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Analyses were coducted to examine ion thruster scaling relationships in dail to determine performance limits,

and lifetime expectations for thruster input power levels blow 0.5 kW. This was motivated by mission analyses
indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The
design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed.
Performance goals include thruster efficiencies on the order of 40% to 54% over a sgacimpulse range of 2000

to 3000 seconds, with a lifetime in excess of 8000 hourdwdt power. Thruster technologies required to achieve
the performance and lifetime targets are identified.

Introduction may not be optimal for small spacecraft from a perfor-

Analyses were conducted which indicate that 0.2 kW- mance and mass standpoint.

class ion thrusters may provide performance benefits for

near-Earth space commercial and planetary science Current activities in on-board propulsion include devel-

missions. Small spacecraft applications with masses opment and testing of low-power ion thrusters and

ranging from 50 to 500 kg amqmbwer levels less than 0.5 cpoments, including low-flow rate hollow cattes and

kW were considered in this study. efficient discharge chamber designs. A parallel effort to
develop a breadboard power processor for operation in

A throttleable 0.5-2.3 kW 30 cm diameter xenon ion the 0.1-0.3 kW power range is or-going. This paper

thruster and system are currently under development by  discusses performance and lifetime expectations for low-

the NASA Solar Electric Propulsion Technology Appli- powaroteion thrusters, and tlikevelopment status of

cation Readiness (NSTAR) Program for use on planetary  thruster components and a 0.1-0.3 kW prototype ion

science spacecraft. The system is rapidly approaching  thruster.

flight status and is scheduled to be used for primary

propulsion on the New Millennium Deep Space-1 Mission Applications

mission to be launched in July 1998. Low-power electron-bombardment xenon ion thruster
solutions were recently evaluated for near-Earth space

The NSTAR system, however, may not be an optimal commercial and science missions, and for solar system

high specific impulse option for very small spacecratft, exploration. Two potential mission applications for a

because of the inherent limited power, volume, and small ion thruster operating at approximately 0.3 kW

thermal control capacity available on-board. As such, an include an Earth orbit magnetospheric mapping satellite

activity is being onducted to examine ion thruster  constellation, and a geosynchronous north-south station

scaling relationships to assess system requirements, keeping application.

performance limits, and lifetime expectations at input

power levels below 0.5 kW. In one mission study, projected xenon ion thruster
efficiencies of approximately 40% to 54% were assumed.

Prior development efforts have brought low-power (sub- The projections result in an optimal specific impulse

0.5 kW) ion thrusters to a high state of technology range of 2000 to 3000 seconds over an input power

readiness, including an 8 cm mercury ion thrister and envelope of 0.1-0:3 kW. For the reference missions,

the Hughes 13 cm xenon ionubter! However mercury  these performance levels yielded significant reductions in

propellant is not a viable option, and the Hughes thruster both propulsion system wet mass, and launch vehicle
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requirements, relative to the baseline chemical propulsion acespit. For purposes of examining scaling relation-
systems. Required thruster lifetimes ranigeth approx- ships over thaput powerrange of 0.1-0.3 kW, an 8-cm
imately 3000 hours at 0.3 kW (geosynchronous  thruster beam diameter was selected for testing. The
stationkeeping) to nearly 14,000 hours at a mission- primary requirements are to achieve the aforementioned
average input power of 0.2 kW (science mission), and rfopmance and lifetime goals. The considerations

total-impulse requirement of about 3.0810 N-s. driving the thruster beam diameter include maximum
acceptable beam current density, discharge chamber
Thruster Performance and Lifetime Goals electrical efficiency, and operating discharge voltage.

The performance levels assumed in the mission study are
believed to be reasonable goals based on component  The estimated performance of 8-cm ion optics, scaled
testing and technology projections conducted to date. from that demonstrated with 2-grid 30 cth optics, yields
Thruster performance targets, consistent with these a perveance-limited beam current consistent with the
mission requirements, are listed in Table | for thruster  values indicated in Table | with about 100 volts total
input power levels of 0.1 kW, 0.2 kW, and 0.3 kW. margin. The average beam current density varies from
about 1.8 mA/crh at 0.1 kW tdbaut 4.1 mA/crf ; or
Figure 1 displays published thruster efficiencies versus approximately 0.6ttmdsthat of the NSTAR thrus-
input powerfor several small thrustet$® as well as ter.
unpublished data for a 30 don thrustert!  All data are
for xenon popellant, with the exception of the 0.05 kW For the NASA NSTAR 30 cm thruster, the erosion of the
point which was obtained from a 5 cm mercury ion molybdenum accelerator grid due to charge-exchange
thruster, and the 0.12 kW point from an 8 cm mercury ions is one of the life limiting wear-mechanisms. If the
ion thruste Additionally, all data were corrected for internal discharge voltage of the 8-cm diameter thruster
thrust losses (associated with divergence and multiply- is limited to 28 V to mitigate internal erosion, then
charged ions), and other fixed losses (notably, neutralizer  charge-exchange erosion of the accelerator grid is poten-
and main cathode keapewith the exception of the JPL tially the lifesiter. The relevant local mearement for
15 cm datum which did not include all neutralizer losses. atltslerator ggd end-of-life mechanism is the bridge
Other thrusters, including the National Aerospace depth erosion in the grid center. The bridge is defined as
Laboratories (NAL) 14 cm thrust&?*  were not included  the minimum eroded depth in the groove between two
becauseither the quoted efficiencies were uncorrected pits in¢belerator grid erosion patterdsing life test
for thrust- and fixed-losses, or no direct reference to data, a "grid erosion parameter" (or GEP) was proposed
overall thruster efficiency could be located. as a straightforward combination of measured parameters
with a high correlation to the magnitude of the worst-case
Also shown in Figure 1 is a performance curve of the charge exchange éfosion. The GEP consists of the
target efficiencies for the prototype ion thruster. Addi- odpict of the acceleratgrid impingement current, test
tionally, a projected performance curve for the JPL 14 cntime, and grid material sputter yield, idigd by the beam
thruster is showh. As indicated in Figure 1, the proto- area.
type thruster efficiency targets and power levels are
outside the present xenon ion thruster operational enve- Recent in-situ erosion measurements from the NSTAR
lope. An important consideration of course is that 2.3 kW Life Demonstration Test (LDT) indicate that the
improvements to state-of-the-art must be achieved to bridge erosion wear rates are less than 7 um/khr,
warrant investment in the development of a new thruster. yielding a conseagatdlerator gridfietime in excess
of 29,000 hours (corresponding tdadge erosion depth
A thruster lietime of> 8000 hours at full power (0.3 of 200 microns, or only 40% of the way through the
kW) is targeted. This corresponds to a total impulseslectrode). The GEP was applied to the 8-cm thruster
capability at full power of approximately 3.3x19-s. At  mnditions identified in Table I, and then normalized to
the 0.3 kW power level, such a system would process a tthmatsi NSTAR thruster grid life at full pow&om
total of 11.0 kg of xenon in 8000 hours. the LDT data.

Thruster Scaling Considerations Acceleator grid life estimates for the 8-cm thruster

Reducing the thruster beam diameter and thruster volumeersus input power ashown in Figure 2. As indicated,
are important considerations for integration onto smalthe normalized grid life varies from about 1.3x NSTAR
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at 0.1 kW to about 0.33x NSTAR @t3 kW. The results rate of 36 eq. mAwma (about 0.5 sccm). Alis keeper
from the NSTAR LDT support an 8000 hour accelerator urrent, a maximumatio of 3:1 in total neutralizer
grid life capability for an 8-cm at the 0.3 kW condition, emission current is required witviieanextraction
but further analyses are warranted. at 0.3 kW full power.

Special consideration is warranted for the discharge Figure 4 displays neutralizer flow rate (in equivalent
chamber and neutralizer designs. As the thrustemilliamperes) ersus neutralizer input power for several
throughput is decreased, the discharge electrical effi-  neutrafi2&t$? As indicated, the typical xenon flow
ciency decreases as legfted in the power required to rates are of the order of 30 eq. mA, at neutralizer input
produce an ampere of beam ion curtént. This is because power levels ranging from about 7 to 17 watts. Also
the neutral density in the discharge decreases, and hence shown is the performance target for the prototype thruster
the probability that energetic electrons will undergo neutralizer. The intent is to develop a neutralizer operat-
inelastic collisions prior to being collected at anode ing at comparable flow rates, but at a substantially
surfaces decreases. The dischavgeds for the thrusters reduced input power.
identified in Figure 1 are displayed in Figure 3 as a
function of input power. As indicated in general the Prototype Thruster Development
discharge losses increase with decreasing input powelon Optics
The targeted maximum discharge losses for the prototype Preliminary development work is focused on using a 2-
thruster are also shown in Figure 3 and they range from grighdetum electrode cliguration, with the same
approximately 333 W/A at 100 W to about 266 W/A at hole geometry as that used in the 30 cm NSTAR thruster
300 W. ion optics. Two notable exceptions to the NSTAR
geometry include of course the beam diameter (8-cm in
The discharge electrical efficiency also decreases as the this configuration), and the mounting system.
thruster diameter is decreased becauseeofeduction in
primary electron containment length. To yield a constant  The mounting system used for the prototype small
propellant efficiency the discharge must be operated ahruster optics differs from that of implemented on the
successively higher voltages as the thruster diameter is NSTAR thruster in both material and configuration. This
decreased® To minimize the screen (positive) grid approach was motivated to reduce the fabrication cost,
erosion a maximum discharge voltage of 28 V at full and to simplify optics assembly and electrode alignment.
power is targeted. This is consistent with past designroviBions are made in theechanical interface to the
criteria including that used in the development of theprototype thruster discharge chamber to accommodate
NSTAR 30 cm thrustet’ other configurations, including carbon-carbon ion optics,
as they become available.
The increase in both discharge losses and operating
voltage with decreasedruster size has two conse- Discharge Chamber
quences. The increase in discharge losses reduces the The thruster performance and lifetime goals necessitate
thruster efficiency, and the increase in discharge voltage that the discharge chamber operate at high values of
decreases the thruster life time due to the increase in the electrical and propellant efficiency. As such, emphasis
energy of ions striking cathode-potential surfaces. has baesdpbn modeling andstiing of the discharge
chamber magnetic circuit design to ensure that acceptable
A correlation has been established between discharge discharge losses and voltages are achieved.
propellant efficiency and thruster input pow&r, and this
was used in estimating prototype thruster performance. Modeling efforts have included numerical simulation of
A linear increase in discharge propellant efficiency with discharge processes utilizing the magnetic field and
input power is expected, and petlant efficiencies from plasma flow code developed by Arakawa and Isithara.
about 78% at 100 W to 82% at 300 W are assumed for ~ Testing activities include mapping of magnetic field

xenon thrusters. configurations and operation of the discharge to charac-
terize theelectrical performance and to quantify the
The performance goals for the prototype thruster neutral- extracted ion fraction.

izer include a 20 V keeper Kage and 15 V coupling
voltage, at a keeper current of 100 mA and xenon flow Both divergent- and cusp-field circuits, using low-
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magnetic flux permanent magnets and high-magnetic flux Several observations are made from Figure 5:
rare-Earth permanent magnets have been examined. The (1) A dependency of neutral loss rate on discharge
advantages of low-magnetic flux magnets, such as chamber length exists;
Alnico, include high operating temperatures, low cost,
and low magnetic fields external to the thruster. A  (2) Obtaining useful propellant efficiencies with xenon
disadvantage of this approach is that the magnetic field for discharge chamber lengths less than about 5 cm is
strength is generally too low to efficiently contain the problematic. For example, Figure 5 indicates that to
primary electrons in a small-volume discharge. This is obtain a 90% propellant efficiency for a 5 cm length
typically remedied by increasing the electron energies by  would require operation at 0.9 ampere beam current; an
using a physical impedance in the vicinity of the dis- excessively-high power density;
charge cathode. Howewdnis results in the introduction
of an additional cathode-potential erosion site in the (3) The neutral loss dependency on thruster length
discharge, and operation at high values of discharge reflects directly in the maximum propellant efficiency,
voltage which exacerbate internal erosion. and hence thruster efficiency. That is, in general, as the
length of the thruster decreases, so does its efficiency;
The advantage of using a high-magnetic flux rare-Earth
permanent magnet configuration is that it efficiently (4) To achieve the discharge propellant utilization
contains the primary electrons, and permits high effi- efficiency goalsoot 8.78 a0.10 kW and 0.82 at 0.3
ciency discharge operation at low values of discharge kW requires that the neutral losscrat@4eam-
voltage. An example of this is the NSTAR thruster ring- peres.
cusp discharge. It operates at 170-200 W/A, at approxi-
mately 90% discharge propellant efficiency, at a dis- From Figure 5, a minimum discharge chamber length of
charge voltage of less than 24 vdfts. about 9.5 cm would be required to obtain these perfor-
mance levels. Hence, the prototype small thruster design
The demonstrated performance capability of discharges incorporates a chamber of this length, with appropriate
using rare-Earth magnets in a ring-cusp configuration, margin. Additionally, a reverse-feed main plenum is
potentially outweigh its disadvantages. As such, dis- used to increase propellant efficiencies at throttled power
charge chamber modeling and test activities to date have levels.
emphasized this design approach.
A prototype hruster discharge chamber is shown on a
For a given thruster design - ion optics neutral transpar-  test stand in Figure 6. The design incorporates a partial-
ency and discharge chamber length - there is a fixed conic poteletial discharge chamber constructed of
neutral loss rate which is to-first-order independent of non-ferromagnetic materials, and it uses a ring-cusp
thruster operating condition, regardless of propellant flow magnetic circuit.
rate?* The neutral loss rate, n , is expressed as
Discharge and Neutralizer Cathodes
A critical area necessary to achieve the goals and perfor-
mance levels identified in Table I include the develop-
where | is the beam current, angyn is the discharge = ment of low-flow rate xenon hollow cathodes. A pro-
propellant utilization efficiency. Only singly-charged gram to develop efficient, low flow cathodes to support
ions are assumed in this simple model. both low-power electric propulsion systems and a next-
generation NSTAR 30 cm thruster, is in progress.

n, = J,+(1/n,,-1), A. (1)

An examination of data from different thrusfers 22
shows that the neutral loss rate increases with decreasing The cathodes under development for the prototype
discharge chamber length, as illustrated in Figure 5. This ustéwr are constructed from 3 mm diameter
is not unexpected since the neutral residence time in the tube/elexiiten 'echnology. Theathode tip orifice
discharge chamber decreases with decreasing effective diameters for the discharge and neutralizer cathodes are
length. The neutral loss rate data were normalized to sized to ensure stable long-life operation over the range
account for the difference in thrustegam diameters and of required emission currents. Also the aspect-ratio of
effective optics neutral transparencies. thbarde tips are adjusted to yield a high ratio of emis-

sion current-to-flow rate. Figure 7 shows both a Space
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Station cathode and prototype thruster cathode for size (1) In-situ propellant flow rate calibration capability for
comparison. verifying the accuracy of the flow rate readings during
the course of thruster life testing to within 2% of the
For the discharge cathode the emission current require- reading. In-situ flow calibration is achieved by the
ment varies from about 1.0 Ato 2.0 Aotke 0.1 kW to  volumetric method. The pressure drop and temperature
0.3 KW power envelope. At these conditions, the corre-  koban volume of gas upstream of the floantroller
sponding xenon flow rate varies frahout 56 eq. mA to are monitored with time and compared to the flow
about 120 eq., mA maximufassuming a 50/50-split in controller reading. Khewn volume is sized @achieve
main plenum/discharge cathode flow rates). aanuracy within +/- 2%. Thigrocedure is accom-
plished without varying the upstream pressure to an
The approach used for the neutralizer is to develop an extent that will affect the flow controller performance,
efficient keepered-hollow cathode. The performance of  and hence, may be performed while the thruster is
one of the prototype cathodes, opedain a simple diode operating.
configuration, is shown in Figure 8, a plot of xenon flow
rate versus total emission current. Also shown in Figure  Q@trol of thepropellant flow rates to within 0.05
8 are data for other published small thruster neutraliz- sccm (1% of full-scale) for the cathode, main plenum,
ers3478101221 ag indicated, the prototype cathode oper-  and neutralizer.
ates at pproximately the same flow rates as the other
neutralizers over comparable emission currents. Summary
An activity is being conducted to examine ion thruster
The prototype cathode operates over approximately a  scaling relationships to determine system requirements,
3.4:1 throttling rangerom about 1.5 A down to 0.45 A. performance limits, and lifetime expectations at input
The cathode tip temperatures vary from about 1250 power levels below 0.5 kW. This was motivated by
degrees C at the maximum emission current, down to mission studies indicating the potential advantages of
about 840 degrees C. While this cathode repitssstate- developing a low-power high specific impulse propulsion
of-the art, clearly additional improvements (factor of 2 option.
reduction in flow rate and emission current) are needed to
achieve the thruster performance levels identified in For purposes of examining scaling relationships over the
Table I. input power range of 0.1-0.3 kW, a prototype thruster
with 8-cm beam diameter is in development. Perfor-
Test Support Equipment mance goals over this power range are 38% efficiency at
The following section briefly discusses the test supporR000 s specificmpulse to about 54% efficiency at 3000
equipment developed to conduct performance and wear s specific impulse. Activities include design and testing

assessments of the prototype small ion thruster. gbaoemts, includindgpw-flow rate hollow cathodes
and efficient discharge chamber designs. A discharge
Power Supplies chamber design and magnetic circuit have been selected,

Performance assessments of the cathodes and the and low-flow rate cathodes are in test.
discharge chamber are conducted using commercial
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