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SUMMARY

Protein crystals are often experimentally grown in hanging drops in microgravity experiments on-board the
Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth pro-
cesses in hanging droplets (~30 µL) in microgravity experiments, but elaborate instrumentation and optical align-
ment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now
feasible. We apply a newly developed fiber optic probe to various earth and space (microgravity) protein crystalliza-
tion system configurations to test its capabilities. These include conventional batch (cuvette or capillary) systems,
a hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for
temperature-induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor dif-
fusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within
a few seconds) means of quantitatively and noninvasively monitoring the various growth stages of protein crystalli-
zation. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering
measurements. It utilizes extremely low levels of laser power ( a few µW) and essentially eliminates the usual prob-
lems associated with optical alignment and vibration isolation. The compact probe is also equipped with a miniatur-
ized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system makes
possible the exploration of new ways to grow good quality crystals suitable for x-ray crystallographic analysis and
may contribute to a concrete scientific basis for understanding the process of crystallization.

INTRODUCTION

The growth of protein crystals is usually the rate limiting step in the determination of three dimensional struc-
tures of biologically important proteins. This area has been of particular interest in recent years due to the use of
structure based rational drug design for developing new pharmaceutical materials. This approach relies on the deter-
mination of the three dimensional structure of a specific protein related to a particular disease process. Once the
structure has been determined and the appropriate active site(s) of the protein have been identified, then a drug can
be designed to modify the protein's activity and interrupt the disease process. The only direct method for determin-
ing three dimensional structures of large biological proteins is the technique of x-ray crystallography which requires
well ordered crystals of the target protein in order to solve the structure. Obtaining these crystals is typically the
most difficult step prior to using x-ray crystallography. This difficulty led to the exploration of other avenues which
might yield high quality crystals. Early experiments by Walter Littke (ref. 1) led researchers in the U.S. to investi-
gate the effects of eliminating gravity on crystal growth. This interest ultimately resulted in the development of a
hanging drop vapor diffusion apparatus (HDVDA). This hardware, described by Rosenblum et al. (ref. 2), has been
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used on Space Shuttle missions to successfully grow crystals of several proteins which have produced x-ray data
surpassing the data collected from the best earth grown crystals. However, not all proteins have produced better
crystals in space. This is believed to occur because the conditions for crystal growth are different in a microgravity
environment than in 1g.

The fundamental physics for crystallization of biological macromolecules is still not well understood. Small
molecules (e.g., NaCl) have stronger bonds holding the crystal together than do protein crystals which are typically
held together by much weaker electrostatic interactions, hydrogen bonds, and water bridges. Protein crystals also
contain a great deal of solvent, typically anywhere from 40 to 80 percent of the crystal volume. These factors make
protein crystals much more difficult to crystallize in a well ordered manner suitable for x-ray diffraction studies.
While there are several theories regarding the mechanism of protein crystallization, it is not definitively clear
whether monomers or some higher order aggregate(s) comprise the growth unit. There is evidence supporting both
theories. It is possible both mechanisms contribute to crystal growth simultaneously. A concrete physical under-
standing of the protein crystallization process at a fundamental science level would require detailed studies of the
nucleation and post-nucleation growth phenomena. Since nucleation may depend upon temperature, monomer con-
centration, pH, solution ionic strength and crystallizing agent concentration, dynamic control of one or more of these
parameters and a specific monitoring technique would be very useful. Dynamic control of nucleation offers the pos-
sibility of a more systematic approach to protein crystal growth, and its implementation calls for the development
of suitable quantitative and noninvasive monitoring techniques.

Since the evaporation rate in a HDVDA experiment is set by the initial solution concentrations, active control
over the equilibration rate of the growth solution is not possible once the experiment is activated. This limitation
has led to the development of a dynamically controlled vapor diffusion system (DCVDS), described by Bray et al.
(ref. 3), which does allow active control over evaporation rates. The DCVDS utilizes humidity sensors and a laser
scattering detector which allow control over the approach to nucleation, detection of nucleation and control of post-
nucleation growth. The major goal of this study is to determine if the optical probe described in this paper provides
the necessary features as a laser scattering diagnostic so that it meets the requirements for the DCVDS and other
ground based and space based systems. The preliminary results indicate that the probe does meet this objective.

Data Analysis

The technique of DLS is commonly used in the characterization of macromolecular solutions and its principles
are documented in several books such as the one by Chu (ref. 4). The incident laser radiation interacts with the par-
ticles dispersed in a fluid. The particles scatter light and the intensity of this scattered light fluctuates in time due to
the Brownian or thermal motion of the dispersed particles in the suspending medium. When a dynamic medium such
as a protein solution is illuminated by laser light, a rapidly changing interference pattern due to the differences in the
optical density of the scattering medium is produced and contains information about the dynamics of the scattering
medium which can be extracted by constructing a time autocorrelation function (TCF) (refs. 4 and 5). The TCF is
computed using a digital correlator, and in the case of dilute dispersions of spherical particles, the TCF provides
quick and accurate determination of the particle translation diffusion coefficient. The diffusion coefficient data can
easily be transformed into average particle size, using the Stokes-Einstein equation, provided the viscosity of the
suspending medium, its temperature and refractive index are known.

Conventionally the technique of DLS has been used for studying dilute solution properties of spherically shaped
particles of effective size ranging between 3 nm and 3 µm. For concentrated suspensions exhibiting multiple light
scattering effects and for dispersions containing more than one scattering species, however, the data analysis and
interpretation of the TCF becomes more difficult. The protein systems studied in this paper do not exhibit multiple
light scattering effects. Our DLS probe is capable of handling concentrated dispersions. Ansari et al. (ref. 6) have
accurately determined, without a need to correct for multiple light scattering, the alpha crystalline protein size in
the eye lens where its composition is very high (35 to 40 percent w/ν). We must note, however, that the TCF data
obtained during post-nucleation protein crystal growth where nonspherical micron sized particles are present must
be analyzed and interpreted with extreme care. When particle size approaches ~1 µm in ground-based systems, sedi-
mentation often becomes dominant. Therefore, DLS data should only be used to detect gross trends when particle
sizes become larger and the assignment of specific size values in absolute terms is qualitative. The TCF data pre-
sented here was analyzed using the commercial data inversion routines supplied by the Brookhaven Instruments
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Corporation (Holtsville, NY). These include a method of cumulants, double exponential, and a computer algorithm
called CONTIN. These data analysis techniques and their comparison are described in detail by Stock and Ray
(ref. 7).

Optical Design

We chose to exploit the technique of DLS to reliably characterize dynamical properties (diffusion coefficients
or size) of the protein molecules in a hanging drop. Until recently such experiments were not possible because of
optical alignment problems, control of penetration depth inside the sample, physical size of the instrumentation and
power requirements for the laser and photodetectors. In the last few years, however, the DLS instrumentation has
profited from technologies associated with the advent of miniaturization in solid state lasers, photodetectors, optical
components and fiber optic communication devices (ref. 8).

One of the difficulties in probing protein monomers in dilute solutions is their small size (~3 to 8 nm in diam).
Conventional DLS systems require laser powers of the order of a few hundred milliwatts and data collection times
of minutes to obtain a good-quality TCF. One factor affecting the TCF, as shown by Ford (ref. 5), is the precise con-
trol of the scattering volume or coherence area in the sample. In conventional DLS systems the coherence area is
controlled by making use of lenses and apertures as part of the launch and detection optics. Fiber optic systems re-
ported by Dhadwal (ref. 9) have made use of two optical fibers, one for launch and the other for detection, mounted
on one gradient index (GRIN) microlens. A lensless fiber optic system for doing DLS measurements has also been
reported by Dhadwal et al. (ref. 10). The former (fig. 1 and 1(a) in ref. 9) can only be used as an immersion probe
while the lensless probe (ref. 10) can be used both inside and outside the sample cell. Both designs have certain limi-
tations. In the former case, in our experience, reflections arising from the lens and fiber surfaces give rise to hetero-
dyning effects thus compromising the reliability and accuracy in obtaining correct particle sizes. The lensless fiber
optic system, on the other hand, solves the problem of spurious reflection, but for outside use it must be placed
within a very close proximity (< 2 mm) of the sample being interrogated. Further, its use is limited in interrogating
very dilute samples when used in conjunction with solid-state lasers and samples of larger colloidal particles. The
sensitivity and reliability are drastically reduced for particles greater than 300 to 500 nm because of extremely low
spatial coherence (β) values and a large scattering area (~5 mm2). This system is therefore not suitable for the
HDVDA or DCVDS system configurations.

Casay and Wilson (ref. 11) have successfully demonstrated the use of static and DLS techniques in the only
reported study of the lysozyme nucleation process in a modified HDVDA. In that study separate laser launch and
detection systems were used. The laser launch system employed a multimode optical fiber with a microlens to pro-
duce a collimated beam of light in the sample. The scattered light was collected at a scattering angle of 90° using a
single mode optical fiber. The separate laser and detector systems compromise flexibility and demand a high degree
of optical alignment which is not easy to achieve in a microgravity environment. Although the experimental results
were good, their system was not optimized for the most efficient self-beating (DLS) light scattering experiments.
Further, such a system cannot be used on a DCVDS system which employs sample cells fabricated out of acrylic
material which becomes opaque upon machining.

Our newly designed system alleviates all of the above problems. We attach separate micro-graded index
(GRIN) lenses on each optical fiber (launch and detection) in such a way that the scattering volume (~2×10–5 mm3)
and coherence area (ref. 5) are very tightly controlled resulting in high spatial coherence (β >0.5) values. A fiber
optic probe comprised of two monomode optical fibers and two GRIN microlenses, as illustrated in figure 1, pro-
vides a compact and remote means of studying the dynamical characteristics of the protein particles in a hanging
droplet. The fiber optic probe (1.3 cm in diam × 1.3 cm in length) contains the necessary optics to perform DLS
measurements at a scattering angle of 161.5°. The probe is shown in figure 1 with a U.S. dime for size comparison.
The probe is noninvasive and is conveniently positioned in front of the drop, but has no physical contact with any
part of the sample or its container. Two monomode optical fibers, each housed in a stainless steel ferrule, are
mounted into a separate stainless steel housing. An air gap ( 0 to 0.05 mm) is intentionally left between the fiber
housing and the lens housing in order to produce a tightly focused spot in the scattering volume. The two optical
fibers in their housings are aligned and fixed into position off-axis with the GRIN lens. The two housings are placed
inside a third (outer) housing made of stainless steel, and the back end of the housing is covered with a heat-shrink
tubing. The two free ends of the optical fibers were terminated with FC/PC-type male connectors for easy mating
with the laser/detectormodule comprised of a temperature-controlled laser diode (Toshiba model TOLD 9215), a
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Figure 1.—A compact optical probe for monitoring protein crystallization.
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constant power driver, a photomultiplier tube (PMT) (Hamamatsu HC-120) and an amplifier-discriminator system
(Brookhaven Instruments Corporation, NY). An avalanche photo diode (APD) photon counting module (model
PCS-2, EG  and G Canada) was also used as a photodetector. The PMT and the APD were used to collect scattered
light from concentrated polystyrene solutions and protein solutions, respectively.

Our optical design (probe) provides major improvements over previously reported DLS systems. These im-
provements include accurate determination of particle sizes from very small (3 nm) to very large (~1 µm) with very
short data acquisition times (within seconds) and extremely small laser power levels (few µW) from a laser diode,
and the ability to place the probe outside the sample container anywhere from 0 to 17 mm from the sample's surface.
The probe can also be immersed in the solution. Another major improvement is its ability to probe solution dynamics
in sample containers of varying size and shapes. We have performed accurate and reliable particle size measure-
ments with this probe on dispersions contained in regular spectrographic cuvettes, capillary tubes, common labora-
tory utensils (beakers, graduated cylinders, conical flasks, glass/clear plastic container vessels), concentric cells
containing two different solutions and hanging fluid drops. Extremely small sample quantities of protein solutions
(~30 µL) were interrogated in the experiments reported in this paper. Ansari and Suh (ref. 12) have recently shown
that the performance of their probe is far better when compared with the lensless probe of Dhadwal et al.
(ref. 9). The newly designed fiber optic probe was thoroughly tested using polystyrene monodisperse standards rang-
ing in size from 20 nm to 0.8 µm at several concentrations and bovine serum albumin (BSA) protein samples ranging
in concentration from 2 to 10 percent (w/ν). These measurements were performed in batch mode and in hanging
drops and were recently reported by Ansari and Suh (ref. 12). The effect of data acquisition time (experiment dura-
tion) and the incident laser power using the probe was also tested with regard to yielding correct particle sizes. The
results showed that accurate particle size measurements were obtainable in 5 s  at a laser power of 0.2 mW. Such
short measurement times may be useful for studying nucleation and growth phenomena. Recently, Ansari et al.
(ref. 6) have used this probe to detect early signs of eye diseases (e.g., cataracts) in live animals and cadavers.

Experimental Set Up and Procedure

The experimental set up was comprised of four parts; a temperature-controlled laser/detector module, a protein
crystal growth facility (cuvette, HDVDA and DCVDS), a fiber optic probe and a data acquisition system. The ex-
perimental configurations are shown in figures 2 and 3. The probe was mounted on the HDVDA/DCVDS using a
V-clamp and an optical post. Laser light (λ = 670 nm) from a laser diode at 80 µW power level was launched into the
sample via the probe. Light scattered from the particles inside the scattering volume (~2×10–5 mm3) was collected at
a scattering angle of 161.5° by the same probe assembly and was guided to the PMT or APD. The resulting signal
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was fed to a digital correlator card (Brookhaven Instruments BI9000) housed in a docking station for a Pentium™
based notebook computer (7600 Series, EPS). A logarithmic correlation time scaling was used to capture the dynam-
ics of very small and very large particles which may be present in the same scattering volume. Another unique fea-
ture of our DLS probe is that it is equipped with a miniaturized microscope which can be used for visualizing
macroscopic particles once they appear during a crystallization experiment. However, in the experiments reported in
this paper this feature was not utilized in on-line configuration because of inadequate white-light sample illumina-
tion conditions in the experimental chambers.

The first apparatus tested was a modified HDVDA. This apparatus, shown in figure 2, is a modification of space
flight hardware which mimics the hanging drop vapor diffusion method for growing protein crystals. The HDVDA
is equipped with an optical window made of plexiglass. This window has a thickness of 3.8 mm and the distance
from the front of the hanging droplet to the back surface of the window is 2.5 mm. In the HDVDA, the growth solu-
tion is suspended from a double barreled syringe which is surrounded by a wicking material containing the reservoir
solution. Initial solution concentrations are chosen such that water diffuses from the droplet into the reservoir. In the
modified HDVDA, the wicking material was removed and the droplet chamber size was reduced (fig. 2). Thermo-
electric devices were embedded around the chamber so that temperature induced crystallization could be performed
instead of vapor diffusion. The protein solution was placed in one side of the double barreled syringe and the crys-
tallizing agent in the other side. The syringe was then placed in the HDVDA and the two solutions were deployed
together as a droplet.

The second apparatus used was a dynamically controlled vapor diffusion system (DCVDS), shown in figure 3,
which also mimics the hanging drop vapor diffusion method. This device, however, uses controlled sequential
purges of a dry nitrogen gas to evaporate water from the growth solution at a user prescribed rate. This approach
replaces the reservoir solution used in the traditional HDVDA for accomplishing vapor diffusion. A humidity sensor
is used to monitor the amount of water evaporated out of the growth solution as a function of time. The feedback
from this sensor can be used to effect virtually any evaporation profile. A microcomputer utilizing custom software
and data acquisition/interface boards operates and monitors all aspects of the system.

Sample Preparation

A 40mM sodium acetate buffer solution was prepared at pH 4.3 and was used to dissolve lysozyme from
Boehringer to a concentration of 38.2 mg/ml. The same buffer was used to prepare a 7 percent (w/ν) NaCl stock
solution used as a crystallizing agent. Thaumatin from sigma was dissolved in 50mM ADA buffer at pH 6.5 to a
concentration of 68.5 mg/ml. The same buffer was used to prepare a stock solution of NaK tartrate at 0.075 M. All
solutions were filtered through 0.2 µm Acrodisc filters.

RESULTS AND DISCUSSION

Detection of the Onset of  Temperature-Induced Aggregation in a Modified HDVDA.—We first tested the fea-
sibility of our probe to detect the onset of temperature-induced aggregation in a 25 mg/ml solution of lysozyme dis-
solved in 40mM acetate buffer, pH = 4.3, with 2.5 percent w/ν NaCl. These experiments were conducted in a
modified HDVDA as shown in figure 2. The average particle size and the average scattered intensity (countrate)
were monitored simultaneously as a function of time as shown in figure 4(a). The method of cumulants was used
to reduce the DLS data to particle size. We distinguish three distinct regions in this plot. The experiment tempera-
ture began at 27 °C and was kept constant for 1 hr. The data was collected every 60 sec for a duration of 30 sec. At
stage 1 (up to 1 hr) the average scatted intensity and average size of the protein molecules remained essentially con-
stant (intensity within 1.34 percent and size within 2 percent). After this time the solution temperature was ramped
down to 16 °C at a rate of 1 °C/min. At stage 2 both the average scattered intensity and average particle size in-
creased, and we interpret this as an indication of the onset of protein aggregation. This behavior corroborates the
earlier observations of Casay and Wilson (ref. 11) on the basis of their DLS and static light scattering measurements.
The temperature was then ramped up to 21 °C at 1 °C/min and maintained until the total experiment time was about
3 hr. At stage 3 we note a reduction in average size of the particles and average scattered intensity indicating some
degree of dissociation of the primary aggregates. Data selected from the three stages was analyzed using CONTIN
and is plotted in figure 4(b). The histogram presentation shows the shifts in average particle size corresponding to
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stages 1 to 3 and is consistent with the cumulant analysis data shown in figure 4(a). A polydispersity factor, de-
scribed in reference 4 and measured from the DLS-TCF data, can be a sensitive measure of aggregation. In our ex-
periments, this factor, often referred to as the poly, increased from 0.005 in the initial stage to 0.22 in the later state
suggesting a change from a nearly monodisperse state to a more polydisperse state. The state of protein aggregation
corresponding to stage 1 is clearly best described as that of lysozyme monomer since the average particle diameter
was determined to be about 3.8 nm and the poly value was extremely low. At stage 2, the average diameter in-
creased to between 5 and 6 nm with an accompanying increase in poly. The actual particle size distribution at stage
2 is indeterminate from these data, and no inferences concerning specific monometer ↔  n-mer equilibria are made.
However, from these results we do conclude that our newly designed probe is quite sensitive for detection of  the
aggregation stages in a dynamically controlled protein solution environment.

Detection of Fast Crystallization in the HDVDA and DCVDS.—The results described in the previous section
(section 5.1) were for lysozyme solutions at relatively low supersaturation. The data analysis showed that the aggre-
gates detected were small with no indication of particle sizes greater than 10 nm and certainly nothing of microscopic
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size. But what about the case when high protein supersaturations are employed? Crystallization in some proteins can
be induced relatively quickly with large populations of microcrystals formed. In order to test the latter case, two
experiments were performed utilizing supersaturated lysozyme in the HDVDA and supersaturated thaumatin in the
DCVDS. The first experiment tested the probe on a supersaturated solution of 85 mg/ml lysozyme in 40mM acetate
buffer, pH = 4.3 with 4 percent NaCl. The lysozyme solution was loaded in the six-pack HDVDA unit at an initial
temperature of 24 °C. The average particle size and average scattered intensity as a function of time is plotted in
figure 5. The initial particle sizes in this solution are dramatically different from that depicted in figure 4(a). This
solution clearly contained particles that had an average diameter of several hundred nm, not surprising for such a
highly supersaturated solution. The temperature, 24 °C, was held constant for about 40 min during which the aver-
age particle size was maintained. After about 40 min the temperature of the lysozyme solution was quickly reduced
to 21 °C. Immediately upon cooling, both average size and average scattered intensity increased and finally,
lysozyme crystals (~0.1 to 0.2 mm) appeared. This general trend in the increase in particle size has been noted by
Malkin and McPherson (ref. 13) in a light scattering study of STMV, apoferritin and pumpkin globulin at several
different high supersaturation levels. Figure 6(a) shows typical TCF profiles at the initial, intermediate and crystal-
lizing stages of the solution. The first TCF (t = 0), an intermediate TCF (t = 40 min) and last TCF (t = 55 min) show
significant change in their shape. This is reflected in the histogram presentations of particle size shown in figure
6(b). The initial particles (t = 0) had sizes centered around 5 nm and 0.5 µm while the particles at the crystallizing
stage (t = 55 min) showed two sizes; one centered around 8 nm and another 5 µm. These measurements indicate the
sensitivity of the DLS probe for detecting the presence of both small and large particles in the same solution. We do
not wish to emphasize the absolute values for the particle size distributions, but instead, point out the good dynamic
range of the DLS probe.
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DLS measurements were also performed on another supersaturated solution comprised of 34.35 mg/ml thau–
matin mixed with 0.038M NaK tartrate in the DCVDS at the highest rate of evaporation. The TCF profiles are
plotted in figure 7. The t = 0 measurement shows a particle size centered around 5 nm which can be regarded as
thaumatin monomers. After 4 min of evaporation the size distribution increases very rapidly centering around
4.3 nm and 13 µm. Ten minutes later the solution was examined again. It showed a size distribution centered
around 4.7 nm suggesting sedimentation of large crystals. Indeed upon examination under a microscope the crys-
tals (~0.1 to 0.2 mm) appeared at the bottom of the hanging thaumatin droplet and are shown in figure 3. Again,
we have demonstrated the effectiveness of the DLS probe for detecting large changes in particle size that can be
forced to occur in a protein crystallization experiment.
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CONCLUSION

We conclude that noninvasive, quantitative, fast, and reliable DLS measurements are now possible in hanging
drop configurations suitable for ground-based and microgravity protein crystal growth facilities. The newly de-
signed probe is capable of detecting the various particle sizes which may be associated with all of the various stages
of protein crystal growth.
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