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Summary with both stress and displacement constraints, it is called the
fully utilized design (FUD). Two steps that are required to
The traditional fully stressed method performs satisfactorily obtain the FUD are (1) generate the FSD for stress constraints
for stress-limited structural design. When this method isonly, and (2) then uniformly prorate it to obtain the FUD. The
extended to include displacement limitations in addition to constant proration factor is obtained to satisfy the single most
stress constraints, itis known as the fully utilized design (FUD).infeasible displacement constraint. Although the FUD thus
Typically, the FUD produces an overdesign, which is the obtainedisfeasible, itcan be an overdesign, whichis the primary
primary limitation of this otherwise elegant method. We have limitation of the otherwise elegant design method. At present,
modified FUD in an attempt to alleviate the limitation. This a direct design method to efficiently handle both stress and dis-
new method, called the modified fully utilized design (MFUD) placement constraints is not available. Moreover, sustained
method, has been tested successfully on a number oéffort to improve FUD has not been reported in the literature.
problems that were subjected to multiple loads and had bothnstead of developing a simpler tool, the designers of the 1960’s
stress and displacement constraints. The solutions obtainediere complicating the approach by applying nonlinear mathe-
with MFUD compare favorably with the optimum results that matical programming techniques of operations research
can be generated by using nonlinear mathematical program@refs. 2 to 8) and Langrangian-based optimality criteria meth-
ming techniques. The MFUD method appears to have allevi-ods (refs. 9 to 11). Some success has been achieved in design
ated the overdesign condition and offers the simplicity of aoptimization; however, these techniques canbe computationally
direct, fully stressed type of design method that is distinctly intensive, and convergence difficulties are frequently encoun-
different from optimization and optimality criteria formula- tered, evenfor modest problems (refs. 12 and 13). Despite these
tions. The MFUD method is being developed for practicing limitations, design optimization is popular in academia and is
engineers who favor traditional design methods rather tharbeing improved and promoted for industrial applications, espe-
methods based on advanced calculus and nonlinear mathematially since there is no alternate design tool that effectively
cal programming techniques. The Integrated Force Methochandles both stress and displacement constraints. These opti-
(IFM) was found to be the appropriate analysis tool in the mization methods, to a certain extent, have yet to mature and
development of the MFUD method. In this paper, the MFUD become a standardized design tool for utilization by practicing
method and its optimality are examined along with a number ofengineers. Imagine the distress of these engineers at finding
illustrative examples. that design has been made more complex by the introduction of
advanced calculus and variational techniques, without a com-
parable benefit. Although design optimization is analytically
Introduction elegant, a simpler alternative, such as FSD/FUD, need not be
abondoned, especially for routine and practical engineering
The fully stressed design FSD method (ref. 1) which is basedlesign. Further research and development needs to be done
on a simple stress-ratio approach, is an elegant design tool than direct design methods that do not employ mathematical
is popular across the civil, mechanical, and aerospace engineeprograming techniques.
ing industries. However, the FSD is useful only for stress- This paper outlines the development of a simple FSD/FUD
limited designs; it cannot properly handle the displacementtype design tool that can handle both stress and displacement
limitations that have become typical design constraints ofconstraints simultaneously. The proposed design tool is called
modern structures. When FSD is extended to handle situationthe modified fully utilized design (MFUD) method. In its
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alleviates the overdesign limitation that has been associated
with the traditional FUD technique. When tested on a number

of problems, MFL.JD produped_solutions compar_able to thoseWhere(@, p;, andA, are the length, density, and area ofithe
generated by design optimization methods. At this early Stagemembelr olf the truss, respectively. The computer code auto-

MFUD ha_ls b_een developed for two- and thre_e-dlmensmnalmatica”y modifies equation (3) for linked design variables, but
trusses with linked member areas as design variables. Succes(fll-at modification is not elaborated here

ful completion of the MFUD method for stress and

displacement constraints will eventually open up an avenue for

the extension of this method to other types of structures an .- .
constraints. The proponents of optimization methods can alsi:u”y Utilized Des'Qn

benefit from MFUD by using it to initiate optimization itera- Th ditional FUD be obtained i 1
tions, thereby alleviating some of the computational burden of e traditiona can be o taine 'n two steps: (1) gener-
such methods. ation of an FSD and (2) uniform proration of the FSD to obtain

In this paper the theoretical basis of MFUD is developed anome FUD. . . . .
illustrated for two examples. A summary of MFUD results, An FSDforstress const_ralnts only is genergted iteratively by
along with optimization solutions for several examples, is using a stress-ratio technique that can be written as
included. The Integrated Force Method (IFM, refs. 14 to 16) is
shown to be an appropriate analysis tool for deriving the MFUD Ao’k+l = AG’kRGi i=12,...,n (4
formulas (see appendix A). An analytical examination of the
optimality of FSD and FUD (see appendix B) is followed by a whereA,%is the area of thiéh member at thkth iteration (unit
discussion. member areas can be used to initiate the iterations). The factor

R; for theith design variable is determined as

simplicity, MFUD is comparable to the FUD method, yet it W({A}) - ifipipﬁ
=1

Design Optimization Problem
R, = max(0y;,02;,...,01;)

Standard nonlinear programming terminology is used to ! Tio
formulate the design problem for trusses because solutions ) -
obtained by the MFUD method are compared with optimiza-Whereoy; represents stress in membéor load conditiort.,

tion results. The areas of truss members that can be linked fgi"d G, represents the yield strength of membefhe con-
practical purposes are considered to be design variables. THE"9€d solution of equation (4) is the FSD, designate)d¥}

structures are subjected to multiple load conditions, and cont N® FSD technique produces very fast convergence, usually in

straints are imposed simultaneously on both stresses and digPout 10 iterations, regardless of problem size. _

placements. The number of stress and displacement constraints Prorating the FSD to satisfy the maximum violated displace-

are denoted by, andJ,, respectively, with the total number of ment constraint yields the traditional FUD for simultaneous
S 1 L . . .

constraints beingi=J,+ J;. Thel,number of stress constraints  Stress and displacement constraints:

can be specified as

©)

d O
; (4= s ) =(A P00 @
g =[—H-10<0 j=12..,J o) ©
Gjo where {A}ud is the vector of member are@s; . is the value

of the most violated displacement constraint; ¥nd, andX
where(fj is the stress in thith member andrjo isits permissible ~ are, respectively, the most violated and the allowable displace-

value. ment values. The uniform proration factor () in equa-
Likewise, thely number of displacement constraints can be tion (6) produces a feasible design. The FUD is likely to be
written as overdesigned because allmember areas have been increased by
X the same amount, and it has only one active displacement
Uy +j =[n~10S0  j=12.., 34 (2 ~ comstant y o y
s Xijo The overdesign condition associated with the traditional

FUD method can be illustrated by considering displacement

whereX is thejth displacement component axg is its per- constraints in the design of a five-bar truss (ref. 17) (see
faai ; J ; Numerical Examples Example 3). The FUD method pro-

missible value. The stress and displacement behavior con® / i : Pro-

straints are feasible provided tigt 0. duces an optimum weight of 62.228 |b, whereas the optimality
For a truss witm members, the weight can be considered ascriteria method (OC) and the Sequential Unconstrained Mini-

the objective function for design optimization, and it can be Mization Technique (SUMT) yield 45.016 and 45.029 Ib,
written as respectively. In this example, the traditional FUD is 38 percent
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too heavy. For this problem, the proposed MFUD produced an the union process, the maximum value should be selected in
weight of 44.817 Ib; this is, respectively, 27.98, 0.44, and 0.47case of member duplication.
percent lighter than the weights produced by the FUD, OC, and Step (6): Repeat steps (1) to (5) until the design converges.
SUMT methods. In the comparison of MFUD and optimization The converged design will satisfy both stress and displacement
results, more than one optimizer is used because the perfoconstraints. A minimum weight condition is not explicitly
mance of such methods can be problem-dependent, as is shovimposed in the MFUD method; however, as will be shown for
in reference 12. the examples solved, the weight of the design calculated by the
MFUD method is very close to the optimum weight generated
from optimization methods.

Modified FuIIy Utilized Design The number of design variablgtthat are associated with a
violated displacement constraint and the weighted parameter

The MFUD for simultaneous stress and displacement con£qi (S€€ €d. (8)) for each design variable can be easily identi-
straints can be obtained iteratively as follows: fied when the IFM (refs. 14 to 16) is used as the analysis tool.
Step (1): Identify the design variables to initiate the MFUD The derivation of these two parameters is discussed next.
iterations. The first MFUD iteration can begin from the o ) ] )
FSD {A}fsd(see egs. (4) and (5)). For subsequent iterations, thddentification of a Subset of Design Variables for a Violated
areas for stress constraints can be obtained from Displacement Constraint

The subset of design variablgisdirectly associated with a
(Fl)max i=12 n @) violated displacemerg,, can be identified by examining the
displacement-force relationship of IFM (see appendix A):

A:

Oio

where £,) 4« IS the maximum force in thiéh member for all {X}= [J][G]{ F} (10)
load conditions. This strategy ensures that the final MFUD is
not biased towards the initial FSDA}{fsd.

Step (2): Identify thevq number of violated displacement
constraintsP} ={9,1,9,,, - - ,qu} for the design obtained in
step (1).

Step (3): Update the designindependently for each efthe
violated displacement constraints contained in B3t {See
the sectioridentification of Subset of Design Variables for
a Violated Displacement Constraint,which shows how only
a few design variables need to be updated to satisfy a violategg == — = O+ J — — =[]

. . . . vr Vgl vr vra27] vr
displacement constraint.) Let the number of design variables E Dqlmﬁql O E qu 0Ag2 O
that should be updated to satisfy a violated displacement
constraintg,, beqt (whereqt< n s the total number of design
variables). The design update rule fordfitb design variable, YFO Uq 0
then, is

where {X} is the nodal displacement vectod] E m rows of
[ST, with [ being the governing IFM matrixd] is the
diagonal flexibility matrix; andF} is the internal force vector.

Because of the banded nature of matridgarid [G], for a
single displacement componeK{,, equation (10) can be
expanded as

'AY\JIir = A(IiSda\ég (1+ gvr) g =0Lg2,....qt (8) The displacement componeXy, is an explicit function of the
subset of member areas referred to by indijteg2, . . . qtin
where &Y' < 1.0 is a weighted parameter (see the sectionequation (11). Thus itis sufficient to updgtelesign variables
Member Weighted Paramete). The design variables in the to satisfy the violated displacement constragjpt Repeating
MFUD method are updated independently, in contrast to uni-this process identifies the critical members for each violated

form proration in case of the traditional FUD method. displacement constraint in sedJ
Step (4): Repeat step (3) for atff numbers of the violated .
displacement constraints to obtaig design subsets A}, Member Weighted Parameter

forvi=v1,v2, ... Vv0Q). . . . _ _
Step (5): Obtain the design update for the structure as the Instead of a uniform proration of all the design variables in
union of thevq designs the subsedtfor a violated constraiigy,,, individually weighted
parameters are calculated for each design variable. The deter-
miud _ [ VL v2 vq mination of individually weighted parameters is illustrated by
{A ={A"U{ATU.U{A (©) the example of a 10-bar truss with a violated displacement
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constraint at its tip—node 3 along the transverse directiona violated displacement constraint. The weighted parameter for
shownin figure 1. In this example, the violated tip displacementthe gith member area can be considered proportional to the
can be satisfied more effectively by increasing the area of thenegative gradient of the violated displacemé&ptvith respect
members nearest the support, such as members 1 and 5 in figp the member area/.

ure 1, rather than the areas of those nearest the free end, such a3 o safeguard against an overdesign, the weighted parameter
members 3 and 10. The weighted parameters bias the design g#hould also be biased against long members with higher densi-
favor of support members 1 and 5. These parameters can b&s. Such a condition can be imposed from the gradient of the
selected by examining the sensitivities of the violated displace-objective functionV with respect to member areai:

ment constraints. The sensitivity of violated displacermgnt

with respect to member aréﬁ{ can be obtained via the IFM ow _ e (14)
(ref. 19) (see appendix A) as oA = Pt
Xy oFp U1 f The gradients of the objective function with respect to
_apt\fr = Jvrqi DEDQ- O E 12) member areas 1, 3, 5, and 10 (weight density for all members
i i Oy

is 0.1 Ib/in3) are
For the 10-bar truss example, the displacement sensitivities

for the four members (i.e., 1, 3, 5, and 10) are ol =360 pyls =360

(members near the support)

s _ 11011 28 - 10502 (19
OA 0AS 0303=36.0 polig =509
(members near the support) (members near the free end)
(13 The weighted parameters can be considered inversely propor-
0X3 67 0X3 _ 3368 tional to the gradient of the objective function.
O_AS - ' 6A130 B ' Equations (12) and (14) can be combined and normalized to

( bers near the free end) obtain the weighted parameter for tfith member area:

Equations (13) show that tip displacement is most sensitive to
member areas 1 and 5 (near the support) and least sensitive to
member area 3 (close to the tip). Overall, selecting a proration

oo o
i
=
4

factor proportional to the sensitivities is adequate in satisfying E‘éir = - 0 agm=9gL,q2,...,qt (16)
O
F g 0
max 55 Jvr,gmO
vatas 0
(")
) “m B

Although displacement and weight sensitivities are used in the
3> 6 ~ S ) 4 derivation of equation (16), their calculations require trivial
& computational effort since the force vectéi fand displace-

|

(8 7 10 9 ment coefficient matrixJ] are available from analysis.
o The final normalized weighted parameters for member areas
360 in. | (@ (@ 1, 3, 5, and 10 of the 10-bar truss are
|
|
|

§3=1000 &2=0962

1 2 3 x (members near the support)

1 2 3
| 360 in.———f—— 360 in. —»] (17)
£3=0059 ¢&3,=0.216

Figure 1.—Ten-bar truss (members are circled, nodes are (members near the free end)
not).

4 NASA TM—-4743



The area for thgith member of therth violated displace- ) .
ment constraint can be updated by using the following formula: |<_100 " ~—100in

2 3 4
A = fiSdE‘éEtp(1+g\,r) g=0qL92,....,q (18 —T’
The preceding equation is identical to equation (8) except for a 100 in.
step Iengthlp <1.The step length restricts member areas against
rapid changes, for which the current analysis may no longer be

valid. Default step lengths qj = 0.5 for constraint violations
exceeding unity (i.e.g,, = 1.0) andtp = 0.2, for other _
constraint violations were found satisfactory for most problems Figure 2.—Three-bar truss (members are
that have been solved. circled, nodes are not).

The design obtained from equation (18) for the displacement N ) )
componentX,, is designated by the vectoA}{"". Likewise optimizers: SUMT, FD, and OC. Initial designs of unity were

r : ! . P

areas can be obtained for | of the violated displacement Used for all design methods. The SUMT and FD optimizers
constraints contained in sebD}. The union of thevq area converged to optimum weights of 100.07 and 99.95 Ib, respec-
subsets produces the area vect™ud-xfor the truss. This tively, whereas the OC optimizer generated a slight overdesign,
area is then compared with the area for stress constraint€flected in a weight of 101.33 Ib. The FSD (for stress con-

(eq. (7)), and the final MFUD are&™udfor akth iteration is straints only), as determined by the stress-ratio technique, gave
obtained as A, = 1.182A, = 2.504, and\; = 3.533 irf. The FSD violated

one displacement constraimlg,) under the first load condi-
fud o ~rmfud—x _ tion. The traditional FUD, which satisfied the violated con-
AT =max| AT A ] i=L2...,n (19 straint, gaveA, = 1.574, A, = 3.336, and\; = 4.706 irf. The
FUD had only one active displacement constraint and was
The MFUD iterations are continued until convergence is ©verdesigned by 22.2 percent, with a weight of 122.182 Ib.

achieved for both stress and displacement constraints. The MFUD for the truss converged to an optimum weight of
99.97 Ib (see table ). The MFUD results compare well with

those generated by SUMT, FD, and OC optimizers (see
table 11). The MFUD, SUMT, and FD methods yielded identi-
cal numbers of active stress and displacement constraints;

The MFUD method was applied to a number of examples.10Wever, the OC method produced only one active stress
The solutions are compared with those obtained by the tradiconstraint (a one-fifth of 1-percent constraint thickness is
tional FUD method and with the optimum solutions generatedconsidered active). Overall, the MFUD method performed
by several optimization algorithms, such as SUMT (ref. 20); Satisfactorily for this problem. _
Sequential Quadratic Programming, SQP_IMSL (ref. 21); FD The convergence charactensuc; of MF.UD., along with those
(ref. 22); and OC (ref. 9). The MFUD process s illustrated in for SUMT, FD, and OC are depicted in figure 3. MFUD
detail here for the first two examples, a three-bar truss and §°nverged rapidly and monotonically in 24 reanalysis cycles
cantilevered truss, under a wide range of linked displacementhat included the 12 reanalyses to obtain the FSD. The conver-

constraints. For other examples, only the final results (summa9€nce characteristics for FD were rather uneven, requiring 47
rized) are presented. reanalysis cycles to reach the optimum solution. SUMT and OC

solutions required 62 and 80 reanalysis cycles, respectively.

1

Numerical Examples

Example 1: Three-Bar Truss
TABLE | —THREE-BAR TRUSS RESULTS FOR A FEW

A three-bar truss with Young’s modulis= 30 000 ksi, MFUD ITERATIONS

density = 0.10 Ib/if, and allowable strengtix, = 20 ksi is Iterations | Weight, Member area, in.2 Violated
depicted in figure 2. The truss is subjected to two load condi- Ib Coni”ai”tv
tions; the first has two load componerig £ —50 kips ancﬂ’y AL A A v
=-100 kips), whereas the second has only one compdtent ( 0 oL714 | 1182 | 2502 | 3533 0332
=50.0 kips). The truss has 10 behavior constraints, consisting 1 93770 | 1179 | 2710 | 3534 2626
of 3 stress and 2 displacement constraints (at node 1, io gg'ggg ﬂgg g'g% gg 'Sé%
X14<0.2in.andX;, <0.05in.) for each load case. The optimum 14 (final)] 99966 | 1088 | 3841 | 3265 0009

solution for the three-bar truss was generated by using three *Represents FSD.
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TABLE II.—THREE-BAR TRUSS: RELATIONSHIP OF ACTIVE STRESS AND
DISPLACEMENT CONSTRAINTS TO OPTIMUM DESIGN

Design | Weight, Member area, in.? Number of active Number of
method Ib constraints reanalyses
A, A, A, Stress | Displacement
MFUD | 9997 [ 1088 [3841 | 3265 [ 2 1 24
FUD [12218 | 1574 | 3336 | 4706 1 10
SUMT |10007 | 1088 | 3848 | 3267 | 2 1 62
FD 995 | 1092 385 | 3250 | 2 1 47
ocC 101.33 | 1053 | 3913 | 3345 | 1 - 80
150 and 22) as well as atthe center span (node 11). The magnitude of
<~ OC the center span displacement is specified to be a quarter of the
125 \ tip displacement. The tip displacement is a parameter that
N changes, ranging in magnitude between 0.05 and 1.5 in. The
o 100 stress constraints dominate the design only when the magni-
< L_SUMT tude of the tip displacement exceeds 1.4 in. When displace-
% 75 ments are lessthan 1.4 in., both stress and displacement become
= active constraints. Constraint activities of final designs ob-
50 tained with MFUD, FUD, FD, and SQP_IMSL are given in
table 11l for three design situations (tip displacements of 0.5,
25— 1.0, and 1.5 in.).
| | | | | | | | Optimum weights obtained by MFUD, FUD, and FD methods
0 . . . .
0O 10 20 30 40 50 60 70 80 were normalized with respect to the weight obtained by the

Number of reanalysis cycles

Figure 3.—Convergence history of three-bar truss.

Example 2: Cantilevered Truss With Stress and a Sequence
of Displacement Constraints

SQP_IMSL method, which performed best for the entire dis-
placementrange 0.8®%< 1.5 (see fig. 5). Notice the following
observations from figure 5 and table 1ll. The MFUD method
performs adequately for the entire displacement range, with the
error not exceeding 2 percent of the optimum solution gener-
ated by SQP_IMSL. In contrast, the maximum error in the weight
obtained by the FUD method was about 26 percent. When

The 10-bay cantilevered steel truss shown in figure 4 is thestresses dominated the design (i.e., displacement values
second example. The truss has 22 nodes and 50 members. Itégceeded 1.4 in.), the FD optimizer produced a 4-percent over-
made of a material with a Young’s modulEis 30.0<10° psi,
a weight density = 0.289 Ib/in3, and an allowable strength  correct optimum. In other words, the traditional FUD method
o,= 20x103 psi. The truss is subjected to two load conditions. exhibited an overdesign condition when the displacements were
The first is a single load of 100 kips at node 22 along the negaactive constraints, but converged to the correct solutions when
tive y-direction. The second is a load of 10 kips applied at allthe displacements became passive constraints, thatis, atthe FSD
nodes along the top chord (i.e., node numbers 4, 6, . . ., 22; semndition. Optimizers SQP_IMSL and FD, and the MFUD
fig. 4). Stress constraints are considered for all 50 bars—100nethod provided the same number of active displacement con-
stress constraints for both load conditions. Displacements alongtraints for the entire displacement range (see table Ill). The
the transverse direction are specified at the free end (hodes 2UFUD method, however, produced a greater number of active

©

10 members at 20 in./member =200 in. ———

design, but MFUD, FUD, and SQP_IMSL converged to the

18 20 22

Figure 4.—Cantilever truss (members are circled, nodes are not). Displacement limitation
d at center is one-fourth of that at the end.
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TABLE IIl.—CANTILEVERED TRUSS: Example 3: Five-Bar Truss

RELATIONSHIP OF ACTIVE CONSTRAINTS TO The five-bar aluminum truss (refs. 17 and 18) depicted in
OPTIMUM WEIGHT OF TRUSSAT VARIOUS

1.00

DISPLACEMENTS figure 6 was s_ubjected toasingle Iqad a_nd had a single displa_ce-
Design method Number of active Weight, ment constraint in the transverse direction at node 4. The design
constraints kib parameters obtained by the four methods are summarized in
St:isjl oDslsiI: acement table IV. For this truss, MFUD produced resullts slightly superior
MFUD 7 > 7701 to SUMT and OC. The traditional FUD produced a design that
FUD - 1 5.855 was 39 percent too heavy.
FD - 2 4,669
SQP_IMSL 2 2 4618
Atd=10in.
MFUD 23 1 2521 y
FUD - 1 2.928
FD 20 1 2540
SQP_IMSL 21 1 2538
Atd=15in.
MFUD 44 - 219
FUD a4 - 219 3 ~ 4
FD 25 - 2.279 2
SQP_IMSL 41 - 2191 |
®d = tip displacement. : 3 4
I
; I
100 in. I G
SQP-IMSL |
1.40 — —O— FUD |
—a— FD |
1.30 — —0— MFUD |
% ] 1 . >
' 1.20 X
2
§ 1.10 }471 00 in. ————»
£
£
o]
z

Figure 6.—Five-bar truss (members are circled, nodes are

not).
0.90 —

TABLE IV.— FIVE-BAR TRUSS DESIGN
0.80 | | | | | | | |
"70.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 RESULTS

: . . Results MFUD | FUD [SUMT| OC
Displacement constraint, 8, in.
splacement constraint, o, Optimum weight, 1b | 44817 | 62.228| 45.029) 45016
Figure 5.—Weight normalized with respect to SQP-IMSL Me:‘bef area, in.? A e e
tas a function of displacement constraints of a cantilever Al 1475 1501] 1.409
russ A, 0.001 0.001| 0001
A, 2124 2119 2120
A 0.001 0.001| 0.001
Active displacement
. . o i 1 1 1
stress constraints. For example, when the displacement limita- constraints L

tion was 0.5 in., the number of stress constraints produced by

MFUD, SQP_IMSL, and FD were 4, 2, and 0, respectively. For

this problem, the MFUD method produced results equal or

superior to the FUD method for all three displacement limita- Example 4: Tapered Five-Bar Truss

tions (0.5, 1.0, and 1.5in.), as shown in table Ill. A comparison The tapered five-bar steel truss (ref. 23) shown in figure 7
of the weights obtained by the MFUD method and the was subjected to two load conditions and had five stress and two
SQP_IMSL optimizer shows that SQP_IMSL outperforms displacement constraints for each load condition. The attributes
MFUD by 1.8 percent at a displacement of 0.5 in. and byof the designs generated by the four methods are summarized
0.2 percent at a displacement of 1.5 in. When the displacemerninh table V; all the optimum weights are in good agreement. The
value is 1.0 in., the MFUD weight is better than the SQP_IMSL MFUD method produced five active constraints, whereas SUMT
weight by 0.69 percent. and OC produced three and four active constraints, respectively.

NASA TM—-4743 7



Example 6: Tapered Ten-Bar Truss

The tapered 10-bar aluminum truss (ref. 23) depicted in
figure 8 was subjected to two load conditions, each with 10
stress and 4 displacement constraints. Table VII presents the
design results produced by the four different methods. For this
example, SQP_IMSL provided the best optimum weight; SUMT
and MFUD designs were 0.1 and 0.4 percent heavier, respec-
tively. The active constraints for MFUD, SUMT, and
SQP_IMSL numbered 5, 7, and 7, respectively.

400

300 2

|le—325in. —— ]

100

184
|
|
Figure 7.—Tapered five-bar truss (members are circled, !
nodes are not). :
|
|
100 =
e :
TABLE V.— TAPERED FIVE-BAR TRUSS DESIGN 50— (7 8 (6 9 -
RESULTS 75in. 2.5 in. O3 Js0in.
Results MFUD | FUD | SUMT 0oC v 3> T ) | X
Optimum weight, Ib | 6528.72 | 6549.67 | 654152 | 6549.02 1 100 2 200 = 3003 400
Member area, in.? . ;
A 16| 18| oms|  osar |«—162.5 in. —»{«—162.5 in. —»|
A, 937 942 10.37 10.33 . .
A, 204 2191 2135 2123 Figure 8.—Tapered ten-truss (members are circled,
A, 1218 | 1127 1191 1197 nodes are not).
Ag 163 163 181 146
Active constraints
gtirseslsacemem 2 T _I i i TABLE VII.— TAPERED TEN-BAR TRUSS DESIGN RESULTS
P Results MFUD [ FUD [ SUMT [ SQP_IMSL
Optimum weight, Ib [ 3272.64| 3350.60| 3260.75 3258.26
Member area, in.?
A, 5855 62.49 55.97 5491
A, 229 195 198 236
A, 34.87 35.73 3825 4007
Ag 19.67 2011 2115 2228
. } A, 584 727 6.78 529
Example 5: Ten-Bar Truss _ o Active constraints
The popular 10-bar truss (ref. 17) depicted in figure 1 was Stress 3| ———- 5 5
subjected to a single load and had 10 stress and 4 displacemenit__Displacement 2 1 2 2

constraints. Table VI summarizes the design results
obtained by the four methods. MFUD produced a weight
2 percent higher than that generated by the SUMT optimizer.
The design generated by the traditional FUD, however, was
13 percent heavier than the SUMT optimum design weight.

TABLE VI.—TEN-BAR TRUSS DESIGN RESULTS

Results MFUD FUD SUMT OoC
Optimum weight, Ib | 5164.11 | 5741.21 | 5057.51 | 5061.86
Member area, in.?

A 2297 2911 23.19 2354
A, 033 0.36 055 053
Ag 3150 28.58 30.46 30.86
Ag 743 20.78 743 748
A 21.58 20.03 21.64 21.09
Active constraints
Stress —_—— ] -———- 1] ———-—
Displacement 2 1 2 2

Example 7: Twenty-Five-Bar Truss

The 25-bar aluminum truss (ref. 7) in figure 9 was subjected
to 2 load conditions, with 25 stress and 6 displacement con-
straints for each load case. The bars’ areas were linked to obtain
8 independent design variables. The attributes for the optimum
design for this truss are summarized in table VIIl. SUMT, FD,
and MFUD produced comparable optimum weights; however,
the MFUD weight was 0.23 percent lighter than that of the FD
optimizer. The active constraints for MFUD, SUMT, and FD
were 8, 6, and 8, respectively. The weight generated by the
traditional FUD method was 6.4 percent heavier than that of the
FD optimizer with a single active constraint.
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TABLE VIIl.— TWENTY-FIVE-BAR TRUSS
DESIGN RESULTS

Results MFUD | FUD | SUMT FD
Optimum weight, Ib | 380.26 | 40444 | 38171 | 38L12
Member area, in.?

A 0.01 0.02 0.01 0.01
A, 207 227 206 211
Ag 0.01 0.01 0.01 0.01
A, 116 134 116 117
Ag 1.86 172 188 183
Active constraints
Stress 4 - 2 4
Displacement 4 1 4 4

Figure 9.—Twenty five-bar truss (members are circled, nodes
are not).

Example 8: Simply Supported Truss

Figure 10 shows a 10-bay steel truss with 51 members sub-
jected to a single load. All bar areas were considered indepen-
dentvariables. The results obtained for 51 stress and 2 midspan
transverse displacement constraints are summarized in table 1X.
For this example, the MFUD weight lies between the optimum
weights generated by the FD and SUMT optimizers.

NASA TM—-4743

Fi 10 members at 20 in./member = 200 in.

Figure 10.—Ten-bay truss (members are circled, nodes are not).

TABLE IX.— SIMPLY SUPPORTED TRUSS

DESIGN RESULTS

Results MFUD | FUD | SUMT FD
Optimum weight, Ib | 734.15 | 808.74 | 719.69 | 782.52
Member area, in.?

A, 238 273 254 2.68
Al 346 410 333 416

25 5.46 6.29 573 523

- 523 598 503 499
Ag 1.00 123 1.00 193

Active constraints

Stress 3 - 13 11
Displacement 2 2 2 2




Example 9: Sixty-Bar Trussed Ring

A ring idealized by 60 bar members (ref. 23) subjected to 3
loadsis depictedinfigure 11. It has 60 stress and 6 displacement
constraints for each load case. The 60 bars’ areas were linked
to obtain 25 independent design variables. Table X presents the
optimum designs obtained for the ring. For this example,
MFUD, SUMT, and FD results were in good agreement, and
the active constraints for each method numbered 19, 12, and 15,

respectively.
Figure 11.—Sixty-bar trussed ring (members are circled, nodes are not;
Ro = outer radius; Ri = inner radius).
TABLE X.— SIXTY-BAR TRUSSED RING
DESIGN RESULTS
Results MFUD | FUD | SUMT FD
Optimum weight, Ib | 308.07 | 324.23 | 308.96 | 308.93
Member area, in.?
Ag 059 0.63 058 057
A 184 161 194 185
A 077 057 069 o071
20 097 104 107 107
A 116 13| 115 115
Active constraints
Stress 18 ——— 11 14
Displacements 1 1 1 1
10
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Example 10: Geodesic Dome
An aluminum geodesic dome (ref. 17) idealized by 132 bar

members and subjected to a single load is depicted in figure 12.
The areas of the bars in the dome were linked to obtain the seven
independent design variables. The designs obtained for 132

tress and 1 displacement constraint are given in table XI. For
this example, the MFUD weight of 119.44 Ib was lighter than
the FD weight by 5.52 Ib, but heavier than the SUMT weight by
0.8 Ib. The traditional FUD weight was 560 percen t heavier.

@@@&5%’

AT
S e
R
T

T
“‘I"“IV

240.0 in

Figure 12.—Geodesic dome (members are circled, nodes are not).

BLE X1.— GEODESIC DOME DESIGN RESULTS

Results MFUD | FUD | SUMT FD
ptimum weight, 19.44 6.01 | 118.65 4.96
Member area, in.?

A 052 168 055 0.90
031 170 0.29 0.29

029 174 0.29 0.29

0.30 176 0.30 0.30

Stress 46 46 50
Displacements 1 1 1
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TABLE XII.—SUMMARY OF NORMALIZED WEIGHTS

Problem Normalized weight under—
Stress and displacement Stress constraints
constraints onl
Optimum? | MFUD | FUD | Optimum | FSD
Three-bar truss 10 100 12 10 10
Five-bar truss 1.00 138 —— ——
Tapered five-bar truss 100 100 10 1.0
Ten-bar truss 102 114
Tapered ten-bar truss 100 103
Twenty-five-bar truss 1.00 106
Simply supported truss 102 112
Sixty-bar trussed ring 1.00 105
Geodesic dome 101 5.70
2Normalized with respect to optimum weight obtained by SUMT.

Step Length and Gradient (2) For both stress and displacement constraints, designs
generated by the MFUD method are in close agreement with the

Gradient and step length concepts are used differently in th@ptimum designs—only 1 or 2 percent variation (which can
MFUD method and in an optimization method. In the MFUD largely be attributed to the values of the convergence parameter
method, step length is a reduction factor and is assigned a valugf the optimization algorithms).

such ag = 0.5. The factor guards against rapid change in the (3) For stress and displacements constraints, the traditional
updated design for which analysis may no longer be valid. Ste-UD method typically produced overdesigns as expected.
length in optimization is determined from a one-dimensional

search for a profile that is contrived or assumed by using local .

information, including the gradient vector. The step length Concludlng Remarks

reduction factor in the MFUD and the step length determination N - )

in optimization are quite different. In the MFUD, the gradient A modified fully utilized design (MFUD) method has been
information is used to separate critical design variables. Thisléveloped for the design of structures with both stress and
separation—and consequently gradient calculation—needs télisplacement limitations. In the development of the MFUD
be carried out a few times for the entire design process: fofnéthod, the Integrated Force Method was found to be the
example, at initial design, at final design, and at some interme&PPropriate analysis tool. The MFUD method has been verified
diate iterations. In optimization, gradient information is used to through successful solutions of a number of design examples.

tional fully utilized design method. The MFUD method has the

potential to become an industrial design tool for practicing
Discussion engineers, since this simple approach can generate
designs comparable to those produced with design optimiza-

Table XII summarizes the normalized weights obtained bytion methods based on difficult nonlinear mathematical
SUMT, MFUD, and FUD for all nine examples with stress and Programming techniques. A fully utilized design, which by
displacement constraints. Solutions for stress constraints onlgi€finition is a design wherein the number of active constraints
were generated by using optimization and FSD methods for alfqual or exceed the number of design variables, represents the
the examples and are also included in table XII. From thesé@Ptimum condition. The MFUD method needs to be developed
results the following observations can be made: for dynamic constraints and nontruss type structures.

(1) For stress constraints only, the FSD’s generated by the
stress-ratio technique are identical to the optimum designs
obtained with mathematical programming techniques.
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Appendix A
Analysis Tool for the Modified Fully Utilized Design

Either the displacement method or the force method can bguitabi”ty ofAna|ySiS Methods for Design
used to develop the modified fully utilized design (MFUD)

technique. The IFM (integrated force method) offers certain  The suitability of the force and the displacement methods for

advantages in the development of MFUD. In this appendix, thethe development of MFUD can be illustrated by considering the

basic IFM equations are summarized, and the suitability of theexample of a three-bar truss (fig. 2). The IFM governing

IFM for design is explored. equations for forces for the three-bar truss have the following
explicit form:

Equations of the Integrated Force Method

In the IFM, then internal forces F} are considered the 01 10
. . . = 0 -
prlrnaryunkr!owns, andthesecan be_obtamedfromthesolutlon E‘/E R2HRO (RO
of its governing equation as follows: 1 1 B B
3= -1 -—aRD= %@u (23)
0 2 V2 0O 0O 0O
[S{F} ={P*} (20) 0 f 1, f3 H BoH
§v2 V2ks B

where [S] is then x n governing matrix, and R*} is the
n-component thermomechanical load vector.

Them displacement componentX}can be obtained from
the forces by back-calculation as follows:

whereF; is the force in théth member;f, = ((/EA;) is the

flexibility of theith member for Young’s moduli&, length¢;,

and aread;; andP, andPy are the applied load components.
The two displacement componen, for i = 1, 2) of the

{x} :[J]{[G]{ F} +{B} 0} (21 three-bar truss can be obtained from the forces by using the

following equation:

where [J] is them x n deformation coefficient matrixJ[ = m
rows of [§ 1), [G] is then x n flexibility matrix, and B}, isthe

n com_ponent for the initial_ deformation vector. _ Ojp01 10 101 10 V201 100

Notice that the IFM provides two sets of equations (egs. (20) B4 Elf— EF + f—E N Ef_ + f_E -—— Ef— + f—%
and (21)), one for the calculation of forces and another for 5 15:35 1H2 13 2U13 11 3t 12 g
displacement computations. For more details on IFM, seegoH Y _ V2 _ﬁ 01 +iD _ 2 0
references 14 to 16. B fif3 fy EE f3E 13 B
Equations of the Displacement Method 0y 0 00RO

The displacement vectok} of dimensionmis the primary x %O fo O %% (24)
unknown in the displacement method, and it can be obtained g HEQN
from its governing equation HO O f3EHsH

[KKX} ={P} (22) where

where K] is an m x m stiffness matrix, and R} is an 1 1 1
m-component load vector. y (29)

Unlike the force method, the displacement method does not b fifs fofs
provide two sets of equations, one for displacements and
another for forces. Instead, from nodal displacements a series Consider the design of the truss for stress limitat@mpgor

of operations (such as determining the field displacement funci = 1, 2, 3, and displacement limitatiog, fori = 1, 2. The two
tion, computing the strain by differentiation, and then calculat-IFM equations (egs. (24) and (25)) can be written in terms of
ing the stress by using Hooke’s law) are carried out to determingnember areas(, A,, Ag) as follows.

internal forces.
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For stress limitations: Even for displacement constraints only, the three areas cannot
be directly determined from the solution of two stiffness
equations. The stiffness formulation is not the most appropriate

a
N 0 2 DAD RO analysis tool to develop a direct design formulation.
S_ﬂ -G _Oo03 E— H (26)
0 2 02 2 E_ 0 YE Displacement Sensitivities
Doh _; ¢ %BEpH HoF
J2 0272 s Then x mdisplacement sensitivity matrixIK] required in
. o the MFUD method can be obtained in explicit form with the
For displacement limitations: IFM (ref. 19) as
_nRO V2 O T
A= B -%H [OX] = [[31C15] - [[CI[=]] (29)
where
l 0-10
p= 22t (27 |
2 A2 [¥] = Diag[R, Fy..... Fy]
lgF3 0 =2 O 0 0
_  O-gy = ¢
R =g, B+ o [€] = Diag.G—%,—2 n

, S aeees >0

BA BA EBAE
. . . . (30)
In equation (27), if a displacement compongnéxceeds its
allowable valuexX;, then that component should be replaced by [G] = Diag.D l ) ln E
the allowable value. EElAL "EpA T EnAY O

An iterative solution of equations (26) and (27) can provide
a design for the three-bar truss that accommodates both stress
and displacement constraints. However, convergence diffi- [R] =[S_|_1D [0] @q]
culty can occur if this solution is used for more general trusses. clc]
The modified fully utilized design method developed in this
paper is more suitable for such applications.

The displacement method, on the other hand, provides only, yhe previous equatiomiag. designates a diagonal matrix,
two equations in terms of the three bar areas: and [C] is an 1fi — ) x n compatibility matrix of IFM. The
first term in equation (29) accounts for changes in member
flexibility, whereas the second term accounts for the changes in

0 4 3 5 (3 0 )
—_—t—— -—— ber forces with respect to member areas. However, Berke
0 1 ) mem p ;
lD El;“ E3?3 / Elpﬁf E3A3£ %: QD % (ref. 9) has shown that the second term is identically equal
20 = 1y = 3 = L +2 = 2_ 4 = S_[EXH ésyﬁ to zero, which has also been numerically verified. The first term
B EBA BEf BEA 2fp  EsfgH in equation (29) is equivalent to equation (12), which is used to

(28) develop the MFUD method.

14 NASA TM—-4743



Appendix B
Optimality of a Fully Stressed Design

A fully stressed state is reached when all members of a truss The optimum sqution—variabIeAi‘(ptfori =1,2,...n),
are utilized to their full strength capabilities. Historically, such minimum weight YW°PY, and active constraints‘;f{Ct =0,
a design was considered optimum, but recently this optimalityj = 1, 2, ... n)—can be obtained by using one of several

has been questioned because the weight of the structure is ngptimization methods (see refs. 13 and 29). In optimization
used in the design calculations. This appendix examinesmethods, both the weight function and the constraints partici-
optimality of the fully stressed design (FSD) with analytical pate. In FSD, only the constraints are solved iteratively to
and graphical illustrations. Solutions for a set of examplespbtain the design variables, without any reference to weight.

obtained by using FSD and optimization methods confirm theThe FSD weightW's9) is back-calculated from the areas. That
optimality of FSD. FSD, which can be obtained with little FSD need not be optimum (i.e\];Sdt AiOPtfori =1,2,...n,

calculation, can be extended to displacement constraints and tgndwfsd  WPPY is a popular misconception.
nontruss-type structures.

Optimality of the Fully Stressed Design
Introduction P y y g

The Lagrangian functional obtained by adjoining the active

Researchers are baffled by two conspicuous attributes ofonstraints to the weight function is used to examine the
FSD: the good numerical results obtainable with FSD; and theyptimality of FSD:

merit function, or weight function, of the structure, which is not

taken into consideration. Optimization proponents think that gg({A},{)\}) :W({A}) + Ag ({A}) (32)

FSD need not represent the optimum since the good FSD results st

are considered simply special cases. Practicing engineers

believe that when all the members of a truss (or structure) argvhere (*) indicates the active constraints aidl the multi-
utilized to their full strength capabilities the design can no pliers. The variables and the multipliers can be obtained from
longer be improved. They, however, cannot offer a mathematiits stationary condition:

cal proof supporting the optimality of FSD. This dilemma has

persisted since the sixties (refs. 1, and 24 to 28). Here, an DW({A})+ z )\iggi*({A}):{o} (33
attempt is made to alleviate the confusion. The optimality of actE st

FSD is examined in four sections: the problem is defined;

optimality is discussed; numerical examples follow; and dis- g ({A}) ={0} (gI withintheactiveset) (34)

cussions and a summary are presented.

Equations (33) and (34) yield the optimum solution.
Truss Design Problem _ The optimality of FSP is con_S|dered by examining three re_Ia—
tions between the design variables and the active constraints.

Consider am-bar truss withn member areas as design ] ] )
variables subjected tpload conditions. A fully stressed state ~ Case 1. There are more active constraints than design

(of FSD) is reached when each members’ stress equals allow- Variables. . .
able strengtho,, This design can be cast as the following Case 2: There are an equal number of active constraints and

, , , . design variables.
mathematical programming problem: FindiariablesA: for . . .
prog gp n A Case 3: There are fewer active constraints than design

i=1,2,...ntominimize weightw = Zpilipﬁ subjected to variables.
nq stress constraints =1
The three-bar truss (fig. 2) subjected to two load conditions,
with three design variables, six stress constraints, and weight as
i=12,...,nq (31) the merit function, is used for illustration.
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Case 1: More Active Constraints Than Design Variables When the number of active constraints equal or exceed the
number of design variables, the solution of the active con-
Geometrical solution—Consider an optimum solutionwith  straints (i.e., eq. (34)) provides the design variables. The design
n variables andn(+v) active constraints. The optimal solution thus obtained is both fully stressed and optimum.
is at the intersection of amput of the ( +V) active constraints.
The remainings are follower constraints passing through the Case 3: Fewer Active Constraints Than Design Variables
optimal point. For the truss with three design variables, assume
an optimal design with four active constraigtsgs, g5, andgg An optimum solution with fewer active constraints than
(fig. 13). Three constraintgy, gs, andgg) are sufficient to  design variables is not a fully stressed design. For the three-bar
establish the optimal point. The follower constragy) Canbe  truss, assume two active constraigtsandg,) given by equa-
neglected without any consequence. From a geometrical cortion (34). The two constraint equations are expressed in terms
sideration, the inclusion of a maximumroéctive constraints  of three unknown design variables. Although equation (34) is
is sufficient to establish the optimal design. The weight func-independent of Lagrangian multipliers, it does not have suffi-
tion is not essential whan> 0. cient quantity for a solution of the three design variables. Thus,
Analytical solution—The (Z+v) unknowns (being vari- both equations (33) and (34), which are coupled in variables,
ables andr(+v) multipliers) can be determined as the solution multipliers, and weight gradient, must be solved simulta-
neously to generate the optimum solution. The gradient of the
weight function and the multipliers are required to calculate the
design variables. In other words, only when the number of
active constraints is fewer than the number of design variables
do both the constraints and the weight function participate.
Mathematical programming methods address this situation in
particular. Practical truss design, however, more frequently falls
under Cases 1 and 2.

Design of a Truss Under a Single Load Condition

For an indeterminate truss under a single load condition, a
full stress state may not be achievable because of the compat-
ibility condition (refs. 27, 28, and 30). Take, for example, an
n-bar truss withr redundant members. If its FSD is attempted
Figure 13.—Three active constraints (sufficient to without restricting the lower bound of the member areas, then

determine optional point) and two follower the design will degenerate to a determinate structure that, of
constraints. course, will be fully stressed and optimum. If, however, a mini-

, ) mum boundA™" is specified for member areas, the resulting
to equations (33) and (34). An uncoupled strategy is to solve foﬁesign will have if — r) fully stressed members with ¢ r)

then design varlgbles from amof (n+v) constralnt functions active stress constraints andnember areas that reach the
given by equation (34). Values for other varlabl_e_s and tepinimum bounds 0A™N, These properties, from an analytical
weight function can be back-calculated. Summarizing, Whenviewpoint, become equivalentt@ctive constraints consisting

active constraints exceed design variables, the optimum can bgf (n—r) stress constraints antbwer bound side constraints
obtained from the solution of a setroéctive constraints. Since there are design variables, this example falls under

Case 2. In other words, the design of a truss under a single load
also represents the optimum design.

A fully stressed design state can be defined in terms of two
indices, Indef¢sSand Inde!":

Case 2: An Equal Number of Active Constraints and
Design Variables

An optimal solution witlnvariables and active constraints,
by definition, represents a fully stressed design. The stationary
condition of the Lagrangian (egs. (33) and (34)) represent 2
equations in@unknowns. The uncoupled equation (34), being Index
n constraint equations, can be solved fortdesign variables.
Then multipliers and optimum weight can be back-calculated.
For the truss, the solution of three constraints will yield the _ _ _
design variables. The optimum weight and the multipliers can e = (number of active stress constraints + number of active bounds)
be back-calculated from equations (31) and (34) respectively. (number of independent design variabl%)

aress _ (number of active stress constraints)
(number of independent design variables)
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Index = maximum (Indexs"%, Indexa”) Example 1
A three-bar truss (see fig. 2) is used to illustrate that the
Foranalytical purposes, afully stressed state is reached wheneight function does not influence the optimum design when
the Indexz 1. the number of active constraints equal or exceed the number of
design variables. The truss is subjected to two load conditions
and has atotal of six stress constraints, three per load condition.
Numerical Examples The optimum solution for an aluminum truss with equal weight
densities of 0.1 Ib/id.for its three bars was obtained by using
Examples are separated into a first example and a group adeveral optimization algorithms. The optimum solution for the
problems. The first example, with several subcases, examinegroblem is optimum weighé\°Pt = 133 Ib; design variable
the role of the weight function when the number of active con-A°Pt= (3,29, 3.99, 3.32) if.and four active stress constraints
straints exceed or equal the number of design variables (as i(gl, 03 U5, andgy).
Cases 1 and 2). The second group of examples compares stressfully stressed desiga-The stress-ratio-based FSD pro-
ratio-based FSD’s with their optimum designs. Two optimizers,duced the optimum design. The weight coefficients were
SUMT (Sequential Unconstrained Minimization Technique) changed over a wide range, from 0.1 I&/iior aluminum to
and IMSL (i.e., the Sequence of Quadratic Programming tech300 Ib/in3 for a fictitious material. The design and active con-
nique of IMSL) are used to solve examples in group 2. Thestraints obtained by FSD remained the same since the weight
figures and descriptions for the examples are not given here, bufoes not participate in the calculations. The FSD weight, how-
can be found in references 13 and 29. All the examples werever, was back-calculated: it is shown in table XIIl.
solved in a controlled environment on the NASA Lewis Cray =~ SUMT optimizer—Solutions for five different weights were
Y-MP computer. attempted by SUMT (see table XIIl). The SUMT optimizer

TABLE XI1I.—OPTIMUM DESIGNS OF THREE-BAR TRUSSWITH
DIFFERENT MATERIALS
[Number of active constraints exceed number of design variables.]

Method Cost Member areas Active Optimum
coefficients constraints| weight, Ib

FSD 01| 01| 01] 330 |39 | 332 [0;0:.050 | 133x10?
3 6 8 753%10°

6 | 12 | 18 160x10*

16 13 25 243x10*

1 [200 |300 v 2.20x10°

SUMT 01| 01| 01] 3291 | 3986 3323 0;0;.050 | 133x10?
3 6 8 | 3299 | 3998 | 3299 753x10°

6 | 12 | 18 | 3299 | 3.997 | 3298 159x10*

16 | 13 | 25 | 3298 | 3998 | 3.299 243x10*

1 |200 |300 |67.068 | 9.111 | 0.001 v 192x10°

ISML 01| 01| 01| 1.000 | 1.000 | 1.000 (a) 383x10
3 6 8 | 3299 | 4000 | 3299 | 0,,0,.05.9s | 7.53x10°

6 | 12 | 18 160x10*

16 | 13 | 25 \ { \ 243x10*

1 [200 |300 v 2.20x10°

oPTM1 | 01| o1 o1 3313 3971 | 3323 | 0,.0,.0,.0, | 133x1C?
3 6 8 | 3309 | 3963 | 3334 755x%10°

6 | 12 | 18 | 3309 | 3962 | 3335 160x10*

16 | 13 | 25 | 3308 | 3961 | 3.336 244x10

1 |[200 |300 | 3300 | 3967 | 3.328 v 221x10°

SQP 01| 01| 01} 2335 | 2503 | 2505 (a) 9.35x10*
3 6 8 | 234 532x10°

6 | 12 |18 | 234 114x10*

16 13 | 25 2335 1.74x10*

1 |200 |300 | 2335 157x10°

OPTM2 | 01| 01| 01| 3199 | 2556 | 5102 01,05 142x10?
3 6 8 | 3501 | 2402 | 4682 (a) 822x10°

6 12 18 | 3635 | 2353 | 4563 O 175x10*

16 | 13 | 25 | 3657 | 2316 | 4467 Os 271x10

1 |200 |300 | 3684 | 2336 | 4512 Os 239x10°

2No active constraints.

NASA TM—-4743 17



TABLE X1V.—PERFORMANCE OF FULLY STRESSED DESIGN VERSUS OPTIMIZATION METHODS

Problem Load |[Independent| Design | Normalized| Number of | Number of | Index? | Index¥® [ Normalized
condition design method weight active stress | active side CPU time
variables constraints | constraints
BAR3 1 3 FSD 1.000 2 1 10 0.667 1.000
IMSL 1.000 2 1 10 667 1.596
SUMT 1.000 2 1 10 667 6.263
BAR5 2 5 FSD 1.000 7 0 14 1.400 1.000
IMSL 1.000 7 0 14 1.400 527
SUMT 1.000 8 0 16 1.600 1.288
BAR10 1 10 FSD 1.000 6 4 10 0.600 1.000
IMSL 1.000 6 4 10 .600 1.362
SUMT 1.001 6 4 10 .600 2.859
BAR25 2 8 FSD 1.000 11 3 175 1.375 1.000
IMSL 1.000 11 3 175 1.375 8.688
SUMT 1.001 11 3 1.75 1.375 14.213
DOME 1 12 FSD 1.000 188 5 16.08 15.667 1.000
IMSL 983 192 5 16.42 16.000 743
SUMT 984 192 4 16.33 16.000 740
RING_A 3 25 FSD 1.000 40 0 1.60 1.600 1.000
IMSL .99 38 0 152 1520 5476
SUMT 1.000 38 0 152 1.520 13.101
RING_B 1 60 FSD 1.000 52 16 1133 0.867 1.000
IMSL 1.000 52 16 1133 867 2.882
SUMT 1.003 52 8 10 867 5.569
TOWER_A 1 252 FSD 1.000 117 135 10 0.464 1.000
IMSL 999 117 131 934 520 57.249
SUMT 1.000 117 139 1.016 551 81.442
TOWER_B 2 252 FSD 1.000 165 97 1.040 0.655 1.000
IMSL 1.000 165 98 1.044 655 48.031
SUMT 1.000 165 99 1.048 655 59.557

converged to the optimum solution for the first four cases, pro-Djscussion
ducing the correct optimum weight and an identical set of four
active constraints. For the fifth case, SUMT converged to an For a truss, if a fully stressed state can be reached (i.e., the
eccentric local optimum design with two, instead of four, active number of active constraints exceed the number of design
constraints. variables), then such a design can be handled satisfactorily with
IMSL optimizer—This optimizer produced correct solu- the stress-ratio-based FSD method. Optimization techniques
tions for the last four cases. For the first case, no active confor such problems can be computationally expensive and un-
straints were produced and the IMSL solution was unsatisfactorynecessary.
Table XIII also shows solutions obtained with other optimi-  In special circumstances a practical structural design may be
zation methods. The FSD method provided successful soluassociated with fewer active constraints than design variables.
tions for all five cases. The success rate for optimizationSuch a design is likely to represent an overdesign condition,

methods varied. which can be alleviated by relaxing some of the nonactive
constraints. If, however, there are fewer active constraints than
Example Set 2 designvariables, then the design is not fully stressed; here, non-

linear programming optimization methods can be useful. For

Nine examples were solved by using FSD along with SUMT such problems the stress-ratio-based design can differ from the
and IMSL optimizers. The normalized results with respect tooptimum design, especially when weight densities for truss
the FSD answers are depicted in table XIV. members are different.

Considerthe 25-bar truss, referred to as BAR25 intable XIV.  When the fully stressed design is extended to include dis-
It is subjected to two load conditions. Its 25 areas are linked tglacement constraints, itis called a fully utilized design (FUD).
obtain eight independent variables. Since, at optimum, 11FUD, which can produce overdesign conditions, has been
stress constraints are active, a fully stressed state has beemodified to give a method that produces a satisfactory design
reached. The FSD, IMSL, and SUMT methods produced idenfor stress and displacement constraints (ref. 31).
tical optimum solutions for the example with different CPU  The FUD method has been extended in reference 32 to
times. Optimizers IMSL and SUMT were, respectively, 10 and nontruss-type structures.
18.5 times more expensive than the FSD method. Solutions to
the other eight problems followed the pattern of the 25-bar
truss, with minor variations.

18 NASA TM—-4743



Summary

Afully stressed design is optimum when afull stress state cal™
be achieved. At optimum, when the number of active con-,,4

straints equal or exceed the number of design variables, then

such a design can be obtained by simply using a stress-ratitb.

algorithm without any consideration to the weight function.
The stress ratio algorithm can produce a fully stressed design i
a small fraction of the calculation time required by the design

optimization methods. The fully stressed design method may7.

have the potential for extension to nontruss-type structures and
nonstress constraints.

18.

19.

References

20.

1. Gallagher, R.H.: Fully Stressed Design. Optimum Structural Design, R.H.
Gallagher and O.C. Zienkiewicz, eds., John Wiley & Sons, London,
1973.

2. Thanedar, P.B., etal.: Performance of Some SQP Algorithms on Structural

Design Problems—Sequential Quadratic Programming. Int. J. Numer.22.

Meth. Eng., vol. 23, 1986, pp. 2187-2203.

3. Pshenichny, B.N.: Algorithms for the General Problem of Mathematical 23.

Programming. Kibernetica, vol. 5, 1970, pp. 20-125.
4. Wolfe, P.: Methods of Nonlinear Programming. Recent Advances in

Mathematical Programming, R.L. Graves and P. Wolfe, eds., McGraw—24.

Hill, New York, 1963.

5. Schittkowski, K.: On the Convergence of a Sequential Quadratic Program-25.

ming Method With an Augmented Lagrangian Line Search Function.

Math. Operationsforsch. und Stat., Ser. Optimiz., vol. 14, no. 2, 1983, 26.

pp. 197-216.

6. Leunberger, D.G.: Introduction to Linear and Nonlinear Programming.
Addison-Wesley Pub. Co., Reading, MA, 1973.

7. Vanderplaats, G.N.; and Moses, F.: Structural Optimization by Methods of
Feasible Directions. Comput. Struct., vol. 3, 1973, pp. 739-755.

8. Fiacco, A.V.; and McCormick, G.P.: Nonlinear Programming. Sequential

Unconstrained Minimization Techniques, John Wiley & Sons, New York, 29.

1968.
9. Berke, L.: Convergence Behavior of Optimality Criteria Based lterative
Procedures. USAF AFFDL-TM-72-1-FEB, 1970.

10. Berke, L.; and Khot, N.S.: Performance Characteristics of Optimality

Criteria Methods. Structural Optimization, G.I.N. Rozvany and 31.

B.L. Karihaloo, eds., Kluwer Academic Publishers, Norwell, MA, 1988.

11.
Weight Design of Elastic Structures. Comput. Struct., vol. 11, 1980,
pp. 163-173.

NASA TM—-4743

12.

21.

27.

28.

30.

Fleury, C.: An Efficient Optimality Criteria Approach to the Minimum  32.

Patnaik, S.N., et al.: Performance Trend of Different Algorithms for

Structural Design Optimization. NASA TM-4698, 1996.

Guptill, J.D., et al.: CometBoards User Manual Release 1.01., NASA
TM-4537, 1996.

Patnaik, S.N.: An Integrated Force Method for Discrete Analysis. Int. J.
Numer. Meth. Eng., vol. 6, no. 2, 1973, pp. 237-251.

Patnaik, S.N.; and Nagaraj, M.S.: Analysis of Continuum by the Integrated
Force Method. Comput. Struct., v@b, 1987, pp. 899-905.

|1'6. Patnaik, S.N.; Berke, L.; and Gallagher, R.H.: Integrated Force Method

Versus Displacement Method for Finite Element Analysis. Comput.
Struct., vol. 38, no. 4, 1991, pp. 377-407.

Berke, L.; and Khot, N.S.: Structural Optimization Using Optimality
Criteria. NATO, Advanced Study Institutes Series F, volSpringer-
Verlag, Berlin, 1987, pp. 271-311.

Berke, L.; and Khot, N.S.: Use of Optimality Criteria Methods for Large
Scale Systems. AGARDSL-70, 1974.

Patnaik, S.N.; and Gallagher, R.H.: Gradients of Behaviour Constraints
and Reanalysis via the Integrated Force Method. Int. J. Numer. Meth.
Eng., vol. 23, 1986, pp. 2205-2212.

Miura, H.; and Schmit, L.A., Jr.. NEWSUMT—A FORTRAN Program
for Inequality Constrained Function Minimization. User’'s Guide. NASA
CR-159070, 1979.

International Mathematical and Statistical Library: User's Manual, Ver. 1.1.
ISML, Houston, TX, 1989.

Vanderplaats, G.N.: DOT Users Manual, Ver. 2.0. Engineering Design
Optimization, Inc. Santa Barbara, CA, 1989.

Patnaik, S.N.; Guptill, J.D.; and Berke, L.: Merits and Limitations of
Optimality Criteria Method for Structural Optimization. Int. J. Numer.
Meth. Eng., vol. 38, 1995, pp. 3087-3120.

Kicher, T.P.: Optimum Design—Minimum Weight Versus Fully Stressed.
J. Structural Div., ASCE, vol. 92, 1966, pp. 265-279.

Schmit, L.A.: Structural Design by Systematic Synthesis. Proceedings
2nd Conference on Electronic Computation, ASCE, 1960, pp. 105-132.
Razani, R.: Behavior of Fully Stressed Design of Structures and Its
Relationship to Minimum Weight Design. AIAA J., vol. 3, no. 12, 1965,
pp. 2262-2268.

Dayaratnam, P.; and Patnaik, S.N.: Feasibility of Full Stress Design. AIAA
J., vol. 7, 1969, pp. 773-774.

Patnaik, S.N.; and Dayaratnam, P.: Behavior and Design of Pin Connected
Structures. Int. J. Numer. Meth. Eng. vol. 2, 1970, pp. 579-595.
Patnaik, S.N., et al.: Comparative Evaluation of Different Optimization
Algorithms for Structural Design Applications. Int. Jnl. Numer. Meth.
Eng., vol. 39, 1996, pp. 1761-1774.

Patnaik, S.N.: Behaviour of Trusses With Stress and Displacement
Constraints. Comput. Struct., vol. 22, 1986, pp. 619-623.

Patnaik, S.N., et al.: Modified Fully Utilized Design (MFUD) Method for
Stress and Displacement Constraints. Int. J. Numer. Meth. Eng., 1997.
Patnaik, S.N.; and Yadagiri, S.: Design for Frequency by Integrated Force
Method—In Structural Vibration Analysis. Comp. Methods. Appl. Mech.
Eng., vol. 16, 1978, pp. 213-230.

19



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1997 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Modified Fully Utilized Design (MFUD) Method for Stress
and Displacement Constraints

6. AUTHOR(S) WU-505-63-5B

Surya Patnaik, Atef Gendy, Laszlo Berke, and Dale Hopkins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center E—-10267
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 NASA TM-4743

11. SUPPLEMENTARY NOTES
Surya N. Patnaik, Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, Ohio 44142; Atef Gendy, Natio
Research Council—NASA Research Associate at Lewis Research Center; Laszlo Berke and Dale Hopkins, NAS
Research Center. Responsible person, Laszlo Berke, organization code 5200, (216) 433-5648.

nal
A Lewis

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 39

This publication is available from the NASA Center for AeroSpace Information, (301) 621+0390.

13. ABSTRACT (Maximum 200 words)

The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this metho
extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized desi
(FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant meth
We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilizeg
design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple lo
had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the op
results that can be generated by using nonlinear mathematical programming techniques. The MFUD method ap
have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method
distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed f
practicing engineers who favor traditional design methods rather than methods based on advanced calculus and
ear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate
tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented &
with a number of illustrative examples.

 is
On
Dd.

hds and
timum
pbears to
that is
DI
nonlin-
analysis
long

14. SUBJECT TERMS 15. NUMBER OF PAGES

. o ) o . 22

Fully utilized design; Force method; Optimization techniques 5 PRICE CoBE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



