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1. Abstract

Performance Seeking Control (PSC) attempts to find
and control a process at an operating condition that will
generate maximum performance.  In this paper a nonlinear
multivariable PSC methodology will be developed, utiliz-
ing the Fuzzy Model Reference Learning Control
(FMRLC) and the method of Steepest Descent or Gradient
(SDG). This PSC methodology employs the SDG method
to find the  operating condition that will generate maxi-
mum performance. This operating condition is in turn
passed to the FMRLC controller as a set point for the
control of the process. The conventional SDG algorithm is
modified in this paper in order for convergence to occur
monotonically. For the FMRLC control, the conventional
fuzzy model reference learning control methodology is
utilized, with guidelines generated here for effective tun-
ing of the FMRLC controller.

2. Introduction

PSC approaches, primarily developed for aircraft
applications, are largely based on dynamic or linear pro-
gramming with some limited work having been per-
formed on gradient-type PSC. Even though random-type
search techniques for PSC (like linear or dynamic pro-
gramming) have proven effective for various applica-
tions,(1-3) a number of difficulties can be encountered in
the implementation of these techniques such as poor
convergence or long execution times.

In this paper, the combined effect of gradient optimi-
zation and FMRLC control with its ability to perform
nonlinear control, with fast on-line learning of the control
law, will be exploited. The state trajectory that generates
maximum performance resulting from the SDG

algorithm, is passed to the FMRLC controller as the
desired set point for the control of the process, Fig. 1. The
computed control trajectory can also be utilized by the
FMRLC, if it is desired to use the FMRLC as a trim
controller.

The standard SDG control algorithm can fail to con-
verge if the initial guess of the control inputs is rather poor.
Therefore the algorithm is modified here in order for con-
vergence to occur monotonically, which makes the algo-
rithm more suitable for on-line implementation.

During the past several years, fuzzy control has
emerged as one of the most active and promising control
areas, especially because of the ability of fuzzy control in
controlling highly nonlinear, time variant, and ill-defined
systems. The works of Mamdani and his colleagues on
fuzzy control(11-14) was motivated by Zadeh’s work on
the theory of fuzzy sets,(16-19) and its application to lin-
guistics and systems analysis. The work of Procyk and
Mamdami on the linguistic self-organizing controller(20)

as well as refinements to this algorithm made by others,
was later modified and extended by Layne to what it is
called FMRLC control.(21) The FMRLC structure, Fig. 4,
has learning capabilities and differs conceptually from
adaptive control primarily by its ability to memorize
learned experiences. The FMRLC algorithm will be uti-
lized here for nonlinear, multivariable feedback control,
while some guidelines will be generated for the effective
tuning of the FMRLC controller. In this paper the SDG
and FMRLC controllers will be combined to form the new
PSC control structure shown in Fig. 1.

It is assumed here that the model of the plant is
available. However, a standard Kalman-filter estimator,
or some other identification technique, could be used to
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identify the plant on-line if necessary.(8,9) The implied
assumption here is made that the solution space is convex,
in order for the SDG control to find the global extremal
within the constraints of the control inputs.

A nonlinear process is selected to demonstrate the
effectiveness of this control methodology. The process in
(1) is chosen to be nonlinear, stable, with significant cross
coupling of the control inputs to the controlled variables.
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In section 3, the formulation of SDG optimization for
the process in Eq. (1) and the performance index in Eq. (2)
will be carried out. In section 4 the FMRLC control
methodology will be discussed and the multivariable
control design for the process in Eq. (1) will be shown.
Section 5 will cover the conclusion.

3.1 Steepest Descent Gradient Formulation

Generally a performance index and the plant states
can be expressed  as:
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and x10, x20 are constants.

For the case where h(x(tf),tf) = 0 in (2), the hamiltonian
of the system in Eq. (3) with the performance index (2) can
be expressed as:
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where p(t) are the costate equations. Substituting into
Eq. (5) the functions g and a from Eqs. (2) and (3) relative
to the plant in Eq. (1) and the performance index in Eq. (4),
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The control history u(i)(t), t  e [t0,tf] is used to solve
the differential equations in (3) and (7) (including the

Figure 1.—FMRLC/SDG PSC Control structure. 
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superscripts x(i), u(i), p(i) in (3) and (7), and (i) is an index
signifying the current iteration), so that the nominal state-
costate trajectory satisfies the boundary conditions:
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The initial conditions in (9) are split boundary, and
the differential equation in (3) is solved forward in time,
where Eq. (7) is solved backwards in time. Since h(x(tf),tf)
= 0 in Eq. (2), p(i)(tf) = 0. If this nominal control history
also satisfies
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which is equal to Eq. (8) for this problem, then u(i), x(i), p(i)

are extremals. If Eq. (10) is not satisfied, successive con-
trol histories are adjusted as follows:
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where, τ > 0,is selected for the desired  effect ∂H/∂u Eq. (8)
will have on the new control, and tk signifies a discrete
time. Note that the elements of Eq. (11) signify vector
quantities for a multivariable control process. The itera-
tive computation process is terminated when norm two,

 
∂
∂

∂
∂

∂
∂

H

u

H

u
t

H

u
t dt

t

t

t f

2
0

= 









∫ ( ) ( )    at iteration (i) is less

than a preselected positive termination constant γ1, or the
performance index |J(i) – J(i–1)| ≤ γ2. The basic SDG
algorithm listed below has been modified as to achieve
monotonic convergence.

SDG Algorithm Steps:

1. Select a discrete piecewise-constant approxima-
tion to the nominal control history u(0)(t), t e [t0,tf].

2. Using the nominal control history u(i), integrate
the state equations from t0 to tf with initial conditions
x(t0) = x0 and store the resulting trajectory.

3. Integrate the costate equations backwards in time
from tf to t0 using  p(tf) = pf as the initial condition and the
piecewise-constant values of x(i). At each time step evalu-

ate ∂H(i)/∂u, t e [t0,tf] and store in the computer.
The following steps from 3.1 to 3.2 constitute changes

to the SDG algorithm to achieve monotonic convergence:

3.1 Evaluate the performance index J(i). If J(i) > J(i -1)

restore the previous control trajectory (i.e. set u(i)(t)
= u(i-1)(t), t e [t

0
,t

f
]) and repeat step 2 and 3 from above.

3.2 Find the component of 
∂

∂
H

u

( )i

2
with the largest

magnitude and decrease its corresponding τ component
(halving τ is found to work fine for various problems).

4. If  
∂
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H

u

( )i

2
 ≤ γ

1
 or |J(i ) – J(i -1)| ≤ γ

2
 then terminate the

iterative procedure and output the extremal states and
control. If the stopping criterion is not satisfied, keep in
storage the previous control vector (this step is added
relative to changes for monotonic convergence), and
generate a new piecewise-constant control history given
by Eq. (11).  Return to step 2.

3.2 Steepest Descent Gradient Simulation

The final time, tf , in Eq. (4) can  be chosen appropri-
ately based on the settling time of the process to a step
input, Fig. 2. The fourth order Runge-Katta integration
method was used for forward and backwards integration
of Eqs. (1) and (7) respectively. Euler integration was also
used as an alternative, but no noticeable differences in the
simulation results were observed for this problem. Choos-
ing rather large τ's in Eq. (11), would normally cause the
steepest descent algorithm to diverge or fail to converge.
However, the modifications made to the algorithm in this
paper will cause the algorithm to monotonically converge,
because τ is adjusted automatically. Figure 3 shows the
monotonically decreasing performance index, the state
trajectories for the choice of (x10,x20)  = (1.3, 1.2), and the
resulting control trajectories.

4.1 Fuzzy Model Reference Learning Control

Fuzzy control theory will not be covered in depth in
this paper. For more detail discussions in these areas  see
Refs. 11 to 22. The FMRLC structure,(20) shown in Fig. 4,
employs an inverse fuzzy model of the process and modi-
fies the knowledge base through the knowledge base
modifier mechanism in order for the process output y(kt)
to match the reference model output ym(kt). In this section
the basic design procedure of  the FMRLC for the process
in Eq. (1) will be discussed.

For the MIMO system discussed in this paper two
decoupled FMRLC controllers are constructed. A coupled
FMRLC controller could be utilized instead, however, the
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dimensions of the knowledge bases would have increased
equivalent to the number of the inputs to the fuzzy con-
troller. In addition to the basic FMRLC structure shown
in Fig. 4, a pole at zero frequency was placed at the output
of each decoupled controller. This is needed for zero
steady state error. Each decoupled FMRLC controller
contains 6 adjustable gains. Therefore, some discussion
in this section will be devoted to establishing some
guidelines for the effective tuning of the control gains.
Typical inputs to the fuzzy controller are the error e(kT)
and the error derivative c(kT), but other types of inputs
can be chosen such as integration of the error. The
membership functions for all the inputs to the fuzzy
controllers and the inverse models have been chosen with
triangular shape, normalized, and uniformly distributed
in each Universe of Discourse, as shown in Fig. 5. In
Fig. 5, E j signifies a membership function or linguistic
value associated with a specific input to the fuzzy control-
ler, where µ gives the certainty that an element of that
particular input may be classified heuristically as Ej.
Figure 6 shows the rule base constructed for the inverse
fuzzy models.  From this rule base it can be deduced that

Figure 3.—Steepest descent optimiation.
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the Consequent membership functions corresponding to
the inverse model output variable yf (kT) have similar
distribution to the membership functions shown in Fig. 5.
The knowledge base (rule base) contains the centers of
the membership functions which are triangular shaped for
this problem, with a base width of 0.4 as seen in Fig. 5.
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One of  the important consideration in the construction of
the inverse knowledge base is that the inverse fuzzy model
exhibits the proper directionality associated with the
controlled process. The knowledge base associated with
the fuzzy controllers initially contains all zeros, which
reflects no knowledge of how to control the process. This
knowledge base is updated auto-matically as the FMRLC
controller learns how to control the process.

The selection of the FMRLC gains is an important
step in the design process, as the ability of the controller
to track the reference model will heavily depend on the
particular  choices of the gains. The gains ge and gye

 are
chosen so that the ranges of these inputs are mapped to
a normalized universe of discourse in the range of [-1,1].
For instance an appropriate choice for the value of the gain
ge would be 1/range (e(kt)). A good choice for the value
of  the gain gc is found to be approximately equal to
10/(range (e(kt))/T),which is equal to 10/(max change
(r(kt))/T), where r(kt) is the set point and T is the sampling
time. The smaller the choice for the values of the gains ge
and gc, the more the control action is concentrated towards
the center region of the rule base, resulting in better control
tracking at the expense of an increased control rate of the
control variable u(kT). The gain, gyc

, effects the damping
of the process response: If it’s too small the response will
be oscillatory, if it’s too large, the process will be unable
to keep up with the reference model. A good choice for the
value of the gain, gyc

, is found to lie somewhere in the
range of [1/(4ωn), 1/(2ωn)], where, ωn, is the natural
frequency of the process. The output gains, gu and gf, are
chosen so that the corresponding Normalized Universe of
Discourse maps to the range of the output variables of the
fuzzy controller. For instance, both gu and gf are selected
to be equal to the range of  the control input variable, u(kT).
This choice for the output gains allows both u(kT) and
yf(kT) to take on values as large as the largest control input.

The selection of the reference model shown in Fig. 4,
represents the desired performance of the FMRLC feed-
back control system. The reference model is selected here
to have a natural frequency, ωm, equal to the process
natural frequency, ωn, with a relatively low step value for
the open loop response. With the process being nonlinear,
its response time can strongly depend on the magnitude of
the control input. Therefore, it may not be desirable to
select a reference model significantly faster than the
process response time relative to a low control input value,
or else we may be asking for relatively large control rates.
A first order model for the selection of the reference model
has been found to be adequate.

G
sRM
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m
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+
ω
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( )12

4.2 FMRLC Control Simulation

Based on the discussion in section 4.1, the control
parameters for the two decoupled FMRLC controllers
have been selected with the following values:
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The defuzzification approach used in this simulation
is the so called “Center of Gravity.” Figure 7 shows the
response of the decoupled FMRLC controller with simul-
taneous step set point changes. This response shows the
tracking capabilities of the FMRLC. The set point track-
ing response was used to tune the controller as was
discussed in section 4.1. The knowledge base of the fuzzy

Figure 7.—FMRLC close loop step response.
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controller started with all zero entries, reflecting that
initially there was no knowledge of how to control the
system. The learning rate is quite fast as is evident from the
responses of the states and control inputs in Fig. 7. The
resulting knowledge base of the decoupled controller
corresponding to the state x2, for the simulation in Fig. 7,
is shown in Fig. 8. The zero elements associated with this
knowledge base is an indication that the controller, for
this particular simulation, has not had the opportunity to
venture in these areas of its knowledge space.

For a complete simulation of the PSC approach
discussed in this paper; in section 3 with the SDG formula-
tion and the modified SDG algorithm, the optimal state
and control trajectories were found, Fig. 3. The states
trajectories are passed to the FMRLC controller as the
desired set point control for the control of the process in
Eq. (1), shown in Fig. 9.  In the simulation (Fig. 10), the
control trajectories were also utilized by adding them to
the control output of each decoupled FMRLC controller as
you would for a trim control structure. Due to memory
limitations for the PC Fortran used in this simulation, the
state and control trajectories of Fig. 3 were approximated
by first order responses, which would be expected to
introduce error in the trim control. All the control para-
meters discussed in this section remained the same for the
simulations shown in Figs. 9 and 10, except for the refer-
ence model frequency, ωm, which was increased to
16 rad/sec. For these simulations, the knowledge bases of
the two decoupled controllers were also initialized with
zeros, but the resulting knowledge bases from the simula-
tion in Fig. 7 could have been used as the starting point.
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Figure 9.—FMRLC simulation without trim control.
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5.0 Conclusion

In this paper a nonlinear process was used to help
develop a PSC methodology that utilized the modified
SDG and FMRLC approaches. The simulation results
presented in this paper showed that the modified SDG
algorithm can be used effectively to compute off line the
optimal state and control trajectories for the control pro-
cess. The results also showed that the FMRLC approach
with the given tuning guidelines, can be used to control the
nonlinear multivariable control process with good track-
ing performance, and relatively fast on line learning of the
control law. Finally, the optimal states and control trajec-
tories computed by the SDG algorithm are utilized in this
paper by the FMRLC to control the process to achieve the
desired performance.

For future work it would be important to study stabil-
ity, convergence, and robustness of this approach in more
detail. Further, experimental validation of this method
would be needed, with processes that exhibit more

complex dynamics. Finally, a direct comparison with other
existing PSC control methodologies could be carried out.
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