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Thermal and mechanical durability of graphite-fiber-reinforced PMR-15 composites

K.J. Bowles
Polymers Branch, Materials Division, NASA Lewis Research Center, Cleveland, Ohio 44135 USA

ABSTRACT: Earlier work, which reported relationships between compression properties and elevated tem
perature aging times and weight losses, also pointed out the apparent influence of surface layer formation a
growth on the retention of compression properties during extended aging times. Since that time, studies ha
been directed toward evaluating the growth of the surface layer. This layer was found to change in its compo:
tion and features as the aging temperature changed. Microcracks and small voids initiated and advanced inw
at all temperatures. Visible oxidation at the surface occurred only at temperatures albf@veRadationships
between layer thickness and aging time and temperature were evaluated and empirically formulated. Then, 1
compression properties were graphically related to the surface layer thickness with excellent correlation. Tt
surface layer was observed to influence the compression strength of thin samples only.

1 INTRODUCTION ages of 3, 5, and 12 percent, where the total surface
area consisted of both cut and molded surfaces. The
Programs are under way at the NASA Lewis Researcimolded surfaces were those that were in contact with
Center to develop advanced propulsion systems fdhe metal mold or vacuum bag during the curing proc-
21st century aircraft. To do this, it is necessary tess. The materials were processed at GE Aircraft
develop predictive models that describe the durabilitfengines, Inc., in Evendale, Ohio.
of polymer matrix composite structural propulsion
components under extreme ambient conditions.
This paper is aimed toward developing an engineeringd TESTING
based description of the thermal and mechanical
durability of graphite-fabric-reinforced, polyimide, The composite materials used were aged in air-
PMR-15 composites at temperatures ranging frorngsirculating ovens at temperatures of 204, 260, 288,
204 to 343C. Aging times reached 26,300 h for 316, and 343C, and an air flow maintained at 100
specimens aged at 20€. Particular attention was cm®min. The laminates were removed periodically,
given to those chemically induced physical changeallowed to cool in a desiccator, weighed, and either
that have the most influence on the degradation of cometurned to the oven or permanently removed for test-
pression properties. Results were evaluated by theg. The aging time was considered to be complete
(1) thermal oxidative stability (TOS) of the compos-when the weight loss exceeded 10 percent.
ite, (2) composite compression properties, and (3) All specimens were conditioned at 125 for 16
microstructural changes. h before compression tests were conducted. The
compression tests were performed as specified in
Test Method for Compressive Properties of Rigid
2 MATERIALS Plastics(ASTM D-695M), with a cross-head speed
of 1.2 mm/min, a temperature of 23@G, and a rela-
The material that was studied was PMR-15 reinforcetive humidity of 50 percent. No end tabs were used.
with T650-35, 24 by 23, 8 harness satin-weave grapltBtrain was meas-ured with an extensometer, and
ite fiber fabric. The aged specimens measured aboutoduli were measured using strains and loads at
11- by 9-cm in length and width and were either 4, 8500 and 1500 microstrain. Surface layer thicknesses
or 20 plies thick. These dimensions were chosen twere measured from photomicrographs of sectioned
provide nominal cut-edge to total-surface-area percenspecimens.
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Figure 1. Compression strength of T650-35/PMR-15 0.0 0.2 0.4 0.6 0.8 1.0 1.2

composite specimens as a function of aging time at Aging time, h

various temperatures. Number of plies, 20. Figure 3. Weight loss of T650-35/PMR-15 composites as a
function of aging time at 316 °C.
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Figure 2. Compression modulus of T650-35/PMR-15

composite specimens as a function of aging time at . . .
various temperatures. Number of plies, 20. As mentioned in the MATERIALS section, the

fabric-reinforced composites had two types of surfaces.

For these tests, the majority of surface area was com-
4 RESULTS posed of a resin-rich molded surface that was in

contact with the autoclave bagging material during the
Selected specimens were removed from the agingrocessing phase. The cut edges, which contained fiber
ovens for compression testing at different times duringnds and axial fiber surfaces, comprised the second
the aging periods. Figures 1-2 (from Bowles et al. 1998y pe of surface. Previous studies showed that weight
show strengths and moduli, respectively, of the 20-plyoss rates are different for these two types of surfaces
specimens plotted against aging time. When the ordina(8owles & Meyers 1986). This can be illustrated by
variable is aging time, the relationships all appear to bihe typical weight-loss versus aging-time plot (at
separate linear curves with a different slope for each ter316 °C) shown in Figure 3. The plot can be broken
perature. However, the data from the 204 and°Z50 into three distinct sections:
tests appear to be identical. When percent weight loss is(1) The origin to point A shows a rapid weight loss
the independent variable, all the data except that of thbat is proportional to the specimen volume.
specimens aged at 28d appear to collapse onto asingle  (2) Point A to B shows a linear weight loss rate.
curve with the relationship 16, = 4.614 — 10.259 (3) After point B, the weight loss rate is accelerated
x 10w, whereS. is the compression strength in MN/m because of cracking and exposed fiber oxidation,
andw is the percent weight loss. Neither of these twanainly along cut surfaces.
relationships, percent weight loss or aging time, produce Figure 4 shows a schematic of the surface damage
one weight loss curve that accommodates the data at glowth during this period. The depth of cut surface
the temperatures that were studied. The data from Figamage increased with increasing specimen thickness.
ure 1 indicate that the PMR-15 composite material wilBecause of this, weight loss data cannot be compared
not retain its strength very long at temperatures ovdor specimens of different thicknesses. Also, weight
260°C. The initial moduli values appear to be retainedosses from cut surfaces exceed those from molded
for longer periods at the lower temperatures (Fig. 2). surfaces (Bowles & Kamvouris 1995).
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Figure 5. Surface oxidation of T650-35/PMR-15 composite Aging time, h
specimens aged in air. (a) Aged 1000 h at 316 °C. Figure 7. Surface layer thickness as a function of aging time
(b) Aged 10,000 h at 204 °C. at various temperatures.

Two different types of surface degradation occur in Because the measured weight loss includes the cut-
these composites. Aging at the higher temperaturesdge weight loss, it does not represent the material
(288 to 316'C) produces a light-colored surface layerthat was machined into the compression test speci-
that grows inward and causes voids and microcrack®iens. Consequently, an estimate of the cut-edge
to initiate and grow within the layer, as in Figure 5a.weight loss was determined. Cut edges were trimmed
The light color is attributed to the formation of solid off some of the aged 11- by 9-cm panels. These pieces
oxidation products at the higher temperatures. At thevere dried and weighed, and their dimensions were
lower temperatures (Fig. 5b), specimens show the sanmeeasured with calipers. The density of the central piece
advance of voids and microcracks into the surface, b@nd each edge piece was calculated and compared with
the oxidized light band of matrix material is not the calculated densities of the pristine laminate, and
visible. The two degradation mechanisms that ar@ew (adjusted) percent weight loss values were calcu-
operating during isothermal aging are surface oxidalated from the changes in densities. A sample of the
tion and bulk thermal degradation. Results of comysesults are shown in Figure 6. These data appear to lie
pression testing of composite layers that weren or near an extrapolated extension of the AB section
machined parallel to the molded surface layer showef the weight loss curve, showing that the actual weight
that after aging was completed at 2@4for 26,300 h  loss is much less than that measured during the iso-
the compression strength of the visibly damaged layehermal oven tests. It is obvious that another means of
was one half that of the apparently less damaged ceavaluating composite damage should be investigated.
tral core material. This leads one to believe that the The thickness of the surface layer grows during the
growth of the cracked surface layer contributes to thesothermal aging time. Figure 7 shows the relation-
degradation of the mechanical properties of PMR-15hip between the thickness of the resin-rich surface
composite material. damage layer and the aging time at all temperatures.
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The relationships appear to be linear at all five tem5 SUMMARY AND CONCLUSIONS
peratures, with slower growth rates at the lower
temperatures. The data from the two lower temperaFhe results of this study indicate that simple, linear rela-
ture tests indicate what may be an initial fast rate dfonships exist between the compression properties of
growth and then a slower steady rate after 1000 h gfraphite-fber-fabric/PMR-15 composites and the
aging. This may be normal scatter, however. One itemdepth of the surface layer that develops and grows
of interest is that these linear curves appear similar turing periods of aging at elevated temperatures. The
the compression strength curves in Figure 1. buildup of the surface layer is indicative of the physi-
Figures 8-10 present compression strength, plottezhl condition of the fabric-reinforced PMR-15 com-
as a function of the layer thickness of the composite gosites at all temperatures that were studied. However,
various temperatures. Each figure contains data for oradthough the surface layer is indicative of the decrease
specimen thickness: 1.50, 2.77, or 6.78 mm (4, 8, an strength, the central core volume is the main
20 plies). All the data for the two thicker specimenscontributor.
(Figs 9-10) fall on one curve. The calculated, “best Specimen thickness is a significant factor in the
fit” set of data included in Figures 9—10 is consistentlydeterioration of compression properties during such
close to the measured values. For specimens machinpériods of exposure. It is apparent from Figures 8-10
parallel to the molded surfaces of large specimens, thikat the influence of the surface layer diminishes as
inner, crack-free material decreased in strength by the composite thickness increases. This is especially
considerable amount (as much as 50 percent). Thapparent in Figure 8. The strength data from the 4-ply
measured strength of the core material was close gpecimens aged at 316 are below those measured
that of an aged specimen with surface degradation arad the other three temperatures. As noted earlier, the
the same thickness. These data indicate that the faurface layer for a specimen aged at 3C6had a
mation and growth of the surface layer does notompression strength about half that of the core mate-
significantly reduce the compression properties of 8rial after aging at 204C for 26,300 h. Thus, for
and 12-ply fabric-reinforced composites. Figure 8 prespecimens that had a significant amount of oxidative
sents the data for the 4 ply specimens. The scatter atack in the surface layer, thinner specimens should
the data appear to be greater than that of the 8 and @ow lower strengths than those aged at lower tem-
ply specimens. Two important items stand out. Theeratures. The minimum normalized compression
half thickness othe specimens is nominally 0.635 mnstrength that is attained, when the complete cross sec-
When the surface layer thickness reaches this valugpn of the specimen is composed of surface layer
the entire cross section of the speimn is damaged anghterial, appears to be around 20 to 25 percent.That
consists of surface layer material. The second item is what we see in Figure 8. Two deleterious mecha-
that the normalized compression strength seems tasms are observed within the specimens: surface oxi-
bottom out at about 20 to 25 percent. The data in Figdation and core reactions.
ure 9 extend to almost 1.2 mm of surface layer thick-
ness. The half-thickness is 1.38 mm. It appears that
when the entire cross section is damaged material, tiREFERENCES
residual compression strength is 20 percent when nor-
malized. it would be logical to assume that the strengtBowles, K.J., & J.E. Kamvouris 1995. Penetration of
would remain at this level with increasing surface layer carbon-fabric-reinforced composites by edge cracks
thickness’. Figures 11-13 show the moduli as a func- during thermal agingJ. Advanced Materials
tion of the layer thickness. In Figures 12—-13, the modu- 26(2):2-11.
lus data collapsed onto one linear curve. Bowles, K.J. & A. Meyers 1986. Specimen geometry
The relationship between specimen thickness and effects on graphite/PMR-15 composites during
the retention of compression properties is evident in thermal oxidative agin@2nd Int. SAMPE Sympo-
these figures. The 8- and 20-ply specimens retained sium and Exhibitioj1285.
their moduli considerably longer than the 4-ply com-Bowles, K.J., G.D. Roberts & J.E. Kamvouris 1995.
posite. One other fact to acknowledge is that the Long-term isothermal aging effects on carbon
moduli of the 8-ply composite material did not fabric-reinforced PMR-15 composites: compres-
decrease by more than 30 percent over the time stud-sion strength. NASA TM-107129. (Also ASTM
ied for aging at temperatures below 283 Struc- STP-1302, in press.)
tures that are stiffness dependent should be useable
for tens of thousands of hours.
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