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Summary Introduction

The Integrated Force Method has been developed in recent The finite element stiffness method, which is based on an
years for the analysis of structural mechanics problems. Thimssumed displacement field, has become the method of choice
method treats all independent internal forces as unknowrfor solving a wide variety of problems in structural mechanics.
variables that can be calculated by simultaneously imposingrhe advantages of the stiffness method include (1) the capabil-
equations of equilibrium and compatibility conditions. In this ity to efficiently and accurately model domains with complex
paper a finite element library for analyzing two-dimensional geometric configurations and varying material properties and
problems by the Integrated Force Method is presented(2) the capability to accurately analyze problems with geo-
Triangular- and quadrilateral-shaped elements capable of modmetrical and material nonlinearities. The development of finite
eling arbitrary domain configurations are presented. The elestiffness elements and their corresponding formulations has
ment equilibrium and flexibility matrices are derived by been a subject of extensive research, much of which has been
discretizing the expressions for potential and complementarysummarized in textbooks such as references 1 to 3.
energies, respectively. The displacementand stress fields within Shortcomings of the assumed displacement method have
the finite elements are independently approximated. The disbeen observed in the analyses of certain classes of problems,
placement field is interpolated as it is in the standard displacesuch as modeling nearly incompressible materials, bending of
ment method, and the stress field is approximated by usinghin plates, and optimizing structures (refs. 4 and 5). Moreover,
complete polynomials of the correct order. A procedure thatsince stresses are calculated indirectly by using displacement
uses the definitions of stress components in terms of an Airyderivatives, the accuracy of stress predictions may be reduced.
stress function is developed to derive the stress interpolatiomwo alternative finite element formulations may be utilized to
polynomials. Such derived stress fields identically satisfy theanalyze the aforementioned problems and to calculate stress
equations of equilibrium. Moreover, the resulting element more accurately: (1) the hybrid stress method (refs. 6 to 8), and
matrices are insensitive to the orientation of local coordinate(2) the force method (refs. 9 to 11). Because both of these
systems. A method is devised to calculate the number of rigidormulations have certain disadvantages compared to the
body modes, and the present elements are shown to be free a§sumed displacement method, their use and availability in
spurious zero-energy modes. A number of example problemgeneral purpose programs has been limited. In the hybrid
are solved by using the present library, and the results arenethod, the flexibility matrix must be inverted in order to
compared with corresponding analytical solutions and with generate the element stiffness matrix; this can become a com-
results from the standard displacement finite element methodputational burden, especially if high order approximations of
The Integrated Force Method not only gives results that agreatress fields are required. In the standard force method, on the
well with analytical and displacement method results but alsoother hand, an auxiliary statically determinate structure and a
outperforms the displacement method in stress calculations. corresponding set of redundant forces must be selected. This



process is not easily adapted to computer automation. Sever@eve|opment of the Finite Elements
attempts have been made to improve the process by which

redundancies are selected. The pertinent formulations wer&overning Equations of the Integrated Force Method
summarized by Kaneko et al. (ref. 5). All of these procedures,
however, either resulted in matrices with certain undesired The governing equations of the Integrated Force Method are
properties or lacked a physical interpretation, which made thenbriefly presented here in order to introduce the notation. Sym-
unattractive to the engineering community and led to thebols used are defined in appendix A. (A detailed description of
demise of the standard force method. the formulation can be found in refs. 12 to 14.) Finite elements
An alternate formulation, termed the Integrated Force Methodare used to discretize a continuous object, which theiNhas
has been developed in recent years to analyze problems i@isplacement degrees of freedom ariddependent forces. In
structural mechanics (refs. 12 to 15). In the Integrated Forcdhe Integrated Force Method all independent forces represent
Method all independent forces, not just the redundants, arélnknown quantities, notjustthe redundants, as is the case in the
treated as unknown quantities that can be calculated by simustandard force method (refs. 9 to 11). The unknown forces are
taneously imposing both equilibrium and compatibility condi- obtained from the following sets of equations:
tions. Procedures have been developed (refs. 16 to 19) for
generating compatibility conditions that yield sparse and banded [B {F} ={P} @
matrices and can be easily adapted to computer automation.
The initial applications of the Integrated Force Method to staticwhich represents equations of equilibrium, written for nodes
analysis (ref. 20), vibration analysis (ref. 21), and optimizationwhere displacements are unknown, and
oftrusses (ref. 22) have shown that the Integrated Force Method
has certain advantages over the displacement method, both in [CI[GKF} ={3} 2)
accuracy and computer efficiency.
This stgdy prgsents formulations to d_evelop finite elementsyhich represents = m —n compatibility conditions.
for two-dimensional structural analysis and a comprehen-  eren=N,—Ng Ngis the number of prescribed displacement
S|.vef|n|te element Ilbrary of two-dimensional elements. Both degrees of freedom:F} is the m-component vector of un-
tngngular— and qua_drllate_ral-shaped elemgnts cqpable of modinown independent forcesB f] is then x m part of the system
eling arbitrary configurations of the domains being analyzedgqyijibrium matrix corresponding to the nodes where external
are conS|der§d. The displacement _and stress fleIFis within apyads are prescribeds] is themx msystem flexibility matrix;
glemgnF are mdependentl_y approxma.ted. The d|spla9emer‘{tc] is ther x m compatibility matrix; £} is the n-component
field is interpolated by using the functions employed in the \octor of equivalent nodal loads; arB)is the r-component

standard displacement method. Stress fields are approximategsective deformation vector. which is calculated as
by using complete polynomials of the appropriate order, whose

coefficients are unknown independent forces. The equations
describing the components of the stress tensor can be derived
from the Airy stress function for an element, which is written ) o ) )
in terms of a complete polynomial of a certain order. The Where Bo} is the vector of initial deformations. The generation
resulting stress fields identically satisfy the equations of equi-Of compatibility condlt!ons is described in detail m_references_
librium. The element matrices generated with these stress fieldd® t0 19. Sets of equations (1) and (2) can be combined to obtain
are not sensitive to the orientation of the element's localthe System of equations for unknown forces as

coordinate system. A method to calculate the number of zero-

energy modes is also developed, and the present elements are [S{F} ={P*} (4)
shown to be free of spurious zero-energy modes. The effect of

reducing the number of the element’s independent forces is alsyhere

{60} = -{CH{BS} ©)

investigated.

To establish the validity of the elements and to assess their 0[B.1 O H{p} E
relative performances and compare the Integrated Force Method [s]=0 “ o and  {P*} = 0 (5)
with the well established displacement method, the present HC][G]H 550}5

library is usedto solve a variety of problems in two-dimensional
elasticity. The results obtained with these elements are also
compared with the corresponding analytical solutions, andAfter the force vector is calculated from equation (4), the vector
there is good agreement. For stress calculations, the Integratedf unknown nodal displacements) can be obtained as

Force Method performs better than the standard displacement

method. {U} =[J][GKF} (6)



where [I] is then x mdeformation matrix that represents the top {g =[Z){U g (11
n rows of the transpose of the matr| T~ The vector of

unknown support reaction®} can be calculated from where ] = [L] [N], and L] is the matrix of differential
operators.
{R} =[Bg] ={F} (7) Equilibrium matrix.—The expression for the element equi-

librium matrix can be obtained from the strain enekgpf the
where B4 is the portion of the system equilibrium matrix that element:
corresponds to nodes with prescribed displacement boundary
conditions. 1 T
Ay = > Iv{s} {a}dv (12)

Element Matrices

F i 1 d (2 that th ¢ é/hereVdenotesthe domain of the element in the discrete form.
rom equations (1) and (2) we see that the system o ubstituting equations (10) and (11) into equation (12) yields
equations for the unknown forces consists of two sets of

relations: (1) equations of equilibrium and (2) compatibility the strain energpy, expressed as
conditions, which can be expressed in terms of forces by using
the strain-stress law. These sets of relations are first established A = E{U e}T[B J{F} (13)
on the element level, and then the assembly procedure (refs. 13 P2 ©
and 14) is used to derive the system given in equation (4).
Equilibrium equations and deformation-force relations for a Where the equilibrium matrixgg] is
finite element may be written as

B.l=( [z]'[Y]aV 14
(PJ =B (&) [Be] J’V [2]'[Y] 14)

Flexibility matrix.—The expression for the element flex-
{Bat =[G I{F} (8b) ibility matrix can be obtained from the complementary energy
A. of the element:
where {g} is the vector of equivalent nodal forces for the
elemente; {F¢} is the element vector of independent forces; 1 T
[Bg and [G¢] are element equilibrium and flexibility matrices, A= EIV {0} ' [Dl{c}dVv (15)
respectively; andf§e} is the vector of element deformations.
Note that equation (8b) represents the discretized constitutivgyere D] is the compliance matrix of the material, in the

relations for the element. The components of the ve@gr {  giscrete form. Substituting equation (10) into equation (15)
are the generalized deformations that correspond to '”temaéivesAc as

forces {Fg}-

The expressions for the two element matrices can be derived 1
by using the expressions for potential and complementary A = *{Fe}T[Ge]{Fe} (16)
energy, respectively. In the Integrated Force Method, indepen- 2

dent displacement and stress interpolations are employed to o ] )
give where the element flexibility matrixdy] is

{u} =[NI{Ug (9 [Gel =, [YI'[DI[YIaV 17)

{o} =[YKFJ (10)
Stress Field Approximations
Here {u} " ={uv} and {o} " = { o 0, Ty} are the displacement
and stress vectors at a location within the eleméhd; is the The approximation of the stress components and the con-
vector of element nodal displacements] [s the matrix of  struction of the stress interpolation matr¥q s discussed in
displacement interpolation functions; and] [is the stress this section. Note that in equations (14) and (17) the matix [

interpolation matrix. The strain vector}{ = {& & Yayhs IS appears in both the equilibrium and the flexibility matrix
obtained by differentiation of the displacement field and is definitions. Itis, therefore, important to properly devise stress
given as interpolation polynomials in order to obtain accurate results. In



this study, a method was developed that uses an Airy stresRewriting equations (19) yields
function given in terms of complete polynomials.

The Airy stress functior® for a location X, y) within an
element can be written as a complete polynomial of grder

®(x,y) = Z C;xPlyl
J:

whereC;, forj = 0,1,2,..p, are constants, andandy are

p

Cartesian coordinates of the pointin the local coordinate system

of the element. The local coordinate systems for various ele-
ment shapes are depicted in figure 1. The components of the
stress tensor can be obtained by using the definition of the stress

function (ref. 23) as follows:

p-2
0, = Z Cio(i +1)(j +2)xP2lyl

J:

p-2

o, = Z C,(p-)(p-j-DxP Iyl (19b)

J:

p-2

TXV:_Z C (i +D(p- i -DxP2lyl  (19¢)

J:

Shape Nodes Forces Name
y 3 TRI03_03
A' < 3 5 TRIO3_05
7 TRIO3_07
y 9 TRI06_09
% X 6 11 TRIO6_11
12 TRIO6_12
y QUAD4 05
@ § 4 7 QUA04 07
12 QUAD4 12
13 QUAD8_13
7\2 o ) y 8 15 QUA08_15
18 QUA08_18

Figure 1.—Finite element library for Integrated Force Method.

p-2
o, = l5j+1x P=i=2y] (20a)
J:
p-2
o, = Z FJ-,rp_lx"’_J_zyJ (20b)
J:
p-2
Ty = Z |:j+2p_1xp—1—2y1 (20c)
J:

Now the coefficients of the polynomials in equations (20) can
be considered element forcgs fori = 1,2,...,3p— 1), andk
can be expressed in terms pf{( 1) constant§ :

Fi:q(co,cl,...,cp) for i=12..,3p-1) (20

whereq are linear functions of constaiis Thus, not all forces
IEi are linearly independent. Final stress field interpolation
polynomials can be obtained by eliminating the dependent
forces; this results irp@ 1) independent forces when the stress
function® is written as a complete polynomial of ordeBuch
stress fields are complete polynomials of orgder2). Expres-
sions for the stress fields used in this study are provided in
appendix B.

The preceding procedure can be demonstrated by deriving
the linear terms. For this case, the stress function is represented
as a complete cubic polynomial:

D(x,y) = CexC +C X2y +Coxy? +Coy®  (22)

Substitutingp = 3 into equations (19) yields the following
expressions for the stress components:

ol =2C,y +6C,y = Fx+ Ry (233)
ol =6C,x+2Cy = Fyx+ Fyy (23b)
1{) = -2C,x = 2C,y = Fyx+ Ry (230)

where the superscript 1 denotes the linear terms in the stress
polynomials. From equations (23) we see that six coeffi-
cientsk, are expressed in terms of four independent constants



C;; thus, only four|5i forces are linearly independent. By the appropriate order produces the correctrank. The methodology
eliminating two forces from equations (23), we have obtainedof Pianand Chenis used hereinto showthatin the Integrated Force
the linear stress terms given in equations (B2). The constanfYlethod the correct rank of the element equilibrium matrix
quadratic, and cubic terms can be derived similarly, and theensures the absence of spurious zero-energy modes.
corresponding stress terms are given in equations (B1), (B3), The expression for internal energy can be rewritten by

and (B4), respectively. Stress field representations in terms ofubstituting P{ o} = { €} into equation (15) to obtain

a complete polynomial of ordpran be obtained by combining

the expressions for orders 0,1,3..The resulting cubic stress 1

field interpolation, which is given in equations (B5), contains A = EIV {o}T{s}dV (25)
18independent forces. The constant stress field can be obtained

_by retaining the fir§t 3 forces in equatiops (BS); for the linear gypstituting equations (10) and (11) into equation (25) gives
interpolation, the first 7 forces are retained, and for the quatne internal energy written as

dratic interpolation, the first 12 forces are retained. The stress

fields given in equations (B1) to (B4) identically satisfy the 1

equations of equilibrium at any point inside the domain of the A = AT BI{U} (26)
element. The resulting element matrices have the correct rank 2

for arbitrary orientation of the element’s local coordinate axes.

They are also invariant with respect to coordinate ;
matrix has the correct rank, there are digro-energy modes

transformation (ref. 4).
( ) present that correspond to rigid body modes of the element.

Approximations with complete polynomials may yield indi- i e
vidual elements with a large number of independent forces.] US: SPurious zero-energy modes can be eliminated by con-

Moreover, as Spilker and Singh (ref. 24) observed, in hybridstructing stress fields such that the resulting equilibrium matrix
method applications, high order stress field approximationsh@s the ranky = ne—1.

may lead to overly rigid models. Thus, it may be necessary to .

reduce the number of independent forces in stress field repreElement Library

sentations while preserving all the desired properties of the . o . .
resulting element matrices. The compatibility condition Stress fields derived in previous sections can now be used to

develop a comprehensive finite element library for two-
dimensional stress analysis by the Integrated Force Method.
Let us consider both triangular and quadrilateral elements.
Isoparametric functions (ref. 27) can be employed in equa-
(suggested in ref. 24) can be imposed to reduce the number aion (9) for both types of elements. For stress field approxima-
independent forces. Note that equation (24) is identicallytions, the element’'s local coordinate syste@wy can be
satisfied for stress fields represented by zero- and first-ordedefined such that the origin coincides with the centroid of the
polynomials. By applying equation (24) to quadratic and cubicelement, and the local coordinate axes are parallel to the global
terms, we obtain reduced quadratic and cubic polynomials, asxes. Such an orientation avoids rotation of the coordinate sys-

From equation (26) we can see that if the element equilibrium

0%(0, +0,)=0 (24)

given in equations (B6) and (B7), respectively. tems, saves CPU time, and does not affect the response when
stress fields with complete polynomial approximation are used.
Spurious Zero-Energy Modes The element library is depicted in figure 1. It includes two

elements developed by Nagabhushanam (J. Nagabhushanam,

The stress fields given in equations (B1) to (B7) were derivedindian Institute of Science, Bangalore, India, personal commu-
without any reference to the shape or the number of kinematimication, 1992) and an element suggested by Pian (ref. 6),
degrees of freedom of a considered element. The number ofthich has four nodes and five independent forces. These
independent forces, however, could not be chosen arbitrarily. Thelements are also implemented for comparison purposes. The
number of kinematic degrees of freedogand the number of  element names employed here consist of three parts: the first
independent forcesy, for elemente must satisfy the relation three characters describe the shape of the element, the next two
me = ne—| (refs. 25 and 26), whetds the number of rigid body  digits denote the number of element nodes, and finally, the
modes of the element. Pian and Chen (ref. 26) showed, howevenumber following the underscore indicates the number of
that in the application of the hybrid method this condition is only independent forces used in the interpolation of the stress field.
necessary, not sufficient, for the element matrices to have th&eatures of the present elements are enumerated in the follow-
correct rank. They also devised a technique, based on energgg sections.
considerations, to detect spurious zero-energy modes, and they Three-node triangular elementsTRI0O3 03, TRI0O3_05,
developed a means to suppress them. Spilker et al. (ref. 4) haxand TRIO3_07—Three-node triangles have six displacement
shown that approximating stresses with complete polynomials oflegrees of freedom; thus three independent forces are necessary



to ensure the correct rank of element matrices. Three differenivas used for elements with quadratic interpolation of the stress
stress fields were implemented. The constant stress field wafeld. The locations of integration points were taken from
used for element TRIO3_03. A complete linear stress field wageference 28. In the case of quadrilateral elements, standard
implemented for element TRIO3_07. And the stress field givenGauss integration was employed, with thex 2 rule for
in equations (B8), which is used extensively in the hybrid elements with linear approximations of the stress field, the
method (refs. 6 and 11), was used for element TRI03_05. Not& x 3 rule for elements with quadratic approximations, and the
that element TRIO3_03 contains the minimum number of4 x 4 rule for elements with cubic approximations of the stress
independent forces. Such elements will be referred to as statfield.
cally determinate elements. A patch test was performed for the present elements. Stress
Six-node triangular elements: TRIO6_09, TRI06_11, and boundary conditions were prescribed for a finite element model
TRIO6_12—Six-node elements have 12 displacement degree®f the test problem taken from reference 29, and all elements
of freedom; thus 9 independent forces are necessary in thfom the present library passed the patch test.
stress field approximation. This allows quadratic polynomials
to be used for stress interpolations. Complete quadratic polyno-
mials with 12 independent forces were used for elemenfNyumerical Examp|es
TRIO6_12, and reduced quadratic polynomials with 11 inde-
pendent forces were used for element TRI06_11. For compari- A number of example problems are presented in this section.
son the stress field suggested by Nagabhushanam (IndiaBxtensive numerical experiments were performed in order to
Institute of Science, Bangalore, India, personal communicationgstablish the validity and accuracy of the Integrated Force
1992; see egs. (B9)) was implemented for element TRI06_09Method, as well as to assess the relative performance of the
This stress field is represented by incomplete second-ordepresent elements. The results obtained with present develop-
polynomials; however, it identically satisfies the equations of ments are compared herein with corresponding analytical solu-
equilibrium and does not possess spurious zero-energy modesons. For some problems the responses obtained from the
Four-node quadrilateral elements: QUAO4_05, QUAO4_07, standard displacement method are also given in order to assess
and QUA04_12—Four-node elements have eight displace- the potential advantages of the Integrated Force Method. The
ment degrees of freedom; thus five forces are necessary in theight-node isoparametric element (ref. 27) was used in all
stress field approximation. The five-force field given in equa- displacement method calculations.
tions (B8) was implemented for element QUA04_05 and re-
sulted in a statically determinate four-node element. AcompleteExample 1: Bending of a Uniform Cantilever Beam
linear polynomial was implemented for element QUAO4 07,
and a complete quadratic polynomial was used for element Consider a cantilever beam of lengthnd uniform rectan-
QUAO0D4 _12. The equations of equilibrium were identically gular cross sectiathbyH, as shown in figure 2(a). Assume that
satisfied for all elements and no spurious zero-energy modethe beam is subjected to two distinct load cases: (1) a concen-
were detected. trated force of intensitlp, and (2) a uniformly distributed load
Eight-node quadrilateral elements: QUA08_13, QUA08_15, of intensityq,and assume that the beam is made of a homoge-
and QUAO08_18—Because eight-node elements have 16 dis-neous and isotropic material with a modulus of elasticdnd
placement degrees of freedom, they require at least 13 indepeifRoisson’s ratios. By using two-dimensional finite element
dent forces to approximate the stress field. Quadraticdiscretizations and assuming a state of plane stress, we can
polynomials do not contain a sufficient number of terms, soanalyze the response of the beam. For this case the entire element
cubic polynomials must be used. Complete cubic polynomialslibrary was implemented in order to establish the relative
(see eqs. (B5)) were used for element QUAO8_18, and reduceperformance of the present elements.
polynomials were used for element QUAO8_15. These ele- The influence of element shapes on the results was also
ments were insensitive to rotation of the coordinate axes andéhvestigated. Finite element discretizations obtained by using
did not possess spurious zero-energy modes. The stress fietfladrilateral- and triangular-shaped elements are shown in
suggested by Nagabhushanam (Indian Institute of Sciencefjgure 2, parts (b) and (c), respectively. The support conditions
Bangalore, India, personal communication, 1992; seefor modeling the beam with a clamped end assumed @tint
egs. (B10)) was also implemented for element QUAO8_13. Abe completely fixed and the horizontal displacements at points
quadratic field that did not satisfy the equations of equilibrium b andc to be suppressed. The circles in parts (b) and (c) of fig-
resulted. It also possessed two spurious zero-energy modes.ure 2 denote corner nodes, and the asterisks denote midside
For all elements presented here, numerical integration wagodes. In discretizations using three-node triangular elements
used to calculate the element matrices. In the case of thand four-node quadrilateral elements, midside nodes are not
triangular elements, one-pointintegration was used for elemenpresent. The dashed lines in figure 2(b) represent quadrilateral
TRIO3_03, the three-point rule was used for elements withelements of distorted shapes. The concentrated fowas
linear interpolation of the stress field, and the seven-point rulemodeled by using nodal forces of intensitigsand P, and
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Figure 2.—A uniform cantilever beam showing geometric char-
acteristics, loadings, and two-dimensional finite element
models. (a) Subjected to concentrated force P and uniformly
distributed load q. (b) Discretization using quadrilateral b andc were set to zero. These additional restraints resulted in
elements. (c) Discretization using triangular elements. convergence in the opposite direction for element QUA0S_13.
Figure 4(a) also shows the results for four-node quadrilateral
elements. Element QUAO4_05 provided a fast convergence,
assuming a parabolic distribution of the shear stress along th&hereas elements QUA04_07 and QUAO0O4_ 12, which use
free end; the results weRy = 0.5, for elements with linear  higher order stress approximations, produced stiff structures.
interpolation of geometry; ariéh = 0.1°P andP, = 0.8, for Note, however, that both of these elements provide results
elements with quadratic interpolation of geometry. within 0.5-percent error for a 24-element model.

To analyze the beam for load case (1), convergence of the tip The effect that distortion of the element shapes has on the
displacement was studied for discretizations by using variougesults was also studied. The distorted meshes were obtained by
numbers of elements; the results are shown in figure 3 formoving the corner nodes a distanc,pf 0.2, as shown in
triangular elements and in figure 4 for quadrilateral elementsfigure 2(b), whereLy, is the length of the corresponding
The tip displacements were normalized with respect to the exaatectangular element. The results (see fig. 4(b)) show that four-
solution from the beam theory, including the average effect ofnode elements, especially element QUA04_05, are signifi-
shear stresses. Figure 3 shows that three-node triangular elememtntly less accurate. The eight-node elements, however, are
lead to very slow convergence of tip displacemghgreas six-  almost insensitive to distortion in the model.
node triangles provide accurate results with a relatively small Now let us consider stress distributions on the beam for load
number of elements and corresponding independent forcesase (2). The intensity of the distributed load is taken as
The results shown in figure 3 also reveal that increasing theg = 12 kN/m; the length ak = 12 m; the cross section
order of the stress approximation for three-node triangles doedimensions ad=H =1.0 m; and Poisson’s ratiowas 0.3. The
not improve the accuracy. values for normal stressesnd shear stressealong the line

Tip displacement convergence of quadrilateral elements way = -yy=—0.2887 m, which were obtained by using eight-node
first studied with discretizations using elements of rectangularquadrilateral elements, are shown in figure 5 along with those
shape. The results, presented in figure 4(a), show that all eightalculated by using the beam theory. The locations shown in
node elements provided accurate results with a relatively smatfigure 5 coincide with the Gauss points for theintegration
number of independent forces. Element QUAO8_13, howeveryule, which have been shown to be optimal sampling points for
led to spurious zero-energy modes. Some additional degrees stress calculations in the displacement and hybrid methods
freedom had to be suppressed in order to obtain a stable stru¢ref. 4). Figure 5 shows there is good agreement between the
ture. For the present analysis, vertical displacements at pointgresent results and the analytical solution and that results

Figure 3.—Convergence study of tip displacement of
cantilever beam using triangular elements.
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stress. (b) Shear stress.

obtained with element QUAO8 13 are in excellent agreement
with the corresponding analytical solutions. However, caution
must be exercised in using this element because of the presence
of spurious zero-energy modes.

Example 2: Pure Bending of a Circular Arch

A circular arch of radius, and rectangular cross secttbhy
H, as shown in figure 6(a), is considered next. The arch is
assumed to be clamped@t 0°, loaded with a concentrated
moment of intensityM at 8 = 9¢° (where 8 is an angular
coordinate), and made of a homogeneous and isotropic mate-
rial with parameterg andv. This example is presented with the
specific purpose of demonstrating the validity of the present
elements in modeling domains with curved boundaries. A state
of plane stress was assumed, and the arch was modeled by using
two-dimensional finite element discretizations, as shown in
figure 6(b). The boundary conditions for the clamped end were
the same as those applied to the cantilever beam in the previous
example. The circles and asterisks shown in figure 6(b) have the
same meaning as in Example 1. The nodes denoted by asterisks
were not present when the arch was discretized with four-node



Figure 6.—A circular arch subjected to concentrated
moment M. (a) One-dimensional model of a circular
arch. (b) Two-dimensional finite element
discretization.

displacementisoparametric element, are showninfigure 7. The
tip displacements were normalized with respect to the exact
solution, which was calculated from the plane stress theory
(ref. 23). The present elements, especially those with a quad-
ratic interpolation of geometry, performed well. Note that the
results for element QUA04_05 were obtained with an element
local coordinate system such that the loeakis is defined by
the element centroid and the center of one of the element sides.
The results obtained with the local axes parallel to the global
axes are not shown because the responses exhibited unstable
oscillations. This behavior, which is due to representing the
stress field interms of incomplete polynomials, reveals the high
sensitivity of element QUAO4_05 to the orientation of local
coordinate systems. It also demonstrates the benefits of
employing stress field representations composed of complete
polynomials in the analysis of general two-dimensional
problems.

The displacementsalong the line =rywere calculated next
by using the discretization with six eight-node elements (see
fig. 8). Exact displacements, calculated from the beam theory,
are also shown in figure 8 for comparison. Again, the results are
in good agreement.

Stress distributions for a circular arch were also calculated.
The results for normal stresses and o; along the line
r=rg=10.423 mare shown in figure 9; they are compared with

12—

quadrilateral elements. In the finite element discretization,
radiiry andr, denote the inner and outer contour, respectively,
with ry =ro — 0.5 H, andy =rg + 0.5 H. The concentrated

momentM was modeled by using the concentrated forces of2

displacement, u/ugxact

p

. o ) = Element type
intensitiesP1, P, andP3, which correspond to the exact stress g
distribution due to the concentrated moment. S QUAD8_18
: N --4-- QUAD08_15

Let us first analyze the arch figy= 10 m andp =12 m. Such 5 — & — QUAO08 13
an arch may be characterized as a thin arch (ref. 4). The remair- — - QUAO4_12
ing parameters are taken tode 1.0 m;E = 21x10” KN/m?; --&--- QUA04 07
v =0.3; andM = 600.0 kNm. The intensities of concentrated —~ — QUA04 05
forces were calculated & = 270.3 kN,P, = 56.3 kN, and —&— Displacement
P3=326.6 kN for discretizations with eight-node elements, and
asP; = P, = 300 kN for discretizations with four-node 0.0 | | | | | |
elements. 4 8 12 16 20 24

Results obtained with the present quadrilateral elements in a Number of elements
convergence study of the horizontal componenf the tip Figure 7.—Convergence study of tip displacement u of a

displacement, along with those obtained with an eight-node

thin circular arch.
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Figure 9.—Stress distribution along line r = rg of thin circular
arch. (a) Radial stress. (b) Tangential stress.
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Figure 10.—Stress distribution along line r = rgq of a thick
circular arch. (a) Radial stress. (b) Tangential stress.

corresponding solutions from the displacement formulation
and with the exact solution (ref. 23). Elements QUA08_15 and
QUAO08_18 performed slightly better than the displacement
element. Figure 9 also shows that element QUA08_13 does not
provide good stress predictions in this case. The stress field
used for this element was obviously constructed to exactly
model the beam bending. However, it does not satisfy Navier’s
equations of equilibrium, and it does contain spurious zero-
energy modes for some configurations. These characteristics
make element QUAO8 13 unsuitable for modeling general
problems of two-dimensional elasticity.

Stress distributions were also calculated for an arch with
dimensionga = 1.0 m,rp, = 2.0 m,rg=1.211 m, andM =
300.0 kNm, with the remaining parameters being the same as
before. Such an arch can be characterized as a thick arch. The
concentrated forces used to model the morvkfar this case
wereP, =338.2 kNP, =-73.1 kN, an®3=265.1 kN. Normal
stresses; ando; were calculated by using the present eight-node
elements; the results, together with corresponding analytical



solutions, are shown in figure 10. Note that elements QUAO8_1%lements, respectively. These results agree well with the ana-

and QUAO08 18 provide more accurate results than thelytical solutions given in equations (C1), especially those for

isoparametric displacement element, especially for radial stresthe eight-node elements. The present elements performed

or, whereas element QUAO8_13 exhibits the same problems aslightly better than the displacement formulation.

were observed for the thin arch. Also note that the reduced The influence of the location of sampling points on the

number of independent forces in element QUAO8_15, as comaccuracy of stress predictions was also investigated. The

pared to element QUAO8_18, did not lead to a loss of accuracystresses were calculated by using eight-node elements at loca-
tions corresponding to 8 3 Gauss integration points. The

Example 3: A Rectangular Plate Under Sinusoidal Load results, shown in figure 14, indicate that the present elements
are less sensitive to the location of sampling points than the

A rectangular plate with dimensionk By 2a is shown in corresponding displacement elements. It may also be con-

figure 11 along with its support conditions. The plate is sub-cluded that the present elements provide better overall stress

jected to a vertical load of intensif{x) =g, Sin(x/2L). Since approximations within the element domains.

the geometry and the loading of the plate are symmetric with

respect to the vertical axis, only half of the plate need be

analyzed. The plate’s finite element discretization using quad-

rilateral elements is also shown in figure 11. A state of plane

stress was assumed for this analysis. The numerical values 6t 25 Element type

the parameters were takenfs 21.0<10" kN/m?, v = 0.3, 2 2 O QUA04 12
L=10.0 ma=5.0 m; andj, = 10.0 kN/nf. For comparison, & 15— & QUA04 07
the analytical solution of the problem was derived by following - A QUA04_05

the procedure outlined in reference 23; this derivation is given g 10— Exact
in appendix C. 7]

The stress response was calculated for locations lying anngTEts o
the lineAB by using both four- and eight-node quadrilateral & |
elements, that is, with a mesh of 6 four-node elements and < 0 2 4 6 8 10
4 x 4 eight-node elements, respectively. The stresses were first (@) Distance along x-axis, m
calculated for locations corresponding to the optimal sampling
points for the displacement and hybrid methods. These loca<t ¢
tions correspond to Gauss integration points ferilpoint
integration when four-node elements are used, a2l point
integration when eight-node elements are used (ref. 24). Fig-
ures 12 and 13 show the results for four- and eight-node

oy, kN/m

Normal stress
|
w

Ay 45 2 4 6 8 10
I Distance along x-axis, m
) (b) ?
// I 8 _
| / g
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— 2
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ol || wixNelemens | lx g
7 1= | | | |
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a 0 2 4 6 8 10
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4 Figure 12.—Stress distribution along line AB of a rectangu-

| | lar plate as determined by using four-node elements at
|‘7 L > L g 1-point Gauss integration locations. (a) Normal stress oy.
(b) Normal stress oy. (c) Shear stress zyy.

Figure 11.—A rectangular plate under sinusoidal loading.
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Figure 13.—Stress distribution along line AB of a rectangu-
lar plate as determined by using eight-node elements at
2-point Gauss integration locations. (a) Normal stress oy.
(b) Normal stress oy. (C) Shear stress .

Displacement calculations for the plate were also performedgeometry and the loading of the plate, only a quarter of the plate
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Figure 14.—Stress distribution along line AB of a rectangu-
lar plate as determined by using eight-node elements at
3-point Gauss integration locations. (a) Normal stress oy.
(b) Normal stress oy. () Shear stress yy.

The horizontal componentof displacement was calculated at (i.e., that bound by the aAB and linesBC, CD, DE, andEA)

element nodes lying along the lixe 0. In figure 15 the results

A good agreement of the results is shown.

Example 4: A Rectangular Plate With a Circular Hole

Under Uniform Tension

A rectangular plate of dimensiona By 2b with a circular

12

was discretized with finite elements. Finite element
are compared with the exact solution given in equations (C2)discretizations using quadrilateral and triangular elements are
shown in figure 16, parts (b) and (c), respectively. The symme-
try boundary conditions= 0 along the lindE, andv=0 along

the lineBC were applied. A state of plane stress was assumed

in the analysis.

The stress concentration factor at pdimf the plate was
calculated fom = 48 cmb = 24 cm, and = 6 cm by using the
hole of radiug, as shown in figure 16(a), was analyzed. The entire element library. The results, given in table I, are com-
plate was assumed to be subjected to a uniform tension gbared with the adjusted stress concentration factor calculated
intensityq along theDx-axis and made of a homogeneous and by using the expression from reference 30 (k.e.3.2126 for
isotropic material. Because of the double symmetry of thethe given dimensions of the plate). A very good agreement for
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Figure 15.—Horizontal displacement along line x = 0 of

rectangular plate.

the stress concentration factor was achieved with the elemenjts
from the present library, especially with those with quadratic
interpolation of geometry, as depicted in table I. This examplé
further demonstrates the accuracy of the Integrated Force
Method in stress calculations, particularly at locations that do
not coincide with optimal sampling points. (©)

Figure 16.—Finite element discretizations of rectangular
plate with circular hole in uniform tension. (a) Two-

Discussion

The validity and accuracy of the finite element library
presented in this paper were demonstrated through numerical
examples. Both one- and two-dimensional problems of elastic-
ity were analyzed, and from the numerical results previously

dimensional plate. (b) Discretization with quadrilateral

elements. (c) Discretization with triangular elements.

TABLE |.—STRESS CONCENTRATION FACTOR AT
LOCATION A FOR THE PLATE WITH A HOLE

presented, a comparison can be made of the element perform
ances. A careful examination of numerical results reveals that

elements with quadratic interpolation of geometry performed
better than those with linear interpolation of geometry. This is
only partly due to the higher order of approximation of the
stress fields, and thus, larger number of independent forces.

Such aconclusion is supported by the fact that an increase in the
number of independentforcesin three-node triangular elements
does not result in improved accuracy, and that higher order

approximations of stress fields for four-node quadrilateral
elements may result in overly rigid models. We may conclude
that the interpolations of stress and displacement fields cannot
be chosen arbitrarily, but must be compatible with stress-strain

law. Moreover, elements QUAO8_18 and QUA08_15 exhibited
better overall performance than element QUAO8 _13. The stress
fields used for these two elements are represented by complete

Element | Number of | Number of forcel Stress concentration
type elements unknowns factor
TRIO3_03 37 111 2.54649
TRIO3_05 185 2.54649
TRIO3_07 259 2.54649
TRIO6_09 37 333 3.25875
TRIO6_11 407 3.15126
TRIO6_12 444 3.10322
QUA04_05 30 150 2.74766
QUA04_07 210 2.89305
QUAO4 12 360 2.96215
QUA08_13 30 390 3.00314
QUAO08 15 450 3.25266
QUA08_18 540 3.26137
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third-order polynomials, which produce elements that are in-functions in terms of complete polynomials of the required
variant with respect to transformation of the local coordinateorder. An Airy stress function was written as a complete
systems and that are free of spurious zero-energy modes. Thepelynomial of ordepthat containp + 1 independent constants.
stress fields also identically satisfy the equations of equilib-The definitions of stress components in terms of stress func-
rium. The stress field used for element QUAO8_13, onthe othetions were used next to derive the expressions for stresses.
hand, was represented by second-order polynomials, whiclElimination of the dependent constants from the expressions
yielded two spurious zero-energy modes for the rectangulafor stresses yielded stress fields expressed in terms of complete
configuration of the element. In addition, it did not satisfy the polynomials of ordep— 2. Stress fields thus defined identically
equations of equilibrium, and thus led to erroneous stressatisfied the equations of equilibrium. The resulting element
calculations in Example 2. matrices had the correct rank and were insensitive to the
For some problems, good results were obtained with elementransformation of local coordinate systems.
QUAO04 _05, which has a very small number of unknown The present elements were applied to solve a variety of
independent forces. The tip displacement convergence study iproblems in two-dimensional elasticity. Comparisons were
Example 2 revealed, however, that this element is sensitive tanade with corresponding analytical solutions, and there was
the orientation of coordinate axes and may not always begood agreement of the results. A series of numerical tests were
reliable in the analysis of domains with arbitrary geometric performed in order to assess the relative performances of the
configurations. Moreover, element QUAO4 05 provides accu-present elements. These studies showed that elements with
rate stresses only in the centroid, which may not always sufficequadratic interpolations of geometry and displacements pro-
Elements with quadratic interpolation of geometry produce vide reliable predictions for all problems. The four-node quad-
more accurate stress predictions at the optimal sampling pointslateral elements performed well for some problems. Element
and at arbitrary locations within the element. Similar conclu- QUA04 05 was shown to provide good results for a small
sions can be drawn for triangular elements. number of unknown quantities, but it was sensitive to the
The Integrated Force Method was also compared with theorientation of the local coordinate system. This condition
assumed displacement based finite element method. The reestricts its range of application.
sults presented here reveal that the Integrated Force Method is The Integrated Force Method was also compared with the
better overall for stress calculations and provides displacemendtandard displacement method. The results presented here
predictions of comparable accuracy. reveal that overall the Integrated Force Method performs better
in stress calculations and exhibits an accuracy in displacement
predictions comparable to the displacement method. These
Conc|uding Remarks results confirm that the Integrated Force Method can be used
successfully and efficiently in structural analysis and provide
A finite element library was developed to analyze two- justification for efforts to incorporate the force method of
dimensional structural mechanics problems by the Integratednalysis into general purpose finite element programs.
Force Method. Triangular- and quadrilateral-shaped elements
capable of modeling domains with arbitrary geometric con-
figurations were presented. The displacement and stress fields
were independently approximated. DisplacementinterpolationLewis Research Center
was performed as in the standard displacement method, and@leveland, Ohio
procedure was developed to derive the stress interpolatioduly 17, 1995
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Appendix A

Symbols
complementary energy m
potential energy Me
plate dimensions [N]
element equilibrium matrix Ng

portion of system equilibrium matrix correspond- N,
ing to modes with prescribed displacement bound-
ary conditions n

portion of system equilibrium matrix correspond- Ne
ing to modes where external loads are prescribed

compatibility matrix

Nr
arbitrary constants P,P1,Py,P3
compliance matrix of material (P}
cross-sectional dimension

{P*}
modulus of elasticit

Y {Pd
system vector of independent forces o
vector of element independent forces

ad:%
generalized force coefficients (R)
system flexibility matrix

r
element flexibility matrix

ra,rb,ro
cross-sectional dimension

[S]
n x m deformation matrix

{U}
length

{Ue
matrix of differential operators that defines strain
displacement relationship {u}
number of element rigid body modes uv
distance corner node is moved \
intensity of moment Xy

number of system independent forces

number of element independent forces

matrix of displacement interpolation functions
number of prescribed displacements

total number of displacement degrees of freedom
number of system equilibrium equations

number of element displacement degrees of
freedom

rank of element equilibrium matrix
intensity of concentrated force

system equivalent load vector

total of right side of system of equations
vector of element equivalent nodal loads
order of polynomial

intensity of distributed load

vector of support reactions

number of compatibility conditions

radial coordinates

system matrix

vector of system unknown nodal displacements
vector of element nodal displacements
displacement vector

displacement components

volume

Cartesian coordinates

15



[Y]
Yg
(2]
{Be}
{Bo}
Yxy
{30}
{e}

16

stress interpolation matrix
coordinate of Gauss point
[LTIN]

vector of element deformations
vector of initial deformations
component of strain vector
effective deformation vector

strain vector

8x,8y

{o}

Ux,ay

Txy

components of strain vector
angular coordinate
Poisson'’s ratio

stress vector

components of stress vector
component of stress vector
linear functions of constan@

Airy stress function



Appendix B

Expressions for Stress Fields

(a) Full Polynomials Derived from the Stress Function

— constant terms:

— linear terms:

— quadratic terms:

- cubic terms:
o
o
9
— full cubic polynomial

oz =

o

Ua(:o) — FI(O)

"1(/0)

) = B

ag,l) = Fl(l)z + Fz(l)y
al(,l) = Fél):c + F,fl)y
Tg) = —Fil)z - Fl(l)y

_% F®g2 4 pOy2 4 Dy

1
o) = Fa = LEO 4 Py

1

1
rg) = Ff)z2 - §F§2)y2 + Fs(z)zy

2

= —%Fs(a)y3 + FOy3 _ F® g2y 4 F®)gy?

= F%_ %Fé‘”y“ + FOg%y — Fzy?

1

- FO % FO 4 FPa2y + Fgy?

1
Fi+ Fyz+ Fey - §F121'2 + F3y* + Fozy —
1
3
1
F; + Fgz + Fry — Fioz® + §F12y2 + Fiizy +

Fi72® + Fi3y® — Figz?y + Fiuzy®

1
Fisz® - §F18y3 + Fiz’y — Firzy®
1 2 1, 9
F3 - Frz — Foy ~ -2-F11$ - §ng + Fiazy -

1 1
§F16$3 - §F14y3 + Fi72%y + Figzy®

(Bla)
(B1b)
(Blc)

(B2a)
(B2b)
(B2¢)

(B3a)
(B3b)

(B3c)

(B4a)
(B4b)

(B4c)

(B5a)

(B5b)

(B5¢)
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(b) Full Polynomials Reduced Using the Condition V(o + 0,) =0

— quadratic terms:
o) = Fi) (y2 - %zz) + Fézr) Ty — -;—Fézr)zz
o) = —-;—Fl(z")y2 + F{™) (a:2 - %yz) + F*)gy
) = Fay- %Fz(”)y’ + F{"ay - %Ff”)w’
— cubic terms:

o = F (57 - 3o%) 4 F (a7 - o) - gFaR - SRsy

2 2
) 1 34 1 . 3 . 1
o) = _EFI(S )y §F§3r)xy2 + F) (zs _ izyz) + B (zzy _ 6y3)
r 3 3r 3r 1 1 3 3r 3r 1 1
&) = EFI( Jzy? + FL (-2-z2y - §y3) + EFé )22y + F& (E:z:y2 - 52:3)

(c) Stress Field Used for the Element QUA04_05

o = F+Fy
gy = F 4 Fsx

Ty = F3
(d) Stress Field Used for the Element TRIO6_09

0: = F+ Fy+ Fex —2Fszy
oy = F3+ Fyz+ Fry - 2Fyzy
Toy = F5— Fgy— Frz + Fay? + Fyz?

(e) Stress Field Used for the Element QUA0O8_13

0z = Fi+ Fy+ Fsz + Fgy? + Fioz? — 2F13zy
oy = Fs3+ Fyz+ Fry+ Fox® + Fiiy® — 2Fppzy
Toy = Fs— Fgy— Frz — 2(Fio+ Fui)zy + Fiz? + Fiay®

(B6a)
(B6b)

(Béc)

(B7a)
(B7b)

(B7c)

(B8a)
(B8b)
(B8c)

(B9a)
(B9b)
(B9c)

(B10a)
(B10b)
(B10c)



Appendix C

Analytical Solution for the Rectangular Plate Under Sinusoidal Load

The analytical solution of the problem presented in Exam-whereC; = pg(sinhaa + aa coshaa)/D4; C, = {pp(coshaa +
ple 3is given here. It can be derived by using the Fourier seriegra sinhaa)/Do; Cg poa coshaa/Dy; andCy =—ppa sinhaa/
outlined in reference 23. The stress componggts,, andtyy Dq; withD1 =a (2aa+ sinh Zra), D, = 2(2aa sinh Zxa),
are given as a=m2L, andxandy are coordinates of the pointinside the plate
as defined in figure 11.
The displacement is calculated by integrating the strain-

o =a? coshay +C, sinh ay + Dgsmh +vcosh O displacement relations as follows:
X 2 (o ay+y GyD

D2 u:—%[Cl(1+v)coshay+Cz(1+V)sinhay+C3

Ebr coshay +ysinh ay[Bsmz (Cla)

Eésinh ay+(1+ v)ycoshayg
o, = —az(C1 coshay + C, sinh ay + Czycoshay

. T
+C,ycosh ayjsin—  (Clb
a¥ ory) 2L (Clb) Eb{ cosh ay+(1+v)ysinh ay[%cos— (C2)

. 1 .
Ty =c72§:lsmhay+c2 cosh ay + CSEEcoshay+ ysmhayg

Da smh ay +y cosh ayEEcos— (Clc)
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