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Abstract

Due to their inherent dissipation and stability, the MacCormack scheme and its variants
have been widdly used in the computation of unsteady flow and acoustic problems.
However, these schemes require many points per wavelength in order to propagate waves
with a reasonable amount of accuracy. In this work, the linear wave propagation
characteristics of MacCormack-type schemes are shown by solving severa of the CAA

Benchmark Problems.
Introduction

In the field of computational aeroacoustics, numerical schemes are expected to propagate
waves accurately for long distances over long periods of time. In order to accomplish this
god, a certain number of spatia points are required per wavelength to model each wave,
and a certain time step is required in order to model the wave's movement in time. It is
desirable from a computational standpoint to reduce the number of points required per

wavelength and increase the size of the alowable time step.

One popular and well-tested method uses a modification of the MacCormack schemel,
which is second order accurate in time and fourth order accurate in space. This extension
of the MacCormack scheme is known as the 2-4 scheme, and was described by Gottlieb

and Turkel.2 This scheme has been used successfully on a wide range of fluid and
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aeroacoustics problems.3-15 Sankar, Reddy, and Hariharan have evauated this scheme for
aeroacoustics applications.16 It has been extended to sixth- order spatid accuracy by
Bayliss, et. d. (2-6 scheme)l’, and an extension of the 2-4 scheme to fourth-order time

accuracy is described by Viswanathan and Sankar.18

Building on this previous work, a new high-accuracy MacCormack-type scheme has been
developed for use in computationa aeroacoustics.1® This scheme has been successfully
applied to the real-world problem of supersonic jet noise prediction.20 In this paper, the
performance of this scheme will be evauated using the benchmark problems of the first
and second CAA workshops. The results are used to quantify the performance of the

various schemes.

Numerical Formulation

In this work, four previoudly existing MacCormack-type schemes will be used: the
classical MacCormack scheme, the 2-4 scheme of Gottlieb and Turkel, the 2-6 scheme of

Bayliss, et. d., and the 4-4 scheme described by Viswanathan and Sankar.

In addition to these schemes, the high-accuracy MacCormack-type scheme of Hixon will
be used. This scheme utilizes the Dispersion Relation Preserving methodology of Tam
and Webb?! for the spatid discretization and the 4-6 Low-Dispersion and -Dissipation
Runge-Kutta scheme of Hu, et. d.2 for the time integration. It is formally fourth-order

accurate in time and space for linear problems.

The time marching method used by these MacCormack-type schemes can be written as

follows:
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where the values of the coefficients are given in Table 1. Notice that the 4-6 time marching
method alternately uses four and six stages to move to the next time level. Each spatial
derivative uses biased differencing, either forward or backward, providing inherent

dissipation for the solver.

Using aspatial derivative at point j as an example,

Forward:
Eb 1@/-1 + aoéi Ef(
17
ﬁ? Ar D+alo/+1 + aZQI+2 B (2)
@*330/43 @
Backward:
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The sweep directions are reversed between each stage of the time marching scheme to
avoid biasing, and the first sweep direction in each time step is dternated as well. This

gives afour-step time marching cycle (using the 4-6 time marching method to illustrate):
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2nd order 4th order Hu 4-6 Stepl Hu 4-6 Step2
as 1 1/2 12 0.353323
o3 0 1/2 12 0.999597
O4 0 1 1 0.152188
Os 0 0 0 0.534216
Og 0 0 0 0.603907
B1 12 1/6 16 0.0467621
B2 12 13 13 0.137286
B3 0 1/3 1/3 0.170975
Ba 0 1/6 1/6 0.197572
Bs 0 0 0 0.282263
Bs 0 0 0 0.165142

Tablel: Coefficientsfor Runge-Kutta Time Stepping Schemes.

a, g a & a
2nd order [1] 0 -1 1 0 0
Ax Ax
4th order [2] 0 T 8 1 0
6Ax 6Ax 6Ax
6th order 0 -37 45 -9 1
[17] 30Ax 30Ax 30Ax 30Ax
DRP/opt -0.30874 -0.6326 12330 -0.3334 0.04168
AX AX AX AX AX

Tablell: Coefficientsfor MacCormack-Type Schemes
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(4)

At the computational boundaries, flux quantities outside the boundaries are needed to
compute the spatial derivatives; these fluxes are determined using third-order extrapolation

from the interior nodes.

Benchmark Problems

These schemes are compared using linear benchmark problems from the first23 and second

CAA Workshops.

1) One Dimensiona Problems

Problem 1 of the first workshop requests the solution at t = 400 of:

Us+uUy =0 (5)
where
1 O g[l
u(0) = 5 expg—ln(z)% E
-20< x <450 (6)
Ax =10

Problem 2 of the first workshop requests the solution at t = 400 of:

ut+ur+%:0 (7)

where
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SR
w=Z% (8)

These problems test the ability of the scheme to accurately propagate linear waves of

varying wavelengths for long distances of travel.

2) Two Dimensional Problems

The problems given for the second CAA Workshop are much more difficult. In this
problem set, a2-D circular cylinder of radius 0.5 is placed at the origin, and acoustic waves
reflect and scatter from this curved surface. The governing equations ae the two-

dimensional linearized Euler equationsin polar coordinates:

ov,'0 Op'0 000 0o o
Oo'.0.0.0.10.,0 .10.0_
VoD +000 +—0p'0 +-000=S ©)
HeH BB Hef, Bed
For Problem 1, Sisasimple harmonic sourceat r = 4, 6 = 0, given by:
0 0
0 0
0
_g ]
s=g 0 0 (10)
o 0 - 2 0
[Bxpg—ln(z)stin(Sm‘)D
§ O (). g

The problem requests rp2 in the limit asr -> o in the arc 180 > 6 > 90.

In Problem 2, Sisan initial disturbance at timet = 0, given by:

NASA CR-202324 6



O 0
O 0 E
Sli-o = % 0 0 2 EI% (11)
EEXpD—In(Z) (x-4) ;-y M
g O (02 1§

For this problem, the pressure time history from 6 < t < 10 at three points is requested.
These points are a 6 = 90° (point A), 8 = 135° (point B), and 6 = 180° (point C) at a

radial distance of 5 from the origin.

Boundary Conditions for Two-Dimensional Problems

There are three boundary conditionswhich areused. At the cylinder surface (r = 0.5), the

Thompson solid wall boundary condition is used, and the equations become:

g 90 B 808 L0
Vo'O0+0 O D+FDD'D +FD0D=S (12)
Hel Be-eH  He'D, Bl

In this computation, three ghost points are used inside the surface for the radia derivative;

their values are set as;

T8 B
Ve'D =00 O (13)
HeH, He H,
In the far field (r = Rmax), the acoustic radiation condition is used:
A
HeH+HoH +=HoH=5 (14)

OpB BrE % BrH

For theradial derivative a the outer boundary, three ghost points are used. The values of
the variables at these ghost points are determined using third-order extrapolation from the

interior values.
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At the symmetry planes (6 = 0 and 6 = 1), a symmetry condition is used. For example,

aroundi =1;
-
Vo' =0Ve'O (15)
HeH, Hp A,

wherei isthe index in the azimuthal direction.

Computational Grid for Two-Dimensional Problems

For Problem 1, a801 (radial) x 501 (azimuthal) grid was used, covering adomain of 0.5 <
r<20.5intheradial direction,and 0 < 6 < 1. Since the wavelength of the disturbance is
0.25, this grid resultsin 7-10 points per wavelength. The exact resultswere given at ther =

15 line, giving a maximum of 76 wavelengths of travel at 6 = 1t

For Problem 2, a201 (radial) x 301 (azimuthal) grid was used, covering adomain of 0.5 <
r <10.5 in the radia direction, and 0 < 6 < 1t Since the transient problem only requires
datafrom 6 <t < 10, the outer radial boundary only has to be far enough away such that no

reflections can reach any of the three data points during this time period.

Results

1) One Dimensional Results

The solutions of Benchmark Problem 1 at t = 400 as calculated by the various schemes are
shown in Figures 1-5. In this problem, a Gaussian pulse propagates in time and space for
a given time, a which point the results are compared. On each figure, the solution is
shown for various time stepsto illustrate the effect of the time step on the accuracy of the

time integration.

Figure 1 shows the solution obtained using the classca MacCormack scheme. Two

points are evident: first, the classical scheme is a perfect propagator a& a CFL number of
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1.0; second, the scheme is very dissipative and dispersive for other time steps.  Since
perfectly uniform grids are unusual in real-world problems, the perfect propagation is not

overly useful.

Figure 2 shows the solution obtained using the 2-4 scheme of Gottlieb and Turkel with
time steps of 0.25, 0.4, and 0.5. The dissipative nature of the scheme is evident, and the

time step has alarge effect on the dispersion error.

Figure 3 shows the solution obtained by the 2-6 method of Bayliss, et. a. Again, the
solution shows dissipation and dispersion, with higher dispersion errors than the 2-4

scheme.

Figure 4 shows the solution obtained by the 4-4 method described by Viswanathan and
Sankar. The effect of the increased time accuracy on the dispersion error is immediately
apparent. Another point of interest isthat the four-stage, fourth-order Runge-Kutta scheme

isdissipative at larger time steps.

Figure 5 shows the same time-stepping scheme using the optimized DRP spatia
differencing. The solution obtained is very accurate and is also insensitive to the time step

chosen.

Figures 6-8 compare the results of the 2-4 scheme to those of the optimized DRP scheme
for Benchmark Problem 2. In this problem, a single-frequency spherical wave propagates
outward from an impulsively-started vibrating sphere. As given, the problem has two
parts. thefirst has 8 points per wavelength, and the second has six points per wavelength.
To give the 2-4 scheme some chance of obtaining reasonabl e results, athird part was added

which has 12 points per wavelength.

Figure 6 shows the results for 12 points per wavelength a 33.33 wavelengths of travel.

The solution given by 2-4 scheme shows dissipation error and some dispersion error,
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while the solution given by the optimized DRP scheme shows very little dispersion or

dissipation error, even with atime step five times larger than that taken by the 2-4 scheme.

Figure 7 shows the results for 8 points per wavelength at 50 wavelengths of travel. The
solution given by the 2-4 schemeis very dissipated and shows some dispersion error. The
solution given by the optimized DRP scheme shows some dispersion and dissipation

error, but is sill very good.

Figure 8 shows the results for 6 points per wavelength a 66.67 wavelengths of travel.
Except for the initid transient, the wave has been completely damped by the 2-4 scheme,
while the optimized DRP scheme is till showing good accuracy in dispersion. However

the wave has dissipated to approximately 65% of the exact value.

2) Two Dimensional Results

Results for Problem 1 of the second CAA Workshop are given in Figure 9. In order to
avoid problems with the very large initia transient, a polynomial function was used to
smoothly increase the amplitude of the forcing function. The time step used was limited
by the stability of the solid wall boundary; for these calculations a time step of At =
0.00245 was used (CFL =0.786). The calculation was run to atime of 32.09, with results
being taken from 31.59 < t < 32.09. This cdculation took atota of 6.27 hours of CPU
time on a Cray Y/MP, running a 191 Mflops. The results are given a r = 15 D, and

compare very well with the exact solution.

Results for Problem 2 are given in Figures 10-12. The results agree very well with the
exact solution. This caculation, using a At of 0.0025 in order to print out the required
results, took a total of 469 CPU seconds on a Cray Y/MP, running a 175.5 Mflops.
However, the code could run stably at a CFL number of 0.864 (At = 0.0045), requiring
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261 CPU seconds. With more stable solid wall boundary conditions, it is expected that the

scheme can recover the CFL = 1.4 time step that has been seen previoudly.

Grid refinement studies were conducted for Problem 2; the effect of halving and doubling
the grid are shown for Point C in Figures 13 and 14. Point C was chosen because it was
the most distant point from the initia location of the pulse. In Figure 13, three computed
results are shown: ahalf grid (101 x 151), the grid used (201 x 301), and a doubled grid
(401 x 601). The two denser grids have nearly identica results, and compare very well
with the exact solution. The coarsest grid, however, shows leading and trailing waves,
some traveling much faster than the physical wave. Thisis due to the low resolution of the
grid causing the solver to incorrectly allow high-frequency waves to travel faster than the

speed of sound.

Figure 14 shows the transient peak at point C. The effect of increased grid is illustrated in
this graph; the transient peak becomes closer and closer to the exact solution as the grid
becomes denser. At this extreme amplification, it can be seen that the transent peak
velocity is very dightly off with the grid used, but the answer is well within expected

tolerances for this case.

Conclusions

In this work, the dispersve and dissipative characteristics of a new high-accuracy
MacCormack-type scheme were investigated using benchmark problems of the first and
second CAA workshops. The results show that this new scheme is very promising for
computational aeroacoustics applications, requiring only 6-8 points per wavelength and

allowing large time steps.
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The MacCormack-type schemes are of great interest due to their ease of programming and
use, and inherent numerical dissipation. Thiswork shows that this type of scheme can be

optimized to perform very well.
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Figure 1.—Solution of Benchmark Problem 1 of the First CAA
Workshop using Classical MacCormack Scheme.
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