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Summary first reference probably being associated with Leibniz in 1695
(Oldham and Spanier, 1974, page 3). Although not well known
This report studies the effects of fractional dynamics in to most engineers, the fractional calculus has been considered
chaotic systems. In particular, Chua’s system is modified toby prominent mathematicians (Courant and Hilbert, 1953) as
include fractional order elements. Varying the total system well as the “engineers” of the operational calculus (Heaviside,
order incrementally from 2.6 to 3.7 demonstrates that system4971; and Bush, 1929). In fact several textbooks written before
of “order” less than three can exhibit chaos as well as otherl960 have some small section on fractional calculus (Goldman,
nonlinear behavior. This effectively forces a clarification of the 1949; Holbrook, 1966; Starkey, 1954; Carslaw and Jeager,
definition of order which can no longer be considered only by 1948; Scott, 1955; and Mikusinski, 1959). An outstanding
the total number of differentiations or by the highest power of historical survey can be found in Oldham and Spanier (1974)
the Laplace variable. who also give what is unquestionably the most readable and
complete mathematical presentation of the fractional calculus.
Other bound discussions of the area are given by Ross (1975),
Introduction McBride (1979), and McBride and Roach (1985). Unfortu-
nately, many of the results in the fractional calculus are given
It is well known that chaos cannot occur in continuous-time jn the language of advanced analysis and are not readily
systems of order less than three. This assertion is based on thgcessible to the general engineering community.
usual concepts of order, such as the number of states in a Many systems are known to display fractional order dynam-
system, the highest power of the Laplace variahléy the  ics. Probably the first physical system to be widely recognized
system, or the total number of separate differentiations oras one demonstrating fractional behavior is the semi-infinite
integrations in a system. Unfortunately, these concepts of ordefossy (RC) line. The current into the line is equal to the half-

do not directly relate to systems having fractional order com-derivative of the applied voltage; that is, the impedence is
ponents. The purpose of this report is to demonstrate that

systems of order less than three, as defined in the usual way, can 1

still display chaotic behavior. The next section provides a brief V(s) = —1 (s)

review of fractional calculus. Useful approximations for these VS

fractional operators follow. Finally, an example is given which ) ) o
demonstrates that systems of order less than three can display Although this system was studied by many, Heaviside (1971)
chaos. This is both shown experimentally via simulations andconsidered it extensively using the operational calculus. He

predicted analytically using the describing function method. States “there is a universe of mathematics lying in between the
complete differentiations and integrations” and that “fractional

(operators) push themselves forward sometimes, and are just as
Review of Fractional Operators real as the others.” Another equivalent system is the diffusion
of heat into a semi-infinite solid. Here the temperature looking
The idea of fractional integrals and derivatives has beenin from the boundary is equal to the half integral of the heat rate
known since the development of the regular calculus, with thethere. Other systems that are known to display fractional order



dynamics are viscoelastic systems (Bagley and Calico, 1991;

Koeller, 1984; Koeller, 1986; Skaar, Michel, and Miller, 1988; Lgdq FOH_ Lt}
Lopez-Marcos, 1990); colored noise (Mandelbrot, 1967); elec- dt E
trode-electrolyte polarization (Ichise, Nagayanagi, and Kojima,
1971; Sun, Onaral, and Tsao, 1984); dielectric polarization
(Sun, Abdelwahab, and Onaral, 1984); boundary layer effect
in ducts (Sugimoto, 1991); and electromagnetic waves
(Heaviside, 1971). Because many of these systems depe
upon specific material and chemical properties, it is expecte
that a wide range of fractional order behaviors are possibl
using different materials.

Two commonly used definitions for the general fractional
differintegral are the Grunwald definition and the Riemann-
Liouville definition (Oldham and Spanier, 1974). The Ri-
emann-Liouville definition of the fractional integral is given
here as

Amazingly enough, one of the most difficult obstacles in the

ractical application of the fractional calculus is the initial
cpndition problem. As long as a given system is at rest, at the

ro equilibrium, at time zero, the fractional initial value

roblem is readily solved using standard Laplace transform

ethods (all initial condition terms are zero). Unfortunately,
the fractional derivative operator starts rather abruptly at time
zero, so that any nonzero initial value for a function will appear
as a discontinuity and translate directly intt & term, which
has an annoying singularity at time zero using the appropriate
power,r. This is not necessarily a problem, unless the desired
initial value is not infinity. Bagley (1988) addresses this prob-
lem by creating a modified fractional derivative operator that
essentially subtracts out the singularity. The problem is further
studied by Hartley, T.T.; and Lorenzo, C.F.: Insights Into the
Fractional Initiative Value Problems (to be published) by
relating it back to the semi-infinite line problem.

Bagley (1988) has also extended the initial value problem to
fractional state space systems. Here the idea of state no longer
gives all past and future knowledge of the system behavior via
some stored pseudo-energy. In fact, the number of these frac-
tional states is somewhat arbitrary and dependent only upon
what the user has chosen as the base fractional derivative.

. " Qa-nt O _ Understanding the ppssible dynamic behavior of linear frac-
dif _d~ _f O q>0andnaninteger >q tional orde.r systems is fundgmental to the develop_ment of
dt? at" @dtq n 8 future applications. Progress in this area has been fairly slow,
however, since there was no known general fractional order
impulse response with which to perform convolution.

dqf: 1
dt9 T (-q)

t M
fs (t—r)qﬂdr' a0

whereq can have noninteger values, and thus the name frac
tional differintegral. Notice that the definition is based on
integration and more importantly is a convolution integral for
< 0. Wherg> 0, then the usual integath derivative must be
taken of the fractionalg(— n)th integral, and yields the frac-
tional derivative of ordeg as

This appears so vastly different from the usual intuitive defini- :
tion of derivative and integral that the reader must abandon th&€cently, Bagley (1988) has shown that the impulse responses
familiar concepts of slope and area and attempt to get some nefff fractional order systems are related to the Mittag-Leffler

insight (which still remains elusive). This is discussed further fUnction (Erdelyi, et al. 1955), which is effectively the frac-
in Lorenzo, C.F.; and Hartley, T.T.: On Conceptualization, tional order analog of the exponential function. With this

Initialization, and Applications in Fractional Calculus (to be knowledge, it ha_s been. possml_e to better clarify the time
published). responses associated with fractional order systems. Impulse
Fortunately, the basic engineering tool for analyzing linear "€SPONSes, step responses, and initial condition responses for

systems, the Laplace transform, is still applicable and works aSCMe general fractional order systems can be found in Hartley,
one would expect; that is T.T.; and Lorenzo, C.F.: The Solution to a General Linear

Fractional Order Initial Value Problem (to be published).

B_ q _ n-1 kmq—l—kf(t)m
e S L{f®} - sC g« 0 -fordla  The Concept of System Order
dt & g B-o
As the concept of “order” is central to the understanding of

fractional systems, some discussion of this concept now fol-
wheren is an integer such that— 1 <q <n (Oldham and  |ows. In this discussion, it will be assumed that the systems
Spanier, 1974). If the initial conditions are considered to bepeing considered are single-input—single-output, that their
zero, this formula reduces to the more expected and comfortingepresentations are minimal in the usual sense (Kailath, 1980),
form and that they are linear.



Mathematical order is defined as the highest derivativeApproximation of Fractional Operators
occurring in a given differential equation. The concept of

mathematical order is applicable to both ordinary and fractional The standard definitions of the fractional differintegral do
differential equations. Normally, when the word “order” is not allow directimplementation of the operator in time-domain
used without a qualifier, itimplies the meaning of mathematicalsimulations of complicated systems with fractional elements.
order. Thus, in order to effectively analyze such systems, it is neces-

For linear dynamic systems that are described by ordinarysary to develop approximations to the fractional operators
differential equations (i.e., of integer mathematical order), theusing the standard integer order operators. In the work that
system mathematical order implies, or is equivalent to, thefollows, the approximations are effected in the Laplace
following: variable. The resulting approximations provide sufficientaccu-

racy for time domain hardware implementations.
(1) The highest derivative in the ordinary differential ~Some work has been done in this area already, but it has not

equation been highly organized. Oldham and Spanier (1974) and Piche
(2) The highest power of the Laplace varialgein the (1992) give several discrete-time approximations based on
characteristic equation numerical quadrature. In continuous time, engineers have used
(3) The number of initializing constants required for the network theory approximations (Carlson and Halijak, 1964;
differential equation Steiglitz, 1964; Carlson and Halijak, 1961; and Halijak, 1964).
(4) The number of singularities in the characteristic Morerecently Oldham and Spanier (1974), Ichise, Nagayanadgi,
equation and Kojima, 1971; and Charef, et al. (1992) have developed
(5) The length of the state vector other network theory approximations. Even more recently, a
(6) The number of energy storage elements discrete-time fractional calculus has been developed similar to
(7) The number of independent spatial directions in which the theory of linear multistep methods for numerical integration
a trajectory can move (Lubich, 1985, 1986, 1988a, and 1988Db).
(8) The number of devices that add® @nusoidal steady The approximation approach taken here is that of Charef, et
state phase lag al. (1992). Basically the idea is to approximate the system
(9) The number of devices that retain some memory of thebehavior in the frequency domain. This is done for a giNBn
past creating an approximation with Bode magnitude response roll

off of 20 timegy db/dec, which will consequently have a phase

The utility of the definition of mathematical order is that it shift of approximately 90 timeg degrees over the required
infers all the system characteristics for systems with onlyfrequency band. This approximation is created by choosing an
integer order components. initial breakpoint (the low frequency accuracy limit of the

Thus the benefit of having a definition for order for linear approximation), the allowable error in db’s, and the number of
ordinary differential equations is that it allows a direct under- s-plane poles in the approximation. The high frequency limit of
standing of the behavior of a given dynamic system. Unfortu-the usable bandwidth can be varied by changing the allowable
nately, for fractional differential equations, the order of the error and the number of poles. Thus an approximation of any
highest derivative does not infer (or is not equal to) all of thedesired accuracy over any frequency band can be achieved.
previously mentioned properties. Indeed, the most importantTable | gives approximations forsf/with g = 0.1 to 0.9 in
characteristic of order in integer order ordinary differential steps of 0.1. These were obtained by trial and error and are
equations is probably item (3) in the previous list (i.e., it reasonably good from 0.01 to 100 rad/sec. These approxima-
dictates the number of initializing constants which togethertions are used in the study that follows.
with the differential equations allow prediction of the future
behavior). In systems terminology, this information provides
the initial “state” of the system being analyzed. Clearly, the
order of the highest derivative in a fractional differential equa- A Fractional Chua System
tion does not have this property, nor does it predict the associ-
ated number of energy/memory elements associated with the Chua’s system is well known and has been extensively
fractional differential equation, nor does it infer the number of studied. The particular form to be considered here was pre-
integrations (even fractional) required to solve or simulate thesented by Hartley (1989) and used further for the study of
given fractional differential equation. Thus the issue of orderHartley and Mossayebi (1993). This system is different from
and the information required together with the fractional differ- the usual Chua system in that the piecewise-linear nonlinearity

ential equation to predict future behavior is fundamental and ids replaced by an appropriate cubic nonlinearity which yields
expected to be treated in detail at a later time. very similar behavior. It is represented in state space form as



prohibited a timely calculation of any exponents but the first.

%= GESH X—2X3E Since the order of this system was greater than three, these

B 7 B calculations were not pursued. In all cases, the one positive

exponent clearly indicated that the system was behaving cha-

_ otically. The numerical simulations also indicated that the

y=Xx-y+tz lower limit of the vector fractional derivativiewas between

0.8 and 0.9 for this system to remain capable of generating

. 100y chaos. The lowest value obtained for mathematical order to
Z=- 7 =-py yield chaos was 2.7 using the 0.9 fractional vector deriva-

tive. No upper limit was obtained. Phase plane plots for these

_ systems are given in figure 2.
It is studied here in two different system representa-

tions as discussed in the following sections. In all cases studied

B is defined to be 100/7 andis allowed to vary. Feedback Configuration

The feedback configuration is now considered. To change
the total system mathematical order, the separad@ufigure
1(b) was allowed to change powers, that is,

State Space Configuration

To study the effect of fractional derivatives on the dynamics
of this system, the state space configuration (fig. 1(a)) was
considered first. Here, the vector derivative was replaced by a

. o 1 1
vector fractional derivative as follows: Py
S s
3 . . . .
dx :aD + X = 2X B A variety of simulations were performed on the resulting
dtd g 7 g systems as discussed subsequently. Here, the approximations

fromtable | were used to represent the fractional integral where
again the approximations forsl/whenq > 1, were obtained
ﬂ _ by using 1$ times the approximation for<f*.

atd X-yrz Bifurcation diagrams for several of these systems are given

in figure 3. Here, a particular value @fvas chosen, and the
q parameter was varied to obtain the particular bifurcation plot.
d"z _ 100y _ By These diagrams were generated by simulation using Euler's
dtd 7 method and a simulation timestep of 0.001. These were veri-

fied by further reducing the timestep by an order of magnitude

with little change in the overall bifurcation structure. To obtain
Simulations were then performed usipg 0.8, 0.9, 1.0, and  these diagrams, the values of the outprdriable were plotted
1.1. The approximations from table | were used for the simula-whenever its slope changed sign. Although it is believed that
tions of the appropriatgth integrals. Whem < 1, then the the bifurcation diagrams are reasonably accurate and are
approximations were used directly. It should further be noted sufficiently accurate for this particular study, more correct
that approximations used in the simulations fa,1when diagrams could possibly be obtained by using more accurate
g > 1, are obtained by usingstimes the approximation for  approximations of the fractional derivative than those given in
1/s%1 from table 1. table | or a more accurate simulation. Observation of the

The results from this state space study verified that chaoshifurcation diagrams indicates behavior similar to that from

could indeed occur in a system of mathematical order less tharthe state space study. For the feedback configuration, decreas-
3. This was determined by computing the Lyapunov exponentsing the power of shifts the bifurcation diagram to the right as
for each of the simulations with= 0.9, 1.0, and 1.1, using the a function ofa, while the converse is also true. The limits on
method of Benettin, et al. (1990). Chaos is indicated when anythe system mathematical order to have a chaotic response as
of the Lyapunov exponents is greater than zero. These resultsneasured from the bifurcation diagrams are approximately 2.5
are given in table Il where the largest Lyapunov exponents are< n < 3.8. The overall behavior from the simulation studies is
given as a function of system order. In each case, the secondummarized in figure 4.
exponent was near zero. The 2.7 order system approximation An advantage to the feedback configuration is that it allows
had an additional six negative exponents which were not listed.easy system analysis using describing functions, as discussed
Also the 3.3 order system approximation was so large that itin Hartley and Mossayebi (1993). Here the idea is that the



frequency response of the linear block in the feedback configu-Concluding Remarks

ration is plotted in the Nyquist plane, together with minus one

over the appropriate describing function of the nonlinearity, as  This report has introduced the idea of fractional derivatives
in figure 5. The fractional order integral in the loop is handled from the dynamic systems viewpoint. It has been demonstrated
directly by taking the frequency response on the primary that the usual idea of system order must be modified when
Riemann sheet and essentially poses no complication or confufractional derivatives are present. The usual approach of calcu-
sion in application of the describing function approach. In other lating the mathematical system order by determining the

words, the fact that fractional powerssafre present does not
require any frequency domain approximation as in the time-
domain simulation; rather the fractional powersa#n be used

highest derivative in the system does not work in this situation.
It has been further demonstrated that chaos, as well as the
other usual nonlinear dynamic phenomena, can occur in sys-

as is in computing the frequency response of the linear blocktems with mathematical order less than three via Chua’s
In Hartley and Mossayebi (1993), it is shown that the important system. This is surprising given the usual nonlinear system
points from the nonlinearity of this system in the Nyquist plane paradigms concerning chaos and order. It is not clear at this

are

(1) Re[H(jw))] > —3.5,9n[H(jw)] = O, which indicates two

stable points ak = +/0.5.

(2) Re[H(jw))] < =3.5,9m[H(jw)] = O, which indicates a
Hopf bifurcation of the stable points of item (1) into a limit
cycle.

(3) Re[H(jw))] = =7, 9m[H(jw)] = 0, which indicates that
period doubling of the limit cycle of item (2) occurs (this
progresses into spiral chaos).

(4) Re[H(jw))] <£-14,9n[H(jw)] = O, which indicates merg-
ing of the spiral chaos into the double scroll behavior.

Extinction of the double scroll (meaning its disappearance) is
not directly predicted using the describing function approach,
but a reasonable approximate valueRgH(jw))] < -23,
Im[H(jw)] = 0. A diagram indicating the usage of the describing
function is given in figure 5.

Using these results and varying the power of the integrator in

the loop allowed a theoretical prediction of the simulation re-
sults of figure 4. These theoretical results are given in figure 6.
It should be noted that the qualitative features are very well

predicted using the describing function approach, and that the
r

quantitative results are reasonably close. Furthermore, fo
mathematical system order less than approximately 2.85, th
describing function approach predicted the appearance of
stable and unstable limit cycle @asncreased (via an apparent
saddle node bifurcation). These limit cycles coexist with each
of the stable fixed points. Eventually gaicreased further, the
unstable cycles merged with the stable fixed points via a
subcritical Hopf bifurcation, leaving unstable fixed points.
This entire process basically became a supercritical Hop

then verified in the simulations with this bifurcation structure
occurring for mathematical system order less than approxi-

point whether the chaos in fractional order systems should be
characterized differently than chaos in regular integer order
systems.

It should be noted that the describing function approach
usually requires at least —1°86f phase shift in the linear part
of the feedback loop to ever predict Hopf bifurcations, and
consequently chaos, for memoryless nonlinearities. Because
the linear part can be a nonminimum phase transfer function,
it is further conjectured that chaos can occur in systems with
mathematical order less than three and probably less than one.
Furthermore, the feedback configuration indicates that, as long
as the linear part of the loop has at least =t8@hase shift,
the possibility of chaos in the system depends primarily on the
nonlinearity and how its particular describing function be-
haves.

As has been demonstrated, the idea of fractional derivatives
requires one to reconsider dynamic system concepts that are
often taken for granted. Some of these concepts have been
discussed in this report. Some others that require much further
consideration are the concept of Lyapunov exponents for
fractional states, the use of fractional states in which to embed
attractors, and the relationship between fractional order and
fractal dimension.
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TABLE |.—FRACTIONAL OPERATORS WITH APPROXI-

MATELY 2 db ERROR FROMwv = 102 TO 1 rad/sec

1

220.4s" +5004s° + 50385 + 234.5s + 0.4840

0.1

1

%1 S +350.85" + 57425% + 42475 +147.7s + 0.2009

60.95s" +816.95° + 582,857 + 23.24s + 0.04934

0.2

1

%2 & +134.0s" +956.55% + 383557 + 8.953s + 0.01821

23.76s" + 224.95% +129.15% + 4.733s + 0.01052

0.3

1

s%3 &° +64.51s" +252.28% + 63,6157 + 1.104s + 0.002267

25.00s" + 558.55° + 664.25° + 44.15s + 0.1562

2§ +125.65" +840.65° +317.25° + 7.428s + 0.02343

15.97s" +593.25° +1080s” + 135.45+ 1

0

1

s® +134.3s" +1072s% + 543.45° + 20.10s + 0.1259

8.579s" + 255.68° + 405.35% + 35.93s + 0.1696

0.6

1

% & +04.02¢% + 472.95° +134.85% + 2.639s + 0.009882

5.406s" +177.65° +209.6s° + 9.197s + 0.01450

0.7

1 52355 +1453s° + 53065 + 254.9

0.8

1

1.766s> +38.27s + 4.914

%8 s +658.15% + 57007 + 658.25 + 1

0.9

s%9 &% +36.158% + 7.789s + 0.01000

%7 §° +88.128" + 27905 +33.305 +1.927s + 0.0002276

TABLE I.—LARGEST LYAPUNOV EXPONENTS FOUND IN THE
STATE SPACE CONFIGURATION FOR = 0.9, 1.0, AND 1.1
WHICH GIVES A TOTAL SYSTEM MATHEMATICAL
ORDER OF 2.7, 3.0, AND 3.3, RESPECTIVELY

Mathematical| Order of system a-used Exponents
‘ d L

system order| approximation A A A
2.7 9 12.75 | 0.338| —0.000201 -0.132
3.0 3 9.50 0.248| -0.00412| -3.07
3.3 18 7.00 | 0.318 (a) ()

@These values were not calculated.
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Figure 1.—System configurations for Chua's system which allow easy change of system order; g = 1 is the nominal Chua

(b)
system. (a) State space configuration. (b) Feedback configuration.
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Figure 2.—Phase plane projections for the state space configuration of Chua's system.
(t = 200, AT = 0.05.) (a) Total mathematical system order is 3.0, a = 9.5. (b) Total
mathematical system order is 3.0, « = 9.5.
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(d) Total mathematical system order is 2.7, a = 12.75.
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Figure 3.—Bifurcation diagram for the feedback configuration of Chua's system;
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mathematical system order 2.7.
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Figure 3.—Continued. Bifurcation diagram for the feedback configuration of Chua's
system; maximum and minimum of x plotted against «. (c) Fractional integral of order
0.8, total mathematical system order 2.8. (d) Fractional integral of order 0.9, total
mathematical system order 2.9.
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Figure 3.—Continued. Bifurcation diagram for the feedback configuration of Chua's
system; maximum and minimum of x plotted against «. (e) Fractional integral of order
1.0, total mathematical system order 3.0. (f) Fractional integral of order 1.1, total
mathematical system order 3.1.
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Figure 3.—Continued. Bifurcation diagram for the feedback configuration of Chua's
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1.2, total mathematical system order 3.2. (h) Fractional integral of order 3.1, total
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1.4, total mathematical system order 3.4. (j) Fractional integral of order 1.5, total
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Figure 4.—Bifurcation diagram in the a versus system mathematical order plane based on
simulation studies of the fractional Chua system. Note that the saddle-node and sub-
critical Hopf merge at 2.75.
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Figure 5.—Nyquist plane plot showing the frequency response of the
linear part of figure 1 (set of curved lines) for various g and « = 9.5;
and the describing function of the nonlinearity (solid line on real-
axis from 3.5 to -20 shown).



18 —
o Hopf to limit cycle
16 — O Period doubling
A Double scroll
——0O——Limit cycle saddle-node
14 —
12 —
(¢
10 —
8 —
6 —
4 I I I I I I I |
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

System mathematical order

Figure 6.—Bifurcation diagram in the « versus system mathematical order plane based on
describing function analysis of the fractional Chua system. Note that the saddle-node and
subcritical Hopf merge at 2.85.

21



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1996 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Chaos in a Fractional Order Chua System

6. AUTHOR(S) WU-505-62-50

Tom T. Hartley, Carl F. Lorenzo, and Helen Killory Qammar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center E—9532
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 NASA TP-3543

11. SUPPLEMENTARY NOTES
Tom T. Hartley, Department of Electrical Engineering, and Helen Killory Qammar, Department of Chemical Enginjeering,
University of Akron, Akron, Ohio 44325 (work funded by NASA Grant NAG3-1491); Carl F. Lorenzo, NASA Lewis
Research Center. Responsible person, Carl F. Lorenzo, organization code 2500, (216) 433—3733.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 66 and 31

This publication is available from the NASA Center for Aerospace Information, (301) 6211+0390.

13. ABSTRACT (Maximum 200 words)

This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to
include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates thaj systems
of "order" less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarificgtion of
the definition of order which can no longer be considered only by the total number of differentiations or by the highest
power of the Laplace variable.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Chaos; Dynamics; Nonlinear; Fractional calculus; Fractional order; Systems; Chua; 24

. . . . 16. PRICE CODE

Nonlinear dynamics; Fractional dynamics A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



