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Summary

Material characterization parameters obtained from natu-
rally flawed specimens are necessary for reliability evalu-
ation of nondeterministic advanced ceramic structural
components. The least squares best fit method is applied to
the three parameter uniaxial Weibull model to obtain the
material parameters from experimental tests on volume or
surface flawed specimens subjected to pure tension, pure
bending, four point or three point loading. Several illustrative
example problems are provided.    

Introduction

The objective of this report is to apply the least squares
best fit (LSBF) method to evaluate the parameters used in the
uniaxial Weibull three parameter model. These parameters,
scale factor σo, Weibull modulus m, and threshold (location)
parameter σu, are material dependent. Weibull two or three
parameter models are used to specify a probabilistic distribu-
tion for monolithic ceramic materials. The success in the use
of the two parameter model rather than the three parameter
model depends on the importance of ignoring the threshold
(location) parameter. Disregarding the threshold parameter is
conservative and simplifies matters. This simplification can
be justified only by comparing the predicted behavior of a
component with its observed performance.  

Equations are developed to obtain the three material
parameters from inert volume or surface flawed data. Inert
data imply fast fracture (no subcritical crack growth). The
inert data are obtained from experimental tests on specimens
subjected to either pure tension, pure bending, and four or
three point loading (fig. 1). Ideally the data are obtained
under conditions representative of the service environment.

Several applications are presented in the section entitled
EXPERIMENTAL APPLICATIONS. Experimental data are
analyzed for volume flaw failure of silicon nitride (SNW-
1000) specimens tested in four point bending (ref. 1). In
addition, analysis is made of surface flaw failure data of
silicon carbide specimens, annealed in both the longitudinal
and transverse direction and tested in three point bending
(Private communication from Sung Choi and Jonathan
Salem, NASA Lewis Research Center). The four point bend
volume flaw data are also used for a four point bend surface
flaw analysis to illustrate the application of the developed

equations. It is realized that these data are not representative
of the physical problem. 

Symbols 

A tensile surface area

b specimen thickness 

L beam length 

m Weibull modulus (shape parameter)

n number of inert data points

Pf probability of failure

V volume in tension

W specimen depth

x,y,z Cartesian coordinates

δ1 j,δ2 j,δ3 j lower limit of integral for jth specimen

σfj(x,y,z) stress distribution in the specimen j at fracture

σfjmax
maximum principal stress in specimen j at

fracture  
  
σfj compmax,

computed maximum principal stress in speci-
men j based on Pfj and assumed material
parameters 

σo scale parameter

σu threshold stress (location parameter)

σθ characteristic strength

Subscripts

assumed assumed

comp computed
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previous assumed previous value of assumed

j specimen designation

T tensile

v volume

s surface

Analysis Based on Three Parameter
Uniaxial Weibull Model

The three parameter uniaxial Weibull model is used to
describe the material inert strength probabilistic distribution.
For both volume and surface flawed specimens, least squares
best fit (LSBF) methods are developed to obtain the three
material parameters from experimental tests on pure tension,
pure bending, and four or three point loaded specimens. The
necessary and sufficient condition for a solution is satisfied
when the three computed parameters produce the lowest
value of the sum of the residuals squared, that is, when

σ σfj fj
j

n

compmax, max
–( )

=
∑

2

1

 = minimum, where n is the number

of specimens tested. The Pfj fj,
max

σ( ) data points are obtained

from  the  experimental  tests where  Pfj = (j – 0.3)/(n + 0.4).

Pfj andσfjmax
 are, respectively, the probability of failure and

maximum principal tensile stress in the jth specimen at fail-
ure. σfj compmax,  is the computed maximum failure stress based

on the value of Pfj and the computed inert strength material
parameters. 

Pure Tension (Fig. 1(a)), Volume Flaws 

P
x y z

dV

x y z

fj
fj uv

ovv

m

fj uv

Tj

v

= − −
−

















≥

∫1 1exp
( , , )

( )

( , , )

σ σ
σ

σ σ

where VTj is the volume in tension of the jth specimen with a
stress distribution throughout the volume denoted by
σfj(x,y,z), σuv  is the threshold stress, σov  is the scale factor,
and mv  is the Weibull modulus. For this case  σfj(x,y,z) =
σfjmax  and the tensile gage volume of specimen j is VTj =
L2bjWj.  Hence
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The following system of n linear equations is solved in a
LSBF sense:
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In matrix notation {Y} = [A] {X}, where the jth term in the

column vector {Y} is y
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 The equation that must be satisfied to

obtain the LSBF solution is

{ } { } ( )X A A A YT T= [ ] [ ]−1
4

where superscript T defines the transpose.
The answer is obtained in the following manner:  Assume a

value for σuv, and solve for mv and σov. With these values,
compute the model failure stresses σfj compmax,

 at all of the (n)
Pfj data points, where
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Evaluate the sum of the squares of the residuals, where

Sum fj fj
j

n
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Repeat the process for another value of σuv. Compute the
new sum of the squares of the residuals (eq. (6)). Continue
until the parameters (mv,σov,σuv) produce the minimum
value of the sum of the residuals squared.
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Pure Tension (Fig. 1(a)), Surface Flaws 
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For pure tension, σfj(x,y,z) = σfjmax
, and the area in tension

is ATj = 2 L2(Wj + bj) where L2 is the gage length, W is the
width, and b is the thickness. Hence,
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Equation (8) is the basis of a LSBF evaluation of the Weibull
parameters. From the inert data, a set of n linear equations is
obtained. In matrix notation {Y} = [A] {X} where the jth
term of the column vector {Y} is ln [ln (1 – Pfj)–1/ATj]   and

vector X is
m

m
s
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{ }

−






ln
.

σ
 The matrix [A] is the same as

that in equation (3), except that the subscript v is replaced by
s. The solution is obtained by the same method as that for the
volume flaw solution. Assume σus, and solve for ms and σos.
With these values, compute the failure stresses, σfj compmax,

for all n specimens. The computed failure stress for the jth
specimen is
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Evaluate equation (6), the sum of the residuals squared.
Continue the process for another value of  σus. Compute the
sum of the residuals squared. Continue until the parameters
(ms,σos,σus) produce the minimum value of the sum by
equation (6).

Pure Bending (Fig. 1(b)), Volume Flaws   

Substituting the expressions dV = L2bj dy and  σfj (x,y,z)
= 2 σfjmax

y/Wj into equation (1) results in
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where δ1j = σuvWj/(2 σfjmax
) and VTj = L2b jWj/2. The

following expression is derived from equation (10):
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The jth term of the column vector {Y} is ln [ln (1 – Pfj)–1/

VTj] + ln σfjmax
 and the vector {X} is 
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The matrix [A] is the same as in equation (3). Assume  σuv,
and from equation (11), solve the system of n linear
equations in a LSBF sense, where j varies from 1 to n. In
matrix notation, {Y} = [A] {X}, and the solution to this set
of equations is obtained from equation (4). The final solution
is the set of parameters associated with the minimum sum of
the squares of the residuals defined by equation (6). They are
obtained by the following procedure. Assume σuv, and solve
for mv and σov. With these values compute the predicted
failure stresses σfjmax  at all (n) Pfj data points. A simple

method is to assume σfj assumedmax,
,  and solve for σfj compmax,

where
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The next assumed value is σfj assumedmax,
= 0.5 σfj compmax,

+[
σfj previous assumedmax, ] . Repeat this process until σfj compmax,

 is

within some specified tolerance of σfj assumedmax,
.  Then

compute the sum of the residuals squared by means of
equation (6). Repeat all of the previous steps until the
minimum value of the sum of the residuals squared is
obtained. The parameters (mv,σov,σuv) associated with this
minimum are the solution.

Pure Bending (Fig. 1(b)), Surface Flaws  

From equation (1)
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where ATj is the tensile surface area of specimen j.
Therefore, considering both the side and bottom surfaces of
the specimen yields
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Solve in a LSBF sense the set of linear equations obtained by
means of equation (15) and denoted in matrix form by
{Y} = [A] {X}. The jth term of the column vector {Y} is ln
[ln (1 – Pfj)–1/(L2Wj)] – ln [(1 – σus/σfjmax

) + (1 + ms)bj/Wj]

and the vector { } ln .X is
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eters are obtained in the following way: Assume σus, and
keep this value fixed. To evaluate the vector {Y}, assume a
value for ms (ms,assumed) based on the two parameter
solution. Evaluate the column vector {Y} and the matrix [A].
Solve for the vector {X} by equation (4). Compare the
computed value of the Weibull modulus ms,comp with
ms,assumed. Repeat this process until both values, ms,comp and
ms,assumed, are within some specified tolerance. With these
parameters (ms,σos,σus) and Pfj, compute the n values of
σfj compmax,
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1

1

Assume a value forσfj assumedmax,
,  and iterate until σfj compmax,

 is

within some specified tolerance of σfj assumedmax,
.  Obtain the

sum of the residuals squared by equation (6). Repeat the
process. The parameters that produce the minimum value of
the sum of the residuals squared are the solution.

Four Point Bend Specimen Fig. 1(c)), Volume Flaws
  

Substituting the inner span and outer span stress distribu-
tions σ fj (x,y,z) = 2σfjmax

y/Wj and σfjmax
(x,y,z) =
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Xy/(L1Wj) into equation (1) results in
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Solve the set of linear equations obtained by equation (18),
denoted in matrix form by {Y} = [A] {X}. For constant
values L1 and L2, the jth term of column vector {Y} is
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The jth row of matrix [A] is ln .
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stress σuv and an appropriate value for the Weibull modulus
mv,assumed (based on the two parameter solution). Evaluate
column vector {Y} and matrix [A]. Solve for solution vector
{X} by equation (4). With σuv fixed, solve for mv,comp.
Iterate until mv,comp is within a given tolerance of mv,assumed.
To compute the sum of the squares of the residuals by
equation (6), we obtainσfj compmax,  from the following

equation:
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Assume a value ofσfj assumedmax,
,  and iterate until σfj compmax,

 is

within some specified tolerance of σfj assumedmax,
. Evaluate the

sum of the residuals squared by equation (6). Repeat the
process. The parameters that produce the minimum value of
the sum of the residuals squared are the solution.

If all failures occur within the inner span and the tensile
stress distribution outside the inner span is neglected
(L1 = 0.0), equation (17) becomes the pure bend solution, that
is,
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Equation (20) is the same as equation (11).

Three Point Bend  (Fig. 1(d)), Volume Flaws 
 

Substituting σfjmax
(x,y,z) = 4σfjmax

/(L1Wj) into equation
(1) results in
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where  δ1j  = σuvWj/(2 σfjmax
) and δ2j  = L1Wjσuv/(4 σfjmax

y).

With VTj = L1bjWj/2, integration of equation (21) results in
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Equation (22) is the limit case of equation (18) with L2  = 0.0.
Solve the set of linear equations denoted in matrix notation
by {Y} = [A] {X} by the LSBF method (eq. (4)). The jth
value of column vector {Y} is

y
P

V y

y

W
dyj

fj

Tj j

uv

fj

m
W

v

j

j

=
−( )















− −






























− +

∫ln
ln

ln
max

1 1 2
1 12

1

σ
σ

δ

and the vector is { } ln .X
m

m
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

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



1 σ To obtain an

initial value of mv, let σuv = 0 and solve for the uniaxial
Weibull two parameter distribution satisfying equation (4).
Starting with this computed value of mv as mv,assumed and a
fixed value of σuv, evaluate the integral (eq. (22)) in column
vector {Y}. The integral is evaluated numerically between
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the lower limit δ1j and upper limit Wj/2. Obtain from solution
vector {X}, mv,comp. A solution is obtained when mv,comp is
within some specified tolerance of mv,assumed. When this
does not occur, the next choice for mv,assumed is 0.5 (mv,comp
+ mv,previous assumed). Iterate until mv,assumed is within some
specified tolerance of mv,comp. To compute the sum of the
residuals squared by equation (6), we evaluate σfj compmax,

 in

the following way:  For the n data values (Pfj,σfjmax
) where

j = 1, n, assume σfj assumedmax,
= σfjmax

. The lower integration

limit is  δ1j  = σuvWj/(2σfj assumedmax,
). With this limit, solve

for σfj compmax,
.
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Assume a new value forσfj assumedmax,
 = 0.5 ( σfj previous assumedmax,

+ σfj compmax,
).  Repeat the process, integrating over the new

limit δ1j  until the previous assumed value is within some

specified tolerance of the computed new value (σfj compmax,
.

σfj assumedmax,
). Compute the sum of the residuals squared by

equation (6). Repeat the process assuming a new value for
σuv, and continue until the minimum sum of the residuals

squared by equation (6) is obtained. When this occurs, the
values of mv, σuv, and  σov are the three material parameters. 

Four Point Bend Specimen (Fig. 1(c)), Surface Flaws 
  

Substitute into equation (7) the inner span side surface
uniaxial tensile stress distribution σfj (x,y,z) = 2σfjmax  y/Wj ,

the bottom surface tensile stress distribution σfj(x,y,z) =

σfjmax
 and the outer span uniaxial tensile surface stress distri-

butions   σfj(x,y,z)   =   4σfjmax
Xy/(L1Wj)    and  σfj(x,y,z)  = 

2σfjmax
x/L1.  Normalizing the area with respect to L1Wj

results in the following equation:
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ln
ln

ln
max

max

1 1 2

1
1

1

1

1

12

2 1

1

1
2

1

1

−( )















− −




















+
+

−








 +

+( )

× −

− +

+

∫
P

L W y

y

W
dy

L W L b

L W

m L b

L W

fj

j j

us

fj

m
W

j j

j

us

fj

m
s j

j

us

fj

s

j

j

s

σ
σ

σ
σ

σ
σ

δ

maxmax
max

ln ln ( )



















= − +( )[ ]
m

s fj os
m

s

s

sm mσ σ 1 25

Solve the set of linear equations obtained from equation (25)
(denoted by {Y} = [A] {X}, in matrix form) by the LSBF
method (eq. (4)). The jth value of column vector {Y}  is
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and vector X
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ln .σ 1 Row j of matrix [A] is

[σfjmax
 1.0]. Assume a value for the threshold stress σus and

an appropriate value for the Weibull modulus, ms,assumed

(based on the two parameter solution). Evaluate column
vector {Y} and matrix [A]. The vector {X} is evaluated by
equation (4). With σus fixed, solve for ms,comp. When

ms,comp is within a given tolerance of ms,assumed, a solution

results. To compute the sum of the squares of the residuals by
equation (6), the values of σfj compmax,

 are obtained from the

following equation:
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To determine σfj compmax,
, the  process is the same as that

outlined for the four point bend, volume flawed specimen.
Likewise, the evaluation of the material parameters is the
same as that outlined for the four point bend, volume flawed
specimen.

Three Point Bend Specimen (Fig. 1(d)), Surface Flaws

From equation (1) 
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with  δ1j  = σusWj/(2 σfjmax
).  δ2j y = σus LjWj/(4 σfjmax
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In matrix form {Y} = [A] {X} and the jth term of column 
vector {Y} is
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ln .σ 1 The solution to this set of  

linear equations denoted symbolically by {Y} = [A] {X} is
solved by equation (4). Starting with σus = 0.0, solve for ms
and the scale factor σos. Next, assume a value for σus. The
integrand is a function of ms. Starting with an assumed value
of ms, iterate until ms,assumed is within some specified limit of
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ms,comp. Then evaluate the scale factor. To find the value of
σfj compmax,  associated with the probability of failure Pfj, and
computed material parameters (ms,σos,σus), satisfy the
following condition:
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Assume values for σfj compmax,
 and iterate until the left side is

equal to the right side constant. Compute the sum of the
residuals squared via equation (6). Repeat the process
assuming a new value for σus, and continue until the mini-
mum value of the sum of the residuals squared is obtained.
When this occurs, the parameters (ms,σus,σos) are the
solution.

Three Parameter Specimen Uniaxial
Weibull Model

This report deals with material properties that are
independent of the component geometry. However, a simple
model is often used to obtain the inert strength probabilistic
distribution of a given component (refs. 2 and 3). The charac-
teristic strength parameter σθ in this model is component
dependent and is not a material property. For completeness,
this model is briefly mentioned. This model equation for
volume flaws is formulated as

Pfj
fj uv

v

mv

= − −
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
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
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1 30exp ( )max
σ σ

σθ

For surface flaws, subscript v is replaced by subscript s.
Since the characteristic strength is not a material property,
this model has its limitations. It is commonly used and is
mentioned for completeness. 

Experimental Applications

The examples in this section make use of some of the
developed equations. Inert failure data are analyzed from the
following Modulus of Rupture (MOR) bar data:

(1) Four point bend room temperature failure data of
sintered silicon nitride, table I (ref. 1). All failures were due
to volume flaws and occurred within the inner span. These
data were also used for four point bend surface flaw analysis
to illustrate the application of the developed equations. 

(2) Three point bend transverse annealed silicon carbide
data at 1300 °C , table II (Private communication from Sung
Choi and Jonathan Salem, NASA Lewis Research Center).
All failures were caused by surface flaws.

(3) Three point bend longitudinal annealed silicon carbide
data at 1300 °C, table III (Private communication from Sung
Choi and Jonathan Salem, NASA Lewis Research Center).
All failures were caused by surface flaws.

To develop confidence in the method developed in this
report, comparisons were made with the pure bend results
from reference 1. The equations for the four point bend and
three point bend specimens were then developed and
programmed. 
 
Sintered Silicon Nitride (Pure Bend Analysis, Volume
Flaws, Table I) 

Monolithic silicon nitride data (SNW-1000, GTE Wesco
Division, table I) obtained from reference 1 are used to com-
pare the results of various LSBF techniques. All of the data
in table I contain failures that occurred within the inner span.
In reference 1, pure bend loading (fig. 1(b)) was therefore
assumed applicable to these data. The three material parame-
ters were computed using Cooper’s method (ref. 4), a modi-
fied LSBF approach (ref. 5), and the method developed
herein. Table IV summarizes the results of the three tech-
niques used in the analysis of these data and the results
obtained herein of the two parameter model (σuv = 0). Fig-

ure 2 is a plot of the data points and the cumulative Weibull
two parameter distribution curve. Figure 3 is a plot of the
data points and the cumulative three parameter Weibull
distribution curve.        

Silicon Carbide (Three Point Bend Surface Flaws, 
Tables II and III)

Table V summarizes the results obtained for the two and
three parameter uniaxial Weibull models. The cumulative
distribution curves for three point bend data (Private
communication from Sung Choi and Jonathan Salem, NASA
Lewis Research Center) for transverse and longitudinal
annealed silicon carbide and the data points are plotted in 
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figures 4 to 7. The two parameter distribution curves are
plotted in figures 4 and 6. The three parameter distribution
curves are plotted in figures 5 and 7. 

Sintered Silicon Nitride (Four Point Bend Analysis,
Volume Flaws, Table I)

Table VI summarizes the results for the two and three
parameter uniaxial Weibull models. Figure 8 is a plot of the
two parameter cumulative distribution curve and data points.
Figure 9 is a plot of the three parameter cumulative distri-
bution curve and data points.

Sintered Silicon Nitride (Four Point Bend Analysis,
Surface Flaws, Table I) 

The four point bend volume flaw data are also used for a
four point bend surface flaw analysis to illustrate the applic-
ation of the developed equations. It is realized that these data
are not representative of the physical problem. Table VII
summarizes the results for the two and three parameter
uniaxial Weibull models applied to these data. Figure 10 is a
plot of the two parameter cumulative distribution curve and
data points. Figure 11 is a plot of the three parameter
cumulative distribution curve and data points.

Discussion and Conclusions

Solutions are obtained from inert failure data based on the
minimizing of the sum of the residuals squared as a necessary
and sufficient condition. There are programs to evaluate the
three parameters fitted to the specimen uniaxial Weibull
model (eq. (30), refs. 2 and 3). The characteristic strength,
σθv,  a parameter in this model, is not a material property but

component dependent. The results obtained using this model
are only applicable to that specific component made from the
same test material. 

In this report, material property parameter estimation
methods are developed based on the uniaxial Weibull model
(eq. (1)). The parameters so obtained are applicable to any
component made from the same test data material. For the
sintered silicon nitride four point bend inert volume flaw
failure data (table I), Cooper’s method (ref. 4), a modified
LSBF method (refs. 1 and 3), and the approach developed
herein were used to minimize the sum of the squares of the
residuals based on the pure bend solution (all failures 

occurred within the inner span). Comparing the results
reveals that the largest variation of the sum of the squares of
the residuals (table IV) was less than 3 percent. Further
comparison of the results of the three methods indicated the
approach used herein was slightly less conservative in the
low probability of failure regions (Pf < 0.05) and slightly
more conservative in the upper region (Pf > 0.25). Figures 2
and 3 are plots of the data points and the computed
cumulative distribution curves for the two and three
parameter uniaxial Weibull models based on the pure bend
solution. 

The results for the silicon carbide three point bend surface
flaw data (tables II and III) from longitudinal and transverse
annealed specimens are summarized in table V. Comparing
the two and three parameter models reveals that there are
large differences in the Weibull modulii and scale factors.
The cumulative distribution curves are plotted in figures 4
to 7. Superimposing the two and three parameter curves
reveals small but significant differences because most
designs are based on the very low probability of failure
region.

The four point bend solutions to the two and three
parameter uniaxial Weibull models applied to the data in
table I are summarized in table VI.  The cumulative distribu-
tion curves are plotted in figures 8 and 9. Figures 2 and 3 are
the cumulative distribution curves for the pure bend solution.
A comparison of figure 2 with figure 8 and figure 3 with
figure 9 indicates the four point bend results for both cases
are slightly more conservative in the lower probability of
failure region and slightly less conservative in the higher
probability of failure region.   

Four point bend volume flaw data in table I are used for a
four point bend, surface flaw analysis to illustrate the
application of the developed equations. It is realized that
these data are not representative of the physical problem. The
results are plotted in figures 10 and 11 and summarized in
table VII.

Justification for applying the three parameter model rather
than the two parameter model will depend on which model
better predicts the behavior of a component with its observed
performance.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, March 1996
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TABLE I.—FOUR POINT
BEND SILICON NITRIDE
VOLUME FLAW INERT

FAILURE DATA (fig. 1(a))
[L1 = 20.8 mm, L2 = 19.6 mm,

b = 4.0 mm, W = 3.1 mm.]

Specimen
number

Failure strength,
MPa

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

613.9
623.4
639.3
642.1
653.8
662.4
669.5
672.8
681.3
682.0
699.0
714.5
717.4
725.5
741.6
744.9
751.0
761.7
763.9
774.2
791.6
795.2
829.8
838.4
856.4
868.3
882.9

TABLE III.—THREE POINT BEND SILICON
CARBIDE SURFACE FLAW LONGITUDI-

NAL ANNEALED INERT
FAILURE DATA (fig. 1(c))
[ Span, L1 = 19.936 mm. ]

Specimen
number

  

Thickness, 
bj,
mm

Depth, 
Wj,
mm

Failure
load, 

kg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2.999
2.998
3.001
2.998
2.998
3.000
3.000
3.003
3.001
3.002
2.991
2.994
2.992
2.993
2.995
2.996
2.996
2.996
2.997
2.997
3.002
3.001
3.000
3.002
3.003
3.000
3.000
3.000
3.002
3.002
2.992
2.993
2.992
2.994
2.975

1.866
1.866
1.867
1.868
1.869
1.863
1.871
1.870
1.863
1.863
1.866
1.864
1.866
1.866
1.868
1.869
1.870
1.871
1.871
1.872
1.873
1.874
1.867
1.871
1.864
1.864
1.864
1.865
1.864
1.863
1.859
1.868
1.868
1.869
1.870

12.98
14.55
17.18
15.53
14.10
15.68
15.98
16.95
17.25
12.00
15.75
15.23
14.78
14.25
14.93
12.15
15.38
14.78
14.70
12.90
 9.98
10.95
15.53
14.40
13.50
12.53
12.90
13.95
14.70
12.45
12.75
13.95
15.53
17.55
12.08

TABLE II.—THREE POINT BEND SILICON
CARBIDE SURFACE FLAW TRANSVERSE

ANNEALED INERT FAILURE DATA 
(fig. 1(c))

[Span = L 1 = 19.936 mm.]

Specimen
number

Thickness, 
bj, 

mm

Depth,
Wj, 

mm

Failure
load, 
kg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

2.991
2.999
2.999
2.999
3.000
2.995
2.996
2.998
2.997
2.999
2.997
2.998
2.998
2.999
2.995
2.994
2.998
2.997
2.994
2.997
2.999
3.001
3.000
3.000
2.993
2.993
2.995
2.996
2.994
2.996
2.996
2.995
2.996
2.994

1.873
1.875
1.873
1.877
1.874
1.871
1.875
1.874
1.879
1.875
1.874
1.877
1.877
1.879
1.876
1.874
1.881
1.876
1.877
1.876
1.879
1.875
1.877
1.875
1.871
1.879
1.879
1.876
1.877
1.877
1.872
1.874
1.876
1.878

14.25
15.00
16.20
14.85
15.08
13.13
14.18
15.00
14.78
11.63
12.15
14.33
14.33
13.23
12.83
15.75
16.23
12.83
12.75
13.05
16.05
14.85
16.23
13.20
17.63
12.30
16.05
15.08
13.05
10.05
12.75
17.70
15.30
11.55
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TABLE IV.—WEIBULL PARAMETERS OBTAINED FROM SILICON NITRIDE (SNW-1000) FOUR POINT BEND VOLUME
FLAW INERT FAILURE DATA  (TABLE I) 

[Data in table I are analyzed as a pure bend solution over the inner span.]

The probability fo failure for a given value of σfjmax
is defined asPfj

ov
mv

VTj

mv

fj uv
mv

fj
= − −

+

−
+







( )















1 0
1

1

1

. exp
max

maxσ

σ σ

σ

Pure bend solution 
(volume flaws, fig. 1(b))

Weibull 
modulus, 

mv

Scale factor,
  σov, 

MPa-m3/mv

Threshold stress,
σuv,
MPa

  

Sum of residuals squared,

σ σf f
j

j
computed data

−( )
=
∑ 2

1

27

Starlinger, et al. and Cooper - LSBF (ref. 1)   1.625     0.00258276 560.84      2684.4

Starlinger, et al. - Modified LSBF (ref. 1)   1.677     0.00370464 558.08      2664.0

LSBFa   1.608     0.00218469   565.195      2743.7

Two parameter LSBF methodb 11.306 150.1733   0.0 13440

aLSBF applied to eq. (11).
bσuv set equal to zero in eq. (11).

 TABLE V.—WEIBULL PARAMETERS OBTAINED FROM THREE POINT BEND SILICON CARBIDE
SURFACE FLAW INERT FAILURE DATA (TABLES II AND III) 

The probability of failure for a given value of σfjmax
defined as 

Pfj
fjmax

os

ms
1

y

2y

Wj

us

fj

1 ms

dy
b j

Wj

us

fjmax

1 ms

j

Wj

L jWj

1 ms

= − − −

+

+ −

+

∫




 ( )

























































+
1 0 1

1

2
. exp

max

σ

σ

σ

σ

σ

σδ

where δ
σ

σ1
2

j
usWj

fj
=

max

 

LSBF  best method 
(surface flaws, 

fig. 1(d))

Weibull 
modulus,

ms 

Scale factor,
σos,

MPa - m2/ms 

   

Threshold 
stress,
σus,

MPa
   

Sum of residuals
squared,

σ σfcomputed fdata jj

n
−

=





∑

2

1

Transverse-annealed two-
  parameter model 

9.294 114.52     0.0 2665

Transverse-annealed three- 
  parameter model 

4.024    11.71 190.0 1942

Longitudinal-annealed two-
  parameter model

9.161 114.14        0.0 1417

Longitudinal-annealed three-
  parameter model 

5.893    39.78 120.0  1259
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TABLE VI. —WEIBULL PARAMETERS OBTAINED FROM SILICON NITRIDE (SNW-1000) FOUR 
POINT BEND VOLUME FLAW INERT FAILURE DATA (TABLE I) 

The probability of failure for a given value of σfjmax
is defined as 

Pfj
fj

ov

mv L b jWj

mv y

y

Wj

uv

fj

mv

dy
L

L
uv

fj

mv

j

Wj

= − −








 +( ) −













+

+ −










+

∫







































1
1

2 1

1 2
1

2

1
1

1

1

2
exp max

max max

σ

σ
σ

σ
σ

σδ

where δ
σ

σ1
2

j
uvWj

fj
=

max

LSBF method
(volume flaws, 

fig. 1(c))
 

Weibull
modulus,

mv

Scale factor, 
  σov,

MPa - m3/mv

Threshold stress,
σuv,
MPa

   

Sum of residuals
squared,

σ σfjmax,com fjmax j

2

p
−

=
( )∑

j 1

27

Weibull two 
   parameter model

10.841 141.713 0.0 11712.5

Weibull three
  parameter model

1.443 0.0006804 564.0 2038.5

TABLE VII.—WEIBULL PARAMETERS OBTAINED FROM SILICON NITRIDE (SNW-1000) FOUR POINT BEND
VOLUME FLAW INERT FAILURE DATA

[For illustrative purposes the data in table I are analyzed as surface flaw inert failure data.] 

The probability of failure for a given value of σfjmax
 is defined as 

Pfj
fjmax

os

ms L1Wj

1 ms

2y

Wj

us

fj

ms

dy
L2Wj L1b j

L1Wj

us

fjmax

1 ms

j

Wj

1 ms
L2b j

L

= − −
+

−

+

+
+

−

+

∫

+ +





 ( )







































( )

1
1

1

1

1

2
exp

max

    

σ

σ

σ

σ

σ

σδ y

11Wj

us

fj

ms

1 −
































σ

σ
max

where δ
σ

σ1
2

j
usWj

fj
=

max

LSBF method
(surface flaws, 

fig. 1(c))

Weibull 
modulus, 

ms

Scale factor,
σos,

MPa - m2/ms 
  

Threshold stress,
σus,
MPa

   

Sum of residuals squared,

σ σfj fjax,comp maxm
j

−
=

( )∑
j

2

1

27

Weibull two 
  parameter model

10.84 325.23 0.0 12067.0

Weibull three
  parameter model

 2.00 1.69 575.0 1928.3
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Figure 1.—Specimen loading and geometry. (a) Pure tension. (b) Pure bend silicon nitride (SNW-1000) specimen;

   L2 = 19.6 mm, b = 4.0 mm, W = 3.1 mm. (c) Four point bend silicon nitride (SNW-1000) specimen; L1 = 20.8 mm,

   L2 = 19.6 mm, b = 4.0 mm, W = 3.1 mm (table I). (d) Three point bend silicon carbide specimen; L1 = 19.936 mm 

   (tables II and III contain Fj, bj, and Wj values).
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Figure 2.—Distribution curve for two parameter Weibull model from volume flawed inert silicon 

   nitride (SNW-1000) data via specimens subjected to pure bend analysis over inner span (Fig. 1(b), 

   table I). Weibull modulus mv = 11.306; scale factor sov = 150.173 MPa–m3/mv; threshold stress 

   suv = 0.0 MPa; sum of residuals squared = 13440.
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Figure 3.—Distribution curve for three parameter Weibull model from volume flawed inert silicon 

   nitride (SNW-1000) data via specimens subjected to pure bend analysis over inner span (Fig. 1(b), 

   table I). Weibull modulus mv = 1.608; scale factor sov = 0.0021847 MPa–m3/mv; threshold stress 

   suv = 565.2 MPa; sum of residuals squared = 2744.
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Figure 4.—Distribution curve for two parameter Weibull model from surface flawed inert transverse   

   annealed silicon carbide data via specimens subjected to three point bend analysis (Fig. 1(d), 

   table II). Weibull modulus ms = 9.294; scale factor sos = 114.5 MPa–m2/ms; threshold stress 

   sus = 0.0 MPa; sum of residuals squared = 2665.
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Figure 5.—Distribution curve for three parameter Weibull model from surface flawed inert transverse   

   annealed silicon carbide data via specimens subjected to three point bend analysis (Fig. 1(d), 

   table II). Weibull modulus ms = 4.024; scale factor sos = 11.708 MPa–m2/ms; threshold stress 

   sus = 190.0 MPa; sum of residuals squared = 1942.
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Figure 6.—Distribution curve for two parameter Weibull model from surface flawed inert longi- 

   tudinal annealed silicon carbide data via specimens subjected to three point bend analysis

   (Fig. 1(d), table III). Weibull modulus ms = 9.161; scale factor sos = 114.14 MPa–m2/ms;

   threshold stress sus = 0.0 MPa; sum of residuals squared = 1417.

0.2

0.0

0.4

0.6

0.8

1.0

250 300 350 400 450 500

P
ro

b
ab

ili
ty

 o
f 

fa
ilu

re
, P

f 

Failure stress, sf, MPa

Figure 7.—Distribution curve for three parameter Weibull model from surface flawed inert longi-

   tudinal annealed silicon carbide data via specimens subjected to three point bend analysis

   (Fig. 1(d), table III). Weibull modulus ms = 5.893; scale factor sos = 39.78 MPa–m2/ms;

   threshold stress sus = 120.0 MPa; sum of residuals squared = 1259.
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Figure 8.—Distribution curve for two parameter Weibull model from volume flawed inert silicon 

   nitride (SNW-1000) data via specimens subjected to four point bend analysis (Fig. 1(c), table I). 

   Weibull modulus mv = 10.84; scale factor suv = 141.7 MPa–m3/mv; threshold stress

   suv = 0.0 MPa; sum of residuals squared = 11713.
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Figure 9.—Distribution curve for three parameter Weibull model from volume flawed inert silicon 

   nitride (SNW-1000) data via specimens subjected to four point bend analysis (Fig. 1(c), table I).    

   Weibull modulus mv = 1.443; scale factor sov = 0.000680 MPa–m3/mv; threshold stress

   suv = 564.0 MPa; sum of residuals squared = 2039.
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Figure 10.—Distribution curve for two parameter Weibull model from volume flawed inert silicon nitride (SNW-

   1000) data via specimens subjected to four point bend analysis. As an illustrative example these data were 

   analyzed as if they came from surface flawed specimens (Fig. 1(c), table I). Weibull modulus ms = 10.84;

   scale factor sos = 325.2 MPa–m2/ms; threshold stress sus = 0.0 MPa; sum of residuals squared = 12067.

Figure 11.—Distribution curve for three parameter Weibull model from volume flawed inert silicon nitride (SNW-

   1000) data via specimens subjected to four point bend analysis. As an illustrative example these data were 

   analyzed as if they came from surface flawed specimens (Fig. 1(c), table I). Weibull modulus ms = 1.997;

   scale factor sos = 1.6895 MPa–m2/ms; threshold stress sus = 575.0 MPa; sum of residuals squared = 1928.
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Least Squares Best Fit Method for the Three Parameter Weibull Distribution:
Analysis of Tensile and Bend Specimens With Volume or Surface Flaw Failure

Bernard Gross
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Ceramic volume flaws

Bernard Gross, Distinguished Research Associate.  Responsible person, John P. Gyekenyesi, organization code 5250,
(216) 433–3210.

Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation
of nondeterministic advanced ceramic structural components. The least squares best fit method is applied to the three
paramenter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface
flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative
example problems are provided.


