase with time, because the LCF stress level and the crack length

increase with time.

The estimation of the stress intensity factor amplitude associated with the LCF process is

complex. The LCF stress, which has a considerable distribution across the coating, changes with

time. In addition, the stress intensity factor amplitude of the fatigue crack will significantly deviate

from the surface crack solution when the crack has a comparable length with the coating

thickness, especially when the crack approaches the ceramic/bond coat interface. The elastic

mismatch at the interface for the vertical crack can be taken into account by invoking the Zak-

Williams singularity to the regular stress intensity factor [18] . The stress distributions in the

coating on a fatigue crack can be considered as distributed wedge forces over the crack, as shown

in Fig. A1. The surface crack stress intensity factor, therefore, can be obtained from an integration

over the crack under these wedge forces [19] . The LCF stress intensity factor amplitude thus can

be written as

∆KILCF =
1.1215 ⋅ f a(i),α ,β( )

π ⋅ a(i)
⋅ σ(x) ⋅ a(i) − x

a(i) + x−a(i)

a(i)

∫ ⋅ dx (A4)

where number 1.1215 is the coefficient for a surface crack, σ(x) is the stress distribution
function, f a(i),α ,β( ) is a coefficient describing the interface singularity due to the elastic

mismatch, which depends on the crack length, and Dundurs' parameters α  and β . The

coefficient f a(i),α ,β( ) can be expressed as [18]
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f a(i),α ,β( ) = a(i)
h







1/2
1− a(i)

h






1/2−u
1+ λ a(i)

h




 (A5)

where h is the coating thickness, λ  is a fitting parameter, u  is the singularity exponent depending

on the elastic mismatch that is the root to the equation

cos(uπ ) − 2
α − β
1− β

1− u( )2 + α − β 2

1− β 2 = 0 (A6)

For the particular ZrO2-8wt.%Y2O3 ceramic coating/FeCrAlY bond coat system, the

parameters in Equations (A5) and (A6) have been calculated [6]  . With Dundurs' parameters

α = −0.67, β = −0.25 , u  is calculated from Equation (A6), and u = 0.338. The fitting parameter

λ  is obtained from the reference [18]  graphically based on the Dundurs' parameters, and

λ = −0.07 .

σ(x)

0

σ(x)=0

x-a a

Fig. A1 Schematic diagram showing the determination of LCF stress intensity factor amplitude

by the integration method for the distributed wedge forces over the crack.
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High Cycle Fatigue Stress Intensity Factor Amplitude

The high cycle fatigue is associated with the cyclic stresses resulting from the high

frequency temperature fluctuation at the ceramic coating surface. This wedging process provides

an intrinsic mechanism for the HCF phenomenon. Since the minimum HCF stress intensity

factor equals zero, the net mode I stress intensity amplitude for this case can be expressed as   
[12, 20]

∆KIHCF =
2 ⋅ P ⋅ f a(i),α ,β( )

π
1+ f HCF (i)

a(i)2 − bi
2

π ⋅ a(i) (A7a)

and

P = σHCF ⋅bi (A7b)

where P  is a concentrated load per unit thickness acting on the crack, bi is the load acting distance

from the surface which is taken as laser interaction depth in the present study. Note that the

interface singularity coefficient is also incorporated into Equation (7a). σHCF  is the HCF stress,

a(i)  is the crack length at the ith cycle. f HCF (i)  is a geometry factor, which can be related to the

crack length a(i)  and the interaction depth bi in the following form [20]

f HCF (i) = 1− bi

a(i)






2











⋅ 0.2945 − 0.3912 ⋅ bi

a(i)






2

+ 0.7685 ⋅ bi

a(i)






4





−0.9942 ⋅ bi

a(i)






6

+ 0.5094 ⋅ bi

a(i)






8





(A8)

Note from the above that the HCF stress intensity factor amplitude increases, in a linear
manner, with increasing HCF stress σHCF  and, by a more complicated function, with increasing

interaction depth bi . The calculations [12]  from Equation (A7) show that the HCF stress intensity

factor amplitude increases with increasing the laser interaction depth bi , the temperature swing

∆T , as well as the thermal expansion coefficient αc  and the elastic modulus Ec of the ceramic

coating.
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