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ABSTRACT
An explicit finite difference iteration scheme is developed to

study harmonic sound propagation in aircraft engine nacelles. To
reduce storage requirements for large 3D problems, the time depen-
dent potential form of the acoustic wave equation is used. To insure
that the finite difference scheme is both explicit and stable, time is
introduced into the Fourier transformed (steady-state) acoustic
potential field as a parameter. Under a suitable transformation, the
time dependent governing equation in frequency space is simplified
to yield a parabolic partial differential equation, which is then
marched through time to attain the steady-state solution. The input
to the system is the amplitude of an incident harmonic sound source
entering a quiescent duct at the input boundary, with standard
impedance boundary conditions on the duct walls and duct exit. The
introduction of the time parameter eliminates the large matrix
storage requirements normally associated with frequency domain
solutions, and time marching attains the steady-state quickly enough
to make the method favorable when compared to frequency domain
methods. For validation, this transient-frequency domain method is
applied to sound propagation in a 2D hard wall duct with plug flow.

INTRODUCTION
Both steady-state (frequency domain) and transient (time do-

main) finite difference and finite element techniques have been
developed to study sound propagation in aircraft nacelles (Baumeister,
1980a and b and Baumeister and Horowitz 1984). Sound propaga-
tion with axial variations in duct geometry, mean flow Mach number
and wall sound absorbers have been considered (Astley and Eversman,
1981). To date, the numerical solutions have generally been limited
to moderate frequency sound and mean flow Mach numbers in two
dimensional axisymmetric nacelles. Wavelength resolution prob-
lems have prevented a broader  range of applications of the numeri-
cal methods. A fine grid is required to resolve the short wavelengths
associated with high frequency sound propagation with high inlet

Mach numbers. Thus, application of numerical techniques to high
frequency sound propagation in 3-D engine nacelles has yet to be
attempted.

Generally, the number of grid points along the centerline of an
aircraft nacelle is directly proportional to the sound frequency and
the nacelle length and inversely proportional to one minus the mean
flow Mach number. In addition, the number of grid points in the
transverse direction depends on the radial and spinning mode con-
tent of the sound source. These dependencies severely limit the
application of numerical techniques.

The present paper is the first step in a larger research effort to
develop efficient numerical techniques to predict high frequency
sound propagation around 3D aircraft inlet nacelles with large
subsonic inlet Mach numbers. The paper begins with a description
of the problem, an explanation of why the transient approach is
employed, and a description of the grid system and governing
equations. The bulk of the paper describes the development of a
stable, explicit finite difference scheme by a transformation of the
governing hyperbolic wave equation. The scheme is iterated in time
to converge to the steady-state solution associated with a Fourier
transform solution.

NOMENCLATURE
C dimensionless speed of sound, C#/Co

#, eq. (2)

c steady speed of sound, eq. (11)

c′ fluctuating speed of sound, eq. (12)

D# dimensional duct height or diameter

D duct height, D = 1

d parameter, eq. (58)
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F source amplitude at duct entrance, eq. (40)

f# dimensional frequency

f dimensionless frequency, f#D#/Co
#

g parameter, eq. (58)

h parameter, eq. (58)

i −1

L length of duct, L#/D#, Figure 2

Mf Mach number at duct entrance

n unit outward normal

P# dimensional pressure

P dimensionless fluid pressure, P#/ρo
#Co

#2

P steady fluid pressure

P′ acoustic pressure fluctuation, eq. (19)

t dimensionless time, f#t#

tT total dimensionless calculation time

∆t time step

un′# normal acoustic velocity, eq. (43)

x dimensionless axial coordinate, x#/D#

∆x axial grid spacing

y dimensionless transverse coordinate, y#/D#

∆y transverse grid spacing

Z# impedance

γ ratio of specific heats

ζ dimensionless impedance, Z#/ρo
#Co

#

ρ dimensionless fluid density, ρ#/ρo
#

ρ steady fluid density, eq. (21)

ρ′ fluctuating acoustic density

Φ dimensionless time dependent flow potential, Φ#/Co
#D#

Φ steady mean flow potential, eq. (5)

φ' transient acoustic potential, eq. (5)

φ transient acoustic potential in frequency space, eq. (30)

Ψ spatial potential, eq. (28)

ω dimensionless frequency, 2πf

∇ D# ∇#

Subscripts
i axial index, see Figure 2

j transverse index, see Figure 2

o ambient or reference condition

Superscript
# dimensional quantity

k time step

PROBLEM STATEMENT
The problem under consideration here is the steady-state propa-

gation of sound, represented by the perturbation acoustic potential,
through a 2D rectangular duct. The source, noise emanating from fan
blades in a jet engine inlet nozzle, is represented by specifying the
pressure distribution at the fan face. The goal of the paper is to
develop a stable, explicit finite difference scheme that incorporates
the far field impedance condition applied at the duct exit and rigid
body boundary conditions on the duct walls. The method is designed
with the intention of extending the current 2D duct formulation to
general 3D nacelle design problems with a variety of possible
boundary conditions in the near and far fields.

TRANSIENT APPROACH
In frequency domain approaches, pressure and acoustic velocity

are assumed to be harmonic functions of time. The matrices associ-
ated with numerical solutions of the governing equations in the
frequency domain have extremely large storage requirements. In
similar 3D electromagnetic applications, Taflove (1991) reports that
frequency domain approaches are limited to several hundred thou-
sand unknowns (still a small problem in 3D). Larger problems
encounter roundoff errors and conditioning problems that prevent a
reliable solution.

On the other hand, an explicit transient method generates no
matrices, and is generally faster than a frequency domain approach
(Baumeister, 1980a). Miller has developed explicit relationships
showing the time advantage of transient over steady state techniques
(Miller, 1988, section V. Some Practical Considerations, C. Discus-
sion). Consequently, the method of choice in the present paper is a
time dependent method.
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GRID SYSTEM
Three possible mesh systems could be employed to model the

time dependent acoustic field in an aircraft nacelle; (1)CFD body
fitted grids, (2) unstructured finite element grids and (3) almost
highly structured grids. Both the body fitted and finite element grids
require extensive storage of information about the grid structure. For
3D problems, this storage requirement places a large burden on
available storage and speed of operations. Therefore, the almost
highly structure grid is preferred here.

The almost highly structured grid is rectangular away from the
geometry of interest, with nonstandard split or stretched finite-
volume cells only at the curved surface. Taflove (1991) reports that
the processing speed is up to 18 times faster than codes using CFD
body-fitted meshes. Furthermore, artifacts due to refraction and
reflection of numerical waves propagating across global mesh
distortions are reduced.

Figure 1 illustrates an almost structured grid model of an aircraft
engine nacelle. Only in the vicinity of the center body or the curved
nacelle tip is the grid nonuniform. For the rectangular duct examples
considered here, the highly structured grid system shown in
Figure 2 is employed.

GOVERNING EQUATIONS
The governing differential equations for studying acoustic propa-

gation in inlet nacelles can be formulated in terms of the constitutive
continuity and momentum equations (Baumeister, 1979) or in terms
of potential flow (Sigman et. al., 1978). The constitutive equation
approach can handle a general 3D sheared flow while the potential
approach is limited to 3D inviscid flow. The major advantage of the
potential flow approach over the constitutive equation approach
comes in decreased storage requirements associated with only one
dependent variable.

Fortunately, acoustic propagation in inlet nacelles can be reason-
ably modeled by an inviscid approximation. For single mode JT15D
engine data, a previous finite element study (Baumeister and
Horowitz, 1984) employing the potential formulation in the fre-
quency domain showed good agreement with experimental data - in
the far field radiation pattern as well as suppressor attenuation. Due
to this success, the problem under consideration here is formulated
in terms of an acoustic potential.

 For inviscid, non heat conducting and irrotational flow, the non-
linear partial differential equation for the flow potential can be
written in dimensionless form as (Thompson, 1972, pg. 257,
eq. 5.24)

f f Ctt t
2 2 21

2
1Φ Φ Φ Φ Φ Φ Φ+ ∇ ⋅∇( ) + ∇ ⋅∇ ∇ ⋅∇( ) = ∇   ( )

where

C f t
2 1 1

1

2
2= − −( ) + ∇ ⋅∇



γ Φ Φ Φ ( )

The symbol Φ represents the time dependent potential of the total
flow field. The speed of propagation of a disturbance is represented
by C and the frequency of an acoustic source by  f. Subscripts
indicate partial differentiation with respect to subscripted variables.

The conventional normalization factors used to develop these

nondimensional equations are given in the NOMENCLATURE.
However, the normalization of time deserves some special com-
ment. A common choice for normalizing time is t = Co

#t#/D#. The
superscript # designates a dimensional quantity while the subscript
o indicates an arbitrary reference value. With this choice, the
dimensionless frequency f would not appear in eqs. (1) or (2).
However, in this paper, the dimensional frequency f# of the forcing
acoustic signal was chosen to normalize time, so that t = f#t#. As a
result, the time t indicates the number of complete acoustic cycles
that have occurred since the start of the solution process. This is
advantageous because the total time of the numerical calculation can
generally be set independently of the frequency of the acoustic
signal.

Rewriting eqs. (1) and (2) in two dimensional rectangular coor-
dinates yields:

f f

C

tt x xt y yt x xx x y xy

y yy xx yy

2 2

2 2

2 2 2
3

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ

+ +( ) + +

+ = +( ) ( )
               

C f t x y
2 2 21 1

1

2

1

2
4= − −( ) + +



γ  ( )Φ Φ Φ

To obtain the acoustic solution, the flow potential is

rewritten as the sum of a steady mean flow potential Φ (x,y) and an
acoustic potential φ′(x,y,t); that is

Φ Φx y t x y x y t, , , , , ( )( ) = ( ) + ′( )φ 5

To simplify the algebra in the linearization of eq. (3), first eq. (4) is
linearized and the steady mean flow equation is developed. Substi-
tuting eq. (5) into eq.(4) and neglecting second order terms, the
speed of the disturbance can be expressed in terms of the steady and
fluctuating potentials as

C f t x x x y y y
2 2 21 1

1

2

1

2
6= − −( ) ′ + + ′ + + ′



γ φ φ ( )Φ Φ Φ Φ Φ

which can be written in compact form as

C B B2 2 2 7= + ′ ( )
where

B x y
2 2 21

1

2
1 8= − −( ) +( )γ Φ Φ ( )

′ = − −( ) ′ + ′ + ′( )B f t x x y y
2 1 9γ φ φ φΦ Φ ( )

To linearize the speed of sound, define

C c c B B B
B

B
B

B

B
= + ′ = + ′ = + ′ ≅ + ′2 2

2

2

2
1

1

2
10( )
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Therefore, the mean speed of sound depends on the velocity field
and can be expressed as

c B x y= = − − +( )( )







1
1

2
1 2 2

1 2
11γ Φ Φ

/
( )

while the perturbation of the sonic velocity depends both on the
mean flow field and the acoustic field as

′ = − −



 ′ + ′ + ′( )c

c
f t x x y y

γ φ φ1

2
12 ( )Φ Φ Φ

The differential equation describing the mean flow  can now be
expressed in terms of the mean sonic velocity. Substituting Φ  into
both eqs. (3) and (4) yields

Φ Φ Φ Φ Φ Φ Φ Φ Φx xx x y xy y yy xx yyc2 2 22 0 13+ + − +( ) = ( )

Now, the linearized wave equation can be conveniently estab-
lished. Substituting eqs. (5) and (7) into eq.(3), factoring out the
steady contribution from eq. (13), and neglecting nonlinear products
of the acoustic quantities yields

0 2 2 2 2 2 2

2 2 2

2 1

= ′ − −( ) ′ − −( ) ′ + ′

+ ′ + ′ + +( ) ′

+ +( ) ′ − −( )
× ′ + ′ + ′( )

f tt c x xx c y yy x y xy

f x xt f y yt x xx y xy x

x xy y yy y

f t x x y y

φ φ φ φ

φ φ φ

φ γ

φ φ φ

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ

 

  xxxx yy+( )Φ ( )14

For the special case of plug flow, the mean flow terms in eq. (14)
become

Φ Φ Φ Φy xy xx x fM= = = =0 15     ( )

Substituting eq. (15) into eq. (14) yields

0 2 162 2 2 2= ′ − −( ) ′ − ′ + ′f c M c f Mtt f xx yy f xtφ φ φ φ ( )

and

c Mf
2 21

1

2
1 17= − −( ) ( )γ

Generally, the pressure at the fan face is specified. Therefore, the
relationship between pressure and the potential needs to be deter-
mined from the conservation of momentum. The dimensionless
form of the conservation of momentum equation can be written as

1 1

2
18

ρ
P ft tt t

= − − ∇ ⋅∇( )Φ Φ Φ ( )

Assuming that

P x y t P x y P x y t, , , , , , ( )( ) = ( ) + ′( ) 19

ρ ρ ρx y t x y x y t, , , , , , ( )( ) = ( ) + ′( ) 20

substituting eqs.(5), (19), and (20) into eq. (18) and neglecting
higher order fluctuation terms yields for the acoustic pressure P′

1
21

ρ
φ φ φ′ = − ′ − ′ + ′( )P ft tt x x y y t

Φ Φ ( )

Finally, at the fan face (x = 0), assume

Φy at x= =0 0 22( )

Φx fM at x= =      ( )0 23

and integrate with respect to time to obtain

1
0 24

ρ
φ φ′( ) = − ′ − ′P y t f Mt f x, , ( )

Eq. (14) and eq. (24) are the basic equations used to establish a
finite difference formulation for the rectangular duct shown in
Figure 2. However, care must be taken when discretizing derivative
terms to insure that the resulting scheme is both stable and explicit.
Note that it is easy to develop a stable implicit method, but this would
yield a matrix formulation that is no better than a frequency domain
approach. It turns out that the proper treatment of the mixed time and
space derivative terms (which appear on the second line of eq. (14))
is critical for maintaining stability.

The implicit formulation is obtained by approximating the mixed
partials by (Baumeister, 1980b, eq. (16), and Abramowitz and
Stegun, 1964, pg 884, eq. 25.3.27)

′ =
′ + + ′ − + ′ + + ′ − − ′ − ′ −

+ − ′ +
−

φ
φ φ φ φ φ φ φ

xt
i j
k

i j
k

i j
k

i j
k

i j
k

i j
k

i j
k

x t

, , , , , , , ( )
1

1 1
1 2 1

1
1

1

2
25

∆ ∆

′ =
′ + + ′ − + ′ + + ′ − − ′ − ′ +

+ − ′ −
−

φ
φ φ φ φ φ φ φ

yt
i j
k

i j
k

i j
k

i j
k

i j
k

i j
k

i j
k

t y

, , , , , , ,

( )

1 1
1 1 2 1

1
1
1

2

26

∆ ∆

where i and j denote the space indices for the nodal system shown in
Figure 2, k is the time index defined by

t t tk k+ = +1 27∆ ( )

and ∆x, ∆y, and ∆t are the space and time mesh spacings
respectively.
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Baumeister (1980b) showed that eq. (25) can be used in an explicit
fashion for 1D plug flow problems in a duct. However, if the flow
is not one dimensional or if the region exterior to the duct is included,
the scheme must be implicit. This approach is inappropriate for
general 3D problems. Fortunately, this problem can be circum-
vented by transforming the potential and consequently modifying

the governing equation. The details follow in the next section.

TRANSFORMATION TO FREQUENCY SPACE
There are several ways to develop a frequency domain formula-

tion for the general 2D acoustic wave eq. (14) or the plug flow
simplification eq. (16). The Fourier Transform can be applied if the
potential has a multi-frequency content. In the monochromatic case
(Temkin, pg 52, eq. 2.5.1), this is equivalent to assuming that

′( ) = ( ) = ( )− −φ ω πx y t x y e x y ei t i t, , , , ( )
# #

Ψ Ψ 2 28

which, in the case of plug flow (from eq. (16)), yields

0 2 292 2 2 2= −( ) + + +c M c i Mf xx yy f xΨ Ψ Ψ Ψω ω ( )

This equation would be solved numerically using a linear system
of equations. However, the associated matrix is not positive definite,
which can lead to numerical difficulties, and which preclude the use
of iterative techniques (see TRANSIENT APPROACH). Therefore,
it is desirable to develop an explicit finite difference scheme to avoid
the use of matrices. The situation is complicated by the fact that
boundary conditions can introduce instabilities  (Baumeister, 1982
and Cabelli, 1982) in the solution process. In time-dependent form,
eq. (14) or (16) cannot easily be discretized in such a way that the
resulting finite difference scheme is both stable and explicit in the
presence of flow (it is possible to obtain reasonable results in the no-
flow case).

The resolution of these difficulties is achieved by modifying the
monochromatic transformation (28) to

′( ) = ( ) = ( )− −φ φ φω πx y t x y t e x y t ei t i t, , , , , , ( )
# # 2 30

This differs from the classical monochromatic transformation in that
the amplitude φ (no prime) is no longer assumed to be independent
of time, as in eq. (28). Employing eq. (30), the time derivatives in
eqs. (14) and (16) can replaced by the following relationships:

′ = − +[ ] −φ πφ φ π
t t

i ti e2 312 ( )

′ = − +[ ] −φ πφ φ π
xt x xt

i ti e2 322 ( )

′ = ′( ) = − − ( )( ) −φ ∂
∂

φ φ πφ π φ π
tt t tt t

i t

t
i e2 2 2 332 2 ( )

Under this transformation, the general equation (14) and the plug
flow equation (16) become, respectively

f i f f f

f c c

i i

tt xx yy t x xt

y yt x xx y yy

x y xy x x y y

x xx y xy x x

2

2 2 2 2

2

2 1 2

2

2 2 2

2 2

φ ω γ φ φ

φ φ φ

φ ω φ ω φ ω φ

φ

− + −( ) +( )[ ] +

+ = −( ) + −( )
− + + +

− +( ) −

Φ Φ Φ

Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ Φ

          

         

          ΦΦ Φ Φ

Φ Φ Φ Φ

xy y yy

y x x y y xx yyi

+( )
× + −( ) − + +( ) +( )           

( )

φ γ ωφ φ φ1

34

f if fM c M

c i M

tt t f xt f xx

yy f x

2 2 2

2 2

2 2

2 35

φ ωφ φ φ

φ ω φ ω φ

− + = −( )
+ + +                             ( )

To see the relationship between the two transforms (eq. (28)
and (30)), consider, for simplicity, the case of plug flow. The
monochromatic transform yields eq. (29), while the transient trans-
formation yields eq. (35). The only difference is in the presence of
the time derivative terms on the left hand side of eq. (35). Physically,
the time dependence in φ(x,y,t) is caused by assuming that the duct
is quiescent at time 0, and that the source is turned on at that instant.
A series of numerical calculations was performed to investigate the
relationship between ψ and φ as time progresses. It was verified that
φ converges to the steady state ψ, so that

lim , , , ( )
t

x y t x y
→∞

( ) = ( )φ Ψ 36

At present, a formal proof of convergence is not available.
At present, transient solutions in frequency space are of no

interest. �Therefore, approximations to eqs. (34) or (35) can be made,
by modifying the time derivative terms, as long as the following two
factors are taken into account:  1) the resulting scheme must be both
stable and explicit, and 2) there must be at least one time derivative
term in the equation to ensure that the scheme can be marched
through time to obtain the steady state solution. The mixed space-
time derivative term in eq. (35) prevents an explicit finite difference
representation of the governing equation, and is therefore dropped.
Furthermore,  the hyperbolic time term in eq. (35) is also dropped to
further simplify the governing equation. For plug flow, this produces
a parabolic “wave” equation of the form:

   − = −( ) + + +2 2 372 2 2 2if c M c i Mt f xx yy f xωφ φ φ ω φ ω φ ( )

This type of differential manipulation is often associated with
preconditioning of both time dependent partial differential equa-
tions (Turkel, Fiterman and Leer, 1994) and time independent partial
differential equations (Turkel and Arnone, 1993) to accelerate
convergence to the steady state solution. Here, though, the goal is
obtaining a stable, explicit scheme.

In the absence of mean flow, the parabolic wave equation takes on
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the form

− = + +2 382if t xx yyωφ φ φ ω φ ( )

The right hand side of eq. (38) becomes the Helmholtz equation. In
the Fourier transform approach, Bayliss, Goldstein, and Turkel
(1982) have developed an iterative approach to its associated
matrix; however, the Gaussian elimination approach is still the
method of choice. In effect, the time iteration procedure presented
in this paper offers a very simple iterative solution to this classic
equation.

INITIAL AND BOUNDARY CONDITIONS
The duct is assumed to be quiescent at time 0, so that the initial

condition is

φ x y, , ( )0 0 39( ) =

As the equation is iterated in time, the solution builds up to the steady
state solution.

At the duct entrance, (x= 0), the potential is given by

′( ) = ( ) −φ π0 402, , ( )y t F y e i t

and through eq. (30) to

φ 0 41, , ( )y t F y( ) = ( )

If the pressure at x=0 is specified as the boundary condition, then the
potential is related to the pressure directly through eq. (24).

The wall and exit boundary conditions in hyperbolic space
generally require special considerations. Rigorous treatment of time
dependent boundary conditions for hyperbolic systems is quite
involved (Thompson, 1987). In time dependent duct propagation
problems, impedance concepts have generally not proven useful
(Banks, Propst and Silcox, 1991). However, in the frequency
formulation, Baumeister & Horowitz (1984) found impedance
concepts very useful in describing the operation of real jet engine
noise suppressors. Thus, a major advantage of the transient-fre-
quency formulation presented here is the capability of using the
impedance and gradient conditions as developed for the frequency
domain.

The hard wall condition is

∇ ⋅ =φ n 0 42( )

where n is the unit outward normal.
To simulate a non-reflective boundary at the duct exit, the

difference equation is expressed in terms of an exit impedance. For
the examples presented in this paper, the duct exit impedance is
taken to be that for a plane acoustic wave. The impedance Z# is
defined as (Skudrzyk, eq, (34) section 15.4, pg. 299)

Z
P

u

P

nn

#
#

#

#

# ( )= ′
′

= ′
∇ ′ ⋅φ

43

where P′# is the acoustic pressure at the interface and un′# is the

component of the particle velocity normal to its surface, pointing
into the medium characterized by Z#.. The velocity un′# is positive
if its direction points into the second medium, ie., to the outside of
the surface that contains the incident wave.

In dimensionless form, eq. (43) can be written as

ζ
ρ ∂φ

∂

= = ′
′

Z

c

P

x
o

#

# # ( )44

Substituting in the relationship between pressure and potential for
plug flow as given in eq. (24) yields

ζ ρ
φ φ

φ
= −

′ + ′[ ]
′

f Mt f x

x

( )45

or

′ =
− ′

+
φ

φ
ζ
ρ

x
t

f

f

M
( )46

Since the equations are being developed for harmonic flow, the
following relationship can be used to simplify eq. (46):

′ = −→∞
−φ πφ π

t t
i ti e2 472 ( )

Therefore, the relationship between the gradient of φ and the
impedance in eq. (46) can be written as

φ ω
ζ
ρ

φx

f

i

M
=

+
( )48

For plane wave propagation, the plug flow solution for the
acoustic potential is

′( ) = + −φ
ω

πx t e e

i

c M
x

i tf,  ( )2 49

Substituting eq. (49) into eq. (45) yields

ζ ρ= c ( )50

Substituting eq. (50) into eq. (48) gives the value of the exit gradient
at the end of the finite difference domain:

φ ω φx
f

i

c M
=

+
( )51

This gradient is used to simulate the non-reflective exit condition.
This approach can be used only to simulate plane waves in ducts

or at a termination deep in the far field from an engine nacelle. For
multimode propagation in ducts or grid termination in the near field,
the modal-element method has been found to be very useful. That
method can be used within this transient-frequency framework. In
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acoustics, Astley and Eversman (1981) and  Baumeister and Kreider
(1993) applied the modal element method to duct acoustic and
scattering  problems.  In conventional CFD, Baumeister and
Baumeister (1994) also applied the method to potential flow over a
cylinder within in a duct.

FINITE DIFFERENCE EQUATIONS
The finite difference approximations determine the potential at

the spatial grid points at discrete time steps tk = k∆t. Starting from the
known initial conditions at t = 0 and the boundary conditions, the
algorithm marches the solution out to later times.

Away from the duct boundaries, as shown by the cell in Figure 2,
each partial derivative in eq. (37) can be expressed as follows:

φ
φ φ

t
i j
k

i j
k

t
=

−+ −
, ,

( )
1 1

2
52

∆

φ
φ φ φ

xx
i j
k

i j
k

i j
k

x
=

− ++ −1 1
2

2
53

, , ,
( )

∆

φ
φ φ φ

yy
i j
k

i j
k

i j
k

y
=

− ++ −, , , ( )1 1
2

2
54

∆

φ
φ φ

x
i j
k

i j
k

x
=

−+ −1 1

2
55

, ,
( )

∆

φ φ= i j
k
, ( )56

Substituting these expressions into eq. (37) yields

φ φ φ

φ φ

φ

i j
k

i j
k

i j
k

i j
k

i j
k

i

h

t

d

x

c

y

d

x

g

x

d

x

g

x

c

y

, , ,

, ,

,

                   

                  

+
+

− +

−



 = − −







+ +






+ −






+






+

1
2

2

2

2 1

2

2

1

2

2 1

2

2

2 2

2

2

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆

jj
k

i j
k

i j
kc

y

h

t−
−





+ −



 +1

2

2
1 2 57

∆ ∆
φ ω φ, ,       ( )

where

d c M

h i f

g i M

f

f

2 2 2

58

2

= −
=

=

ω

ω

( )

Eq. (57) is an explicit two step scheme. At t = 0, field values at
 tk-1 are assumed zero because the initial field is quiescent.

The expressions for the difference equations at the boundaries are
complicated somewhat by the impedance conditions. However, a
simple integration procedure resolves this problem. Baumeister

(1980a & 1980b) gives precise details for generating the time
difference equations at the boundaries.

STABILITY
A von Neumann stability analysis (Lapidus and Pinder, 1982)

indicates that the method is conditionally stable, subject to the
conservative condition
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In a typical application, ω, f, and Mf are set by the engine operating
conditions. Next, the grid spacing parameters ∆x and ∆y are set to
accurately resolve the estimated spatial harmonic variation of the
acoustic field. Finally, ∆t is chosen to satisfy eq. (59).

In the von Neumann analysis, conditional stability means that the
amplification factor, which describes how errors propagate from one
time step to the next, has magnitude one. Thus, when inequality (59)
is satisfied, errors are not magnified or diminished in magnitude.
This is a desirable property, since the numerical formulation can not
distinguish between an error and a small acoustic mode.

The von Neumann stability analysis does not take into account
boundary conditions. For stability, gradient boundary conditions
require the use of smaller ∆t than predicted by inequality (eq. (59)).

NUMERICAL EXAMPLES
In the three examples that follow, the parabolic transient-frequency

domain results are compared to the exact results of the steady Fourier
transformed solutions, given by eq. (49).

The following problem is considered: a plane wave propagates
from the left into a quiescent duct of length one, and the acoustic
potential field is to be computed in the duct. Note that, boundary
conditions can introduce instabilities (Baumeister, 1982 and Cabelli,
1982) into otherwise stable finite difference schemes. Therefore, it
is important to test the proposed method for convergence in time to
the steady state solution in the absence of the exit boundary condition
(eq. (51)), and to test independently the effect of the exit boundary
condition itself on the solution.

Semi-Infinite Duct
In this example, the computational boundary is set far enough

away from the true boundary x=1 that any artifacts arising from
imperfections in the exit boundary condition do not affect the
solution in [0,1]. The numerical solution propagates one node per
time step, so setting the boundary at x=50 with step ∆x=0.05
provides a sufficient number of time steps to gauge the convergence
of the method before any artifacts might reflect back from the
computational boundary.

The numerical and exact results are compared in Figure 3, for no
flow (Fig. 3a) and for Mach number Mf =–0.5 (Fig. 3b). The
frequency is normalized to f=1. Both cases show excellent agree-
ment. The total calculation time was tT=5.0.
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Finite Duct L=1
In this example, the computational boundary is moved up to the

true boundary x=1 to examine the effect of the exit boundary
condition (eq. (51)). The frequency is normalized to 1. Again, two
cases were considered - no flow (Mf = 0) and Mach number
Mf =–0.5. The results are shown in Figure 4a and 4b, respectively.
The numerical results again match well with the exact results, but it
is clear that the exit boundary condition does have a slight degrading
effect on the solution. Notice also that the time step has been
decreased here, which tends to increase the execution time; how-
ever, the computational domain is smaller, which tends to decrease
the execution time. The total calculation time in this example was
 tT = 4.0.

CONVERGENCE RATE
In this example, the convergence rate is studied for the region

 x = 0 to x = 1 using the semi-infinite duct. The results are shown in
Figure 5 for the real and imaginary components of the potential and
Figure 6 for the magnitude of the potential. As seen in these figures,
the numerical solution quickly and accurately converges to the exact
steady state solution.

For this plane wave propagation, the exact solution to the hyper-
bolic governing equations predicts the arrival of the “steady state”
solution when t=1 (Baumeister, 1983, eq. (28) renormalized). As
seen in Figures 5 and 6, the parabolic solutions converges to the
Fourier transformed results after a time of t=2 has elapsed. Thus, the
parabolic marching scheme requires more time steps to converge
than a hyperbolic method.

For parabolic partial differential equations with real coefficients,
disturbances propagate with infinite speed (Morse and Feshbach,
1953, pg. 865). In the present calculations, numerical solutions to the
parabolic eq. (37) have this trait. The finite difference values of the
potential propagate throughout the domain at the numerical velocity
∆x/∆t rather than the speed of sound. This characteristic may
account for the slower convergence time for the parabolic formula-
tion as compared to the hyperbolic formulation of the appropriate
governing equations. In the parabolic scheme, acoustic energy is
numerically transferred ahead of the true wave front. Nevertheless,
the parabolic scheme provides the correct steady state solution using
minimal computer storage with run times comparable to other
methods.

HISTORICAL PERSPECTIVE
With the transient-frequency approach developed in this paper,

three different finite difference/element solution techniques are now
available to solve the hyperbolic wave equation that describes
acoustic propagation in jet engine nacelles. This is outlined in Figure
7 for the zero mean flow case.

The Fourier transform of the wave equation was the first numeri-
cal approach used to study sound propagation in jet engine ducts
(Baumeister and Bittner, 1973 and Baumeister and Rice, 1973). This
steady state approach is outlined on the right side of Figure 7. The
governing hyperbolic wave equation is  transformed to the elliptic
Helmholtz  equation. Finite difference (FD) and finite element (FE)
numerical formulations have been employed to solve this equation.
After applications of the boundary conditions (Fig. 7; [BC]), the
associated finite difference or finite element global matrix is solved

for the velocity potential (or pressure). Because the matrix form of
the Helmholtz equation is not positive definite, matrix elimination
solutions are generally employed. This  requires extensive storage,
as discussed in TRANSIENT APPROACH. Conveniently, the
steady state approach allows the direct calculation of the potential
(or pressure) fields.

In the inlet to a turbojet engine, the dimensionless frequencies f
can be on the order of 30 to 50 for the higher harmonics of the blade
passing frequency. The storage requirements and associated com-
puter run times for these high frequencies make computations
expensive or even impossible. To make the numerical solutions
more cost effective,  grid saving approximations to the governing
Helmholtz equation have been used (Fig. 7; [Approximate]).
Baumeister (1974) employed the wave envelope theory while Hardin
and Tappert (1973) developed a similar approach for underwater
sound propagation with the addition of a parabolic (space) approxi-
mation. Candel (1986) presents an extensive discussion of the
contemporary research in this area and a detailed development of the
parabolic equation method (PEM).

The transient solution to the wave equation was the second
numerical approach used to study propagation in jet engine ducts,
which is shown in the left-hand column of Figure 7. To eliminate the
matrix storage requirements, Baumeister developed time dependent
finite difference numerical solutions for noise propagation in a two-
dimensional duct without flow (1980a), with parallel shear flow
(1979) and with axisymmetric flow (1980b).

Sound is introduced as a boundary condition at the duct entrance.
The initial conditions generally assume a quiescent duct. Finite
difference (FD) approximations to the hyperbolic wave equation are
then solved by an iteration process. The calculations are run until the
initial transience dies out and steady harmonic oscillations are
established. Finally, the transient variable φ′ is transformed into the
steady state variable ψ associated with the solution of the Helmholtz
equation. As with the steady state approach, simplification to the
governing equations (Fig. 7; [Approximations]) can reduce com-
puter storage and run times (Baumeister, 1986).

The third option, the transient-frequency technique, is illustrated
in the central column of Figure 7. This fully explicit iteration method
eliminates the large matrix storage requirements of steady state
techniques and allows the use of conventional impedance condi-
tions. As time increases, the iteration process directly computes the
steady state variable ψ.

CONCLUDING REMARKS
A transient-frequency domain numerical solution of the potential

acoustic equation has been developed. The potential form of the
governing equations has been employed to reduce the number of
dependent variables and their associated storage requirements.  This
fully explicit  iteration method represents a significant advance over
previous steady state and transient techniques. Time is introduced
into the steady state  formulation to form a hyperbolic equation. A
parabolic approximation (in time) to this hyperbolic equation is
employed. The field is iterated in time from an initial value of 0 to
attain the steady state solution.

The method eliminates the large matrix storage requirements of
steady state techniques in the frequency domain but still allows the
use of conventional impedance conditions. Most importantly, the
formulation is fully explicit under flow conditions. In each example
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provided, the numerical solution quickly and accurately converges
to the exact steady state solution.
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Figure 1.—Almost-completely structured FD-TD mesh for air-
   craft inlet acoustic nacelle model.
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Figure 3.—Analytical and numerical potential profiles along  
   wall for plane wave propagating in a semi-infinite hard
   wall duct (f = 1). (a) Mf = 0 (Dx = 0.05, Dt = 0.003, tT = 5.0).
   (b) Mf = –0.5 (Dx = 0.025, Dt = 0.001, tT = 5.0).
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Figure 5.—Developing history of disturbance propagation
   in Fourier transformed domain as a function of time.
   (Mf = 0, Dx = 0.05, Dt = 0.003). (a) t = 0.25. (b) t = 0.5.
   (c) t = 0.75. (d) t = 1.00. (e) t = 1.5. (f) t = 2.0. (g) t = 2.5.
   (h) t = 3.0.
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   wall for plane wave propagating in a hard wall duct of unit
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Figure 6.—Developing history of magnitude of disturbance
   propagation in Fourier transformed domain as a function of
   time. (Mf = 0, Dx = 0.05, Dt = 0.003). (a) t = 0.25. (b) t = 0.5.
   (c) t = 0.75. (d) t = 1.00. (e) t = 1.5. (f) t = 2.0. (g) t = 2.5.
   (h) t = 3.0.
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