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A list of the symbols used throughout this document and their de�nitions is provided below
for convenience.
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cf : : : skin friction coe�cient
cp : : : gas speci�c heat at constant pressure
cv : : : gas speci�c heat at constant volume
e : : : total internal energy
i : : : �rst grid index of numerical solution
j : : : second grid index of numerical solution
k : : : third grid index of numerical solution or thermal conductivity
k : : : turbulent kinetic energy
l : : : Van Driest damping function
n : : : rotational speed (revolutions per second) or time step level
p : : : pressure
r : : : radius or radial coordinate
t : : : time
vx : : : velocity in the Cartesian coordinate system x direction
vy : : : velocity in the Cartesian coordinate system y direction
vz : : : velocity in the Cartesian coordinate system z direction
vr : : : velocity in the cylindrical coordinate system radial direction
v� : : : velocity in the cylindrical coordinate system circumferential direction
wrel : : : relative velocity in the circumferential direction (= v� � r!)
x : : : Cartesian coordinate system coordinate
y : : : Cartesian coordinate system coordinate
z : : : Cartesian coordinate system coordinate
A+ : : : turbulence model constant
ADPAC07 : : : Advanced Ducted Propfan Analysis Code Version 07
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ADPERF : : : ADPAC post processing program for propellers
ADSPIN : : : ADPAC post processing program
APPL : : : NASA Application Portable Parallel Library
ASCII : : : American Standard Code for Information Interchange
CFL : : : Courant-Freidrichs-Lewy number (�t=�tmax;stable)
D : : : diameter
F : : : i coordinate direction 
ux vector
FAST : : : NASA Flow Analysis Software Toolkit
G : : : j coordinate direction 
ux vector
GRIDGEN : : : Multiple block general purpose mesh generation system
GROOV Y : : : Treatment groove mesh generation program
H : : : k coordinate direction 
ux vector
Htotal : : : total enthalpy
J : : : advance ratio (J = U=nD)
JERRY C : : : TRAF2D Airfoil Cascade C-Mesh Generation Program
K : : : cylindrical coordinate system source vector
L : : : reference length
M : : : Mach number
MAKEADGRID: : : ADPAC multiple-block mesh assembly program
MULAC : : : NASA-Lewis Compressor Mesh Generation Program
N : : : Number of blades
Q : : : vector of conserved variables
P : : : turbulence kinetic energy production term
PATCHFINDER: : : Multiple block mesh boundary data �le construction routine
PLOT3D : : : NASA graphics 
ow visulaization program
Pr : : : gas Prandtl Number
R: : : gas constant or residual or maximum radius
R : : : turbulent Reynolds number
Re : : : Reynolds Number
S : : : surface area normal vector
SDBLIB : : : Scienti�c DataBase Library (binary �le I/O routines)
T : : : Temperature
TRAF2D : : : TRAF2D Navier-Stokes analysis code
TRAF3D : : : TRAF3D Navier-Stokes analysis code
TOMC : : : TRAF2D Airfoil Cascade C-Mesh Generation Program
U : : : Freestream velocity (units of length/time)
V : : : volume

Greek Symbols


 : : : speci�c heat ratio
� : : : calculation increment
� : : : turbulence dissipation parameter
r : : : gradient vector operator
! : : : vorticity
� : : : density
� : : : coe�cient of viscosity
� : : : �ctitous time or shear stress
�i;j : : : 
uid stress tensor
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[ ]2 : : : exit value
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[ ]non�dimensional : : : non-dimensional value
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[ ]n : : : Time step index
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Chapter 1

SUMMARY

The overall objective of this study was to develop a 3-D numerical analysis for compressor
casing treatment 
ow�elds, and to perform a series of detailed numerical predictions to
assess the e�ectiveness of various endwall treatments for enhancing the e�ciency and stall
margin of modern high speed fan rotors. Particular attention was given to examining the
e�ectiveness of endwall treatments to counter the undesirable e�ects of in
ow distortion.
The motivation behind this study was the relative lack of physical understanding of the
mechanics associated with the e�ects of endwall treatments and the availability of detailed
computational 
uid dynamics (CFD) codes which might be utilized to gain a better under-
standing of these 
ows. The current version of the computer codes resulting from this study
are referred to as ADPAC07 (Advanced Ducted Propfan Analysis Codes-Version 7). This
report is intended to serve as a computer program user's manual for the ADPAC07 code de-
veloped under Tasks VI and VII of NASA Contract NAS3-25270. The ADPAC07 program
is based on a 
exible multiple-block grid discretization scheme permitting coupled 2-D/3-D
mesh block solutions with application to a wide variety of geometries. Aerodynamic calcula-
tions are based on a four-stage Runge-Kutta time-marching �nite volume solution technique
with added numerical dissipation. Steady 
ow predictions are accelerated by a multigrid
procedure. The consolidated code generated during this study is capable of executing in
either a serial or parallel computing mode from a single source code.

1



Chapter 2

INTRODUCTION

This document contains the Computer Program User's Manual for the consolidated AD-

PAC07 (Advanced Ducted Propfan Analysis Codes - Version 7) Euler/Navier-Stokes anal-
ysis developed by the Allison Engine Company under Tasks VI and VII of NASA Con-
tract NAS3-25270. The objective of the development of the ADPAC series of codes was
to develop a three-dimensional time-marching Euler/Navier-Stokes analysis for aerody-
namic/heat transfer analysis of modern turbomachinery 
ow con�gurations. The analysis is
capable of predicting both steady state and time-dependent 
ow�elds using coupled 2-D/3-
D solution zooming concepts (described in detail in Section 2.3). The consolidated code
was developed to be capable of either serial execution or parallel execution on massively
parallel or workstation cluster computing platforms from a single source. The serial/parallel
execution capability is determined at compilation. Throughout the rest of this document,
the aerodynamic analysis is referred to as ADPAC07 to signify that it is version 7 of the
ADPAC series of codes.

A theoretical development of the ADPAC07 program is outlined in the Final Report for
Task VII of NASA Contract NAS3-25270 [21]. Additional information is presented in the
Final Reports for Tasks V [4] and VIII [3] of NASA Contract NAS3-25270. In brief, the
program utilizes a �nite-volume, time-marching numerical procedure in conjunction with a

exible, coupled 2-D/3-D multiple grid block geometric representation to permit detailed
aerodynamic simulations about complex con�gurations. The analysis has been tested and
results veri�ed for both turbomachinery and non-turbomachinery based applications. The
ability to accurately predict the aerodynamics due to the interactions between adjacent
components of modern, high-speed turbomachinery was of particular interest during this
program, and therefore, emphasis is given to these types of calculations throughout the
remainder of this document. It should be emphasized at this point that although the
ADPAC07 program was developed to analyze the steady and unsteady aerodynamics of
high-bypass ducted fans employing multiple blade rows, the code possesses many features
which make it practical to compute a number of other complicated 
ow con�gurations as
well.

2.1 Multiple-Block Solution Domain Concepts

In order to appreciate and utilize the features of the ADPAC07 solution system, the concept
of a multiple-block grid system must be fully understood. It is expected that the reader

3



4 Multiple Blade Row Solution Concepts

possesses at least some understanding of the concepts of computational 
uid dynamics
(CFD), so the use of a numerical grid to discretize a 
ow domain should not be foreign.
Many CFD analyses rely on a single structured ordering of grid points upon which the
numerical solution is performed. Multiple-block grid systems are di�erent only in that
several structured grid systems are used in harmony to generate the numerical solution.
This concept is illustrated graphically in two dimensions for the 
ow through a nozzle in
Figures 2.1-2.3.

The grid system in Figure 2.1 employs a single structured ordering, resulting in a sin-
gle computational space to contend with. The mesh system in Figure 2.2 is comprised of
two, separate structured grid blocks, and consequently, the numerical solution consists of
two unique computational domains. In theory, the nozzle 
owpath could be subdivided into
any number of domains employing structured grid blocks resulting in an identical number of
computational domains to contend with, as shown in the 20 block decomposition illustrated
in Figure 2.3. The complicating factor in this domain decomposition approach is that the
numerical solution must provide a means for the isolated computational domains to com-
municate with each other in order to satisfy the conservation laws governing the desired
aerodynamic solution. Hence, as the number of subdomains used to complete the aerody-
namic solution grows larger, the number of inter-domain communication paths increases in a
corresponding manner. (It should be noted that this domain decomposition/communication
overhead relationship is also a key concept in parallel processing for large scale computa-
tions, and thus, the ADPAC07 code possesses a natural domain decomposition division for
parallel processing a�orded by the multiple-block grid data structure.)

For the simple nozzle case illustrated in Figure 2.1 it would seem that there is no real
advantage in using a multiple-block grid, and this is probably true. For more complicated
geometries, such as the turbine vane coupled O-H grid system shown in Figure 2.4 and the
corresponding computational domain communication scheme shown in Figure 2.5, it may
not be possible to generate a single structured grid to encompass the domain of interest
without sacri�cing grid quality, and therefore, a multiple-block grid system has signi�cant
advantages.

The ADPAC07 code utilizes the multiple-block grid concept to the full extent by per-
mitting an arbitrary number of structured grid blocks with user speci�able communication
paths between blocks. The inter-block communication paths are implemented as a series
of boundary conditions on each block which, in some cases, communicate 
ow informa-
tion from one block to another. The advantages of the multiple-block solution concept are
exploited throughout the remainder of this document as a means of treating complicated
geometries, multiple blade row turbomachines of varying blade number, endwall treatments,
and to exploit computational enhancements such as multigrid.

2.2 Multiple Blade Row Solution Concepts

Armed with an understanding of the multiple-block mesh solution concept discussed in the
previous section, it is now possible to describe how this numerical solution technique can be
applied to predict complicated 
ows. Speci�cally, this section deals with the prediction of

ows through rotating machinery with multiple blade rows. Historically, the prediction of
three-dimensional 
ows through multistage turbomachinery has been based on one of three
solution schemes. These schemes are brie
y illustrated and described in Figure 2.6.
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ADPAC 2−D Nozzle Single Block Mesh Structure Illustration

Physical Domain

Computational Domain

i

j

Figure 2.1: ADPAC07 2-D single block mesh structure illustration
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ADPAC 2−D Nozzle Two Block Mesh Structure Illustration

Physical Domain

Computational Domain

i

j
Inter−block communication required
to couple computational domains

Block #1 Block #2

Figure 2.2: ADPAC07 2-D two block mesh structure illustration
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ADPAC 2−D Nozzle Multiple Block Mesh Structure Illustration
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to couple computational domains
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Figure 2.3: ADPAC07 2-D multiple block mesh structure illustration
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Figure 2.4: Coupled O-H grid system for a turbine vane cascade
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The �rst scheme involves predicting the time-resolved unsteady aerodynamics resulting
from the interactions occurring between relatively rotating blade rows. Examples of this
type of calculation are given by Rao and Delaney [7], Jorgensen and Chima [8], and Rai [12].
This approach requires either the simulation of multiple blade passages per blade row, or
the incorporation of a phase-lagged boundary condition to account for the di�erences in
spatial periodicity for blade rows with dissimilar blade counts. Calculations of this type are
typically computationally expensive, and are presently impractical for machines with more
than 2-3 blade rows.

The second solution technique is based on the average-passage equation system devel-
oped by Adamczyk [9]. In this approach, separate 3-D solution domains are de�ned for
each blade row which encompasses the overall domain for the entire turbomachine. The
individual solution domains are speci�c to a particular blade row, although all blade row
domains share a common axisymmetric 
ow. In the solution for the 
ow through a spe-
ci�c blade passage, adjacent blade rows are represented by their time and space-averaged
blockage, body force, and energy source contributions to the overall 
ow. A correlation
model is used to represent the time and space-averaged 
ow 
uctuations representing the
interactions between blade rows. The advantage of the average-passage approach is that
the temporally and spatially averaged equations system reduce the solution to a steady 
ow
environment, and, within the accuracy of the correlation model, the solution is represen-
tative of the average aerodynamic condition experienced by a given blade row under the
in
uence of all other blade rows in the machine. The disadvantage of the average-passage
approach is that the solution complexity and cost grow rapidly as the number of blade rows
increases, and the accuracy of the correlation model is as yet unveri�ed.

The third approach for the prediction of 
ow through multistage turbomachinery is
based on the mixing plane concept. A mixing plane is an arbitrarily imposed boundary
inserted between adjacent blade rows across which the 
ow is \mixed out" circumferen-
tially. This circumferential mixing approximates the time-averaged condition at the mixing
plane and allows the aerodynamic solution for each blade passage to be performed in a
steady 
ow environment. The mixing plane concept was applied to realistic turbofan en-
gine con�gurations by Dawes [10]. Flow variables on either side of the mixing plane are
circumferentially averaged and passed to the neighboring blade row as a means of smearing
out the circumferential nonuniformities resulting from dissimilar blade counts. The mixing
plane concept is a much more cost-e�ective approach computationally because the 
ow is
steady, and the individual blade passage domains are limited to a near-blade region. Un-
fortunately, the accuracy of this approach is clearly questionable under some circumstances
because of the placement of the mixing plane and the loss of spatial information resulting
from the circumferential averaging operator.

The ADPAC07 program possesses features which permit multiple blade row solutions us-
ing either the time-dependent interaction approach or the mixing plane concept, described
above. Average-passage simulations for realistic turbofan engine con�gurations were re-
ported under Task IV of this contract, and further details on this approach can be found in
Reference [11]. ADPAC07 predictions utilizing the time-accurate rotor/stator interaction
technique requires that a su�cient number of blade passages be represented in each row
such that the circumferential distance represented in each blade row is constant. This limits
the blade counts which can be e�ectively simulated through this technique. For example,
for the simple single-stage calculation suggested in Figure 2.6, if the rotor has 36 blades and
the stator has 48 blades, a time dependent solution would require, as a minimum, 3 rotor
blade passages and 4 stator blade passages to accommodate the common circumferential



12 Multiple Blade Row Solution Concepts

pitch requirement. If the rotor has 35 blades, and the stator has 47 blades, however, then
both blade rows would require that every blade passage be modeled as no simpler reduc-
tion in blade count is possible. This restriction will appear quite often, as turbomachinery
designers often do not like to design neighboring blade rows with blade counts which have a
common integer factor. Ultimately, this type of problem will require the incorporation of a
phase-lagged boundary condition which would permit time-dependent interaction solutions
for neighboring blades using only one blade passage per blade row.

If, instead, a mixing plane type of calculation is desired, then the multiple block scheme
may again be invoked by utilizing a single blade passage per blade row, where each grid
block has a common mating surface with a neighboring blade row. The only special re-
quirement here is that boundary condition routines be available to adequately perform the
circumferential averaging between blade rows and supply the block-to-block communication
of this information in the multiple-block mesh solution algorithm. Section 3.7 describes the
techniques for applying this type of boundary condition.

2.3 Endwall Treatment Solution Concepts

In this section, numerical techniques used to predict turbomachinery 
ow�elds with endwall
treatments are described. The general approach is to exploit the multiple block mesh capa-
bilities of the ADPAC07 
ow solver to couple endwall treatment and blade passage 
ow�elds.
Separate computational domains (mesh blocks) may be utilized for both the blade passage
and at least one (or more) endwall treatment passages (grooves, slots, recessed vanes, etc.).
Three specialized boundary conditions were developed to couple the indepedent 
ow do-
mains. These boundary conditions result from various degrees of modeling assumptions
used to simplify the blade passage/treatment passage aerodynamic interaction. Each of the
three boundary conditions and the assumptions inherent to each approach are described in
detail below.

For the prediction of compressor endwall treatment 
ows, separate numerical mesh sys-
tems are utilized for both the compressor airfoil blade passages and the endwall treatment
passages. The three di�erent boundary condition procedures available to couple the end-
wall treatment/blade passage 
ow�elds are illustrated graphically in Figure 2.7. The �rst
technique, referred to as the direct-coupled approach, is utilized for those cases where there
is a direct correspondence between mesh points in the treatment meshes and the blade
passage meshes at the endwall interface. This construction permits a direct, point to point
transfer of information from one mesh block to another. This approach is limited to geome-
tries for which contiguous mesh systems can be generated, which, in general, is limited to
circumferential groove casing treatments.

The second approach, referred to as the endwall treatment time-average approach,
is applied to endwall treatments which are non-axisymmetric in nature. This type of
treatment includes discrete axial or blade angle slots, recessed vane sets, and circumfer-
ential grooves. The primary objective of this approach was to develop a numerical cou-
pling scheme for discrete treatments which would represent the time-averaged in
uence
of the treatment passage/blade passage aerodynamic interaction. This approach is re-
stricted to steady state 
ows due to the time-averaged assumption inherent in the pro-
cedure, but simpli�es the analysis in that only a single blade passage and a single dis-
crete endwall treatment passage requires modeling in the overall solution. The endwall
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Figure 2.7: Endwall treatment numerical boundary conditions

treatment time-average boundary treatment is based on a concept similar to the \mix-
ing plane" (see e.g. [10], [4]) treatment described for multiple blade row 
ow�eld pre-
dictions. At the interface between the blade passage and the endwall treatment passage,

ow data in each domain are circumferentially averaged (which represents a time average
for a constant rotational speed, given the relative motion between the rotor and treat-
ment passages), and passed to the neighboring domain as a boundary condition. The cir-
cumferentially averaged data from the treatment passage is modi�ed to account for the
�nite intervals of endwall separating adjacent treatment passages from the rotor point
of view. The boundary conditions for the blade passage are then constructed as a lin-
ear average of the circumferentially-averaged 
ow representation from the treatment grid
and the known no-slip endwall boundary conditions. The linear average is based on the
ratio of the circumferential extents of the treatment passage and intervening endwall.
This scheme is illustrated graphically in Figure 2.7. Mathematically, for any variable �,
the boundary condition for the blade passage at the treatment interface is computed as:

�boundary = (
��treat
��total

)��+ (
��endwall
��total

)�no�slip (2:1)

where �boundary is the boundary value applied for the blade passage, the �� terms are
described on Figure 2.7, �� represents a circumferential average of the data across the open
area of the treatment, and �no�slip represents the appropriate no-slip boundary variables
applied to the endwall portion of the overall treatment representation.

The third coupling procedure is referred to as the time-accurate coupling procedure.
This procedure is utilized for detailed time-dependent solutions of the endwall treatment/rotor
aerodynamic interactions, and is utilized in much the same way as rotor/stator interactions
are computed in multistage turbomachinery 
ow�elds. This approach was limited to treat-
ment geometries which were reducible to small integer numbers of treatments per blade



14 Multigrid Convergence Acceleration Concepts

passage. This was done in order to minimize the circumferential extent of the rotor or
treatment passages which must be modeled in order to employ a spatially periodic relation-
ship for the overall blade passage/treatment representation.

2.4 2-D/3-D Solution Zooming Concepts

A fourth unique feature of the ADPAC07 solution system involves the concept of coupling
two-dimensional and three-dimensional solution domains to obtain representative simula-
tions of realistic high bypass ducted fan engine concepts. A complicating factor in the
analysis of 
ows through turbofan engine systems results from the interactions between
adjacent blade rows, and, in the case of a ducted fan, the e�ects of downstream blade rows
on the aerodynamics of the upstream fan rotor. Historically, in the design of multistage
turbomachinery, an axisymmetric representation of the 
ow through a given blade row has
been used to e�ectively reduce the complexity of the overall problems to a manageable level.
Similarly, an e�cient approach to the numerical simulation of downstream blade rows could
naturally utilize an axisymmetric representation of the e�ects of these rows through a two-
dimensional grid system, with blade blockage, body force, and energy terms representing
the axisymmetric averaged aerodynamic in
uence imparted by the embedded blade row.
This concept is illustrated graphically in Figure 2.8 for a representative turbine stage.

A numerical solution of the 
ow through the fan rotor is complicated by the presence of
the core stator, bypass stator, and bypass splitter. It is undesirable to restrict the solution
domain to the fan rotor alone as this approach neglects the potential interactions between
the fan rotor and the downstream geometry. The ADPAC07 program permits coupled
solutions of 3-D and 2-D mesh blocks with embedded blade row blockage, body force,
and energy terms as a means of e�ciently treating these more complicated con�gurations.
Blade force terms may be determined from a separate 3-D solution, or may be directly
speci�ed based on simpler design system analyses. Neighboring 2-D and 3-D mesh blocks
are numerically coupled through a circumferential averaging procedure which attempts to
globally satisfy the conservation of mass, momentum and energy across the solution domain
interface. The \dimensional zooming" capability permitted by the 2-D/3-D mesh coupling
scheme is considered a vital asset for the accurate prediction of the 
ow through modern
high-speed turbofan engine systems.

2.5 Multigrid Convergence Acceleration Concepts

For completeness, a brief section is included here to discuss the multigrid convergence accel-
eration solution technique incorporated into the ADPAC07 code. Multigrid (please do not
confuse this with a multiple-block grid!) is a numerical solution technique which attempts
to accelerate the convergence of an iterative process (such as a steady 
ow prediction using
a time-marching scheme) by computing corrections to the solution on coarser meshes and
propagating these changes to the �ne mesh through interpolation. This operation may be
recursively applied to several coarsenings of the original mesh to e�ectively enhance the
overall convergence. Coarse meshes are derived from the preceding �ner mesh by eliminat-
ing every other mesh line in each coordinate direction as shown in Figure 2.9. As a result,
the number of multigrid levels (coarse mesh divisions) is controlled by the mesh size, and, in
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the case of the ADPAC07 code, by the mesh indices of the boundary patches used to de�ne
the boundary conditions on a given mesh block (see Figure 2.9). These restrictions suggest
that mesh blocks should be constructed such that the internal boundaries and overall size
coincide with numbers which are compatible with the multigrid solution procedure (i.e., the
mesh size should be 1 greater than any number which can be divided by 2 several times
and remain whole numbers; e.g. 9, 17, 33, 65 etc.) Further details on the application of the
ADPAC07 multigrid scheme are given in Section 3.6 and in Reference [4].

A second multigrid concept which should be discussed is the so-called \full" multigrid
startup procedure. The \full" multigrid method is used to start up a solution by initiating
the calculation on a coarse mesh, performing several time-marching iterations on that mesh
(which, by the way could be multigrid iterations if successively coarser meshes are available),
and then interpolating the solution at that point to the next �ner mesh, and repeating
the entire process until the �nest mesh level is reached. The intent here is to generate
a reasonably approximate solution on the coarser meshes before undergoing the expense
of the �ne mesh multigrid cycles using a \grid sequencing" technique. Again, the \full"
multigrid technique only applies to starting up a solution, and therefore, it is not normally
advisable to utilize this scheme when the solution is restarted from a previous solution as the
information provided by the restart data will likely be lost in the coarse mesh initialization.

2.6 General Solution Procedure Sequence

The ADPAC07 code is distributed as a compressed tar �le which must be processed before
the code may be utilized. The instructions in Appendix A describe how to obtain the
distribution �le, and extract the necessary data to run the code. This operation is typically
required only once when the initial distribution is received. Once the source �les have been
extracted, the sequence of tasks listed below are typical of the events required to perform
a successful analysis using the ADPAC07 code.

Step 1.) De�ne the problem:

This step normally involves selecting the geometry and 
ow conditions, and de�ning
which speci�c results are desired from the analysis.The de�nition of the problem must
involve specifying whether steady state or time-dependent data are required, whether an
inviscid calculation is su�cient, or whether a viscous 
ow solution is required, and some
idea of the relative merits of solution accuracy versus solution cost (CPU time) must be
considered.

Step 2.) De�ne the geometry and 
ow domain:

Typically, geometric features such as airfoils, ducts, and 
owpath endwalls are required
to geometrically de�ne a given problem. The solution domain may be chosen to include
the external 
ow, internal engine passage 
ows, and/or leakage 
ows. The 
ow domain is
normally de�ned large enough such that the region of interest is far enough away from the
external boundaries of the problem to ensure that the solution is not unduly in
uenced by
the external boundary conditions.

Step 3.) De�ne a block structure:

Once the geometry and solution domain has been numerically de�ned, the implemen-
tation of the solution mesh structure must be considered. This process begins with a
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determination of the domain block structure, if and when more than one mesh block is
required for a given solution. The possibility of incorporating 2-D mesh blocks should be
considered whenever possible due to the computational savings a�orded by this approach
(see Section 2.3).

Step 4.) Generate a numerical grid for the domain of interest:

Most of the standard grid block structures de�ned in this document can be adequately
handled through either the TIGG3D [18] or the GRIDGEN [19] grid generation programs.
Other grid generation programs may be equally useful, and a conversion program called
MAKEADGRID (described in Chapter 7) is included to convert non-standard meshes into
ADPAC07 format.

Step 5.) Generate a standard input �le:

The standard input �le controls operations speci�c to a particular run of the AD-

PAC07 code. Options such as the number of iterations, damping parameters, and in-
put/output control of the code execution may all be governed by the values speci�ed in the
standard input �le.

Step 6.) Generate a boundary data �le:

The boundary data �le controls the application of boundary conditions on the grid
block structure provided to the 
ow code. The boundary data speci�cations are speci�c to
the mesh being used in a given calculation. For other block con�gurations, the user must
construct the boundary data �le by hand according to the format described in Section 3.7.
A program is provided (PATCHFINDER) in the ADPAC07 standard distribution to aid
the user in locating contiguous block interface connections for multiple block meshes.

Step 7.) Subdivide the problem for parallel execution:

For execution across multiple processors, it may be necessary to subdivide the original
block structure to permit the use of additional processors, or to aid in load balancing. The
SIXPAC program is provided for this purpose.

Step 7.) De�ne the computing environment:

For parallel calculations, it is necessary to construct the procdef �le which de�nes the
computing environment (machine name, number of processes, etc.). The relationship be-
tween the number of processors and the number of mesh blocks should not be ignored, as it
is up to the user to adequately balance the overall problem in a multiprocessor computing
environment.

Step 8.) Run ADPAC07 to predict the aerodynamics:

Chapter 3 is available to describe the commands necessary to perform this task. A
sample test case is also completely outlined in Appendix A. In many cases, a given calcu-
lation will involve several applications of the ADPAC07 code, restarted from the previous
calculation as a means of breaking up a large problem into several shorter calculations.

Step 9.) Consolidate the block structure:

For solutions which have utilized the block subdivision process (SIXPAC , see above) it
may be useful to consolidate the subdivided problem back into the original block structure.
The BACPAC program is provided for this purpose.

Step 10.) Plot and process the results:
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An interactive post processing program called ADSPIN is provided to handle tasks such
as mass-averaging 
ow variables to simplify the interpretation of the computed results (see
Chapter 4). Output data is also provided for widely available plotting programs such as
PLOT3D [14] and FAST [16].

A condensed description of the commands involved in the steps described above begin-
ning with extracting the source code from the distribution, compiling the codes, setting up
a case, and running a case, is given in the Appendix. Separate sections are provided in the
chapters which follow to describe in detail the basis and operation of the codes used in the
steps above.

It is worthwhile mentioning that the development and application of the codes described
in this manual were performed on Unix-based computers. All �les are stored in machine-
independent format. Small �les utilize standard ASCII format, while larger �les, which
bene�t from some type of binary storage format, are based on the Scienti�c DataBase Li-
brary (SDBLIB) format [13]. The SDBLIB format utilizes machine-dependent input/output
routines which permit machine independence of the binary data �le. The SDBLIB routines
were developed at the NASA Lewis Research Center.

Most of the plotting and graphical postprocessing of the solutions was performed on
graphics workstations. The PLOT3D [14], and FAST [16] graphics software packages de-
veloped at NASA Ames Research Center were extensively used for this purpose, and data
�les for these plotting packages are generated automatically. These data �les are written in
what is known as PLOT3D multiple-grid format. (See ADPAC07 File Description, Section
3.5).

2.7 Consolidated Serial/Parallel Code Capability

One of the practical di�culties of performing CFD analyses is �nding su�cient computa-
tional resources to allow for adequate modeling of complex geometries. Oftentimes, work-
stations are not large enough, and supercomputers have either long queues, high costs, or
both. Clearly, a means of circumventing these di�culties without giving up the 
exibility of
the CFD code or the complexity of the model would be welcome. One possibility is to write
a code which could run in parallel across a number of processors, with each one having only
a piece of the problem. Then, a number of lesser machines could be harnessed together to
make a virtual supercomputer.

The most likely candidates for creating such a machine are the workstations which
are fully loaded during the day, but sit idle at night. Tremendous power could be made
available at no extra cost. There are also massively parallel computers available on the
market designed speci�cally for such applications. These machines are aiming at order of
magnitude improvements over present supercomputers.

The problem, of course, lies in the software. Parallelization is today about as painful as
vectorization was a decade ago. There is no standard parallel syntax, and no compiler exists
which can automatically and e�ectively parallelize a code. It is di�cult to write a parallel
code which is platform independent. What makes things worse is that there is no clear
leader in the parallel computer industry, as there has been in the supercomputer industry.

The objective behind the development of the consolidated ADPAC07 code described in
this manual was to create a platform independent parallel code. The intent was to design a
parallel code which looks and feels like a traditional code, capable of running on networks of
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workstations, on massively parallel computers, or on the traditional supercomputer. User
e�ort was to be minimized by creating simple procedures to migrate a serial problem into
the parallel environment and back again.

2.8 Parallelization Strategy

The ADPAC07 code has some innate advantages for parallelization: it is an explicit, multi-
block solver with a very 
exible implementation of the boundary conditions. This presents
two viable options for parallelization: parallelize the internal solver (the \�ne-grained"
approach), or parallelize only the boundary conditions (the \coarse-grained" approach).
The �ne-grained approach has the advantage that block size is not limited by processor size.
This is the approach frequently taken when writing code for massively parallel computers,
which are typically made up of many small processors. The coarse-grained approach is
favored when writing code for clusters of workstations, or other machines with a few large
processors. The dilemma is that a parallel ADPAC07 needs to run well on both kinds of
machines.

The �ne grained approach is especially enticing for explicit solvers. Explicit codes have
proven to be the easiest to parallelize because there is little data dependency between points.
For a single block explicit solver, �ne-grained parallelization is the clear choice. However,
with a multiblock solver, the boundary conditions must be parallelized in addition to the
interior point solver, and that can add a lot of programming e�ort. The coarse-grained
approach is admittedly easier for multi-block solvers, but what if the blocks are too big for
the processors? The simplest answer is to require the user to block out the problem so that
it �ts on the chosen machine. This satis�es the programmer, but the user is faced with a
tedious chore. If the user decides to run on a di�erent machine, then the job may have to
be redone. The pain saved by the programmer is passed directly to the user.

A compromise position was reached for parallel ADPAC07 code. The coarse-grained
approach is used, but supplemental tools are provided to automatically generate new grid
blocks and boundary conditions for a user-speci�ed topography. In this way, the parallel
portions of the code are isolated to a few routines within ADPAC07 , and the user is not
unduly burdened with architecture considerations. Details of running ADPAC07 in parallel
are given in a later chapter.



Chapter 3

ADPAC07 : 3-D

EULER/NAVIER-STOKES

FLOW SOLVER OPERATING

INSTRUCTIONS

3.1 Introduction to ADPAC07

This chapter contains the operating instructions for the ADPAC07 time-dependent multi-
ple grid block 3-D Euler/Navier-Stokes aerodynamic analysis. These instructions include
some general information covering executing the code, de�ning array limits, compiling the

ow solver, setting up input �les, running the code, and examining output data. The
ADPAC07 
ow solver source programs are written in FORTRAN 77, and have been used
successfully on Cray UNICOS and IBM VM/CMS mainframe computer systems as well as
IBM AIX Operating System and Silicon Graphics workstations using a UNIX operating
system.

3.2 General Information Concerning the Operation of the

ADPAC07 Code

Approximate computational storage and CPU requirements for the ADPAC07 code can be
conservatively estimated from the following formulas:

CPU sec � 4:0x10�5(# grid points)(# iterations)
Memory MW � 6:0x10�5(# grid points)=real number storage locations

These formulas are valid for a Cray-C90 computer operating under the UNICOS environ-
ment and the cf77 compiler, version 6.0.4.5. The times reported are for a single processor
only, and are not indicative of any parallelization available through the Cray autotasking
or microtasking facilities. The formulas are based on the standard, explicit solution algo-
rithm using the algebraic turbulence model. Use of the implicit 
ow solver or higher order
turbulence model could e�ectively increase both numbers by a factor of 1.4 or more. Use of
parallel processing can substantially reduce these estimates on a per CPU basis. Without
multigrid, steady inviscid 
ow calculations normally require approximately 2000 iterations

21
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to reduce the maximum residual by three orders of magnitude (103) which is normally an
acceptable level of convergence for most calculations. Viscous 
ow calculations generally
require 3000 or more iterations to converge. When multigrid is used, the number of itera-
tions required to obtain a converged solution is often one third to one fourth the number
of iterations required for a non-multigrid calculation. Convergence for a viscous 
ow case
is generally less well behaved than a corresponding inviscid 
ow calculation, and in many
cases, it is not possible to reduce the maximum residual by three orders of magnitude due
to oscillations resulting from vortex shedding, shear layers, etc. A determination of conver-
gence for a viscous 
ow case must often be based on observing the mass 
ow rate, pressure
ratio, or other global parameter, and terminating the calculation when these variables no
longer change. The number of iterations required for an unsteady 
ow calculation is highly
case-dependent, and may be based on mesh spacing, overall time-period, complexity of the

ow, etc.

TheADPAC07 program produces output �les suitable for plotting using the PLOT3D [14],
SURF [15], and FAST [16] graphics software packages developed at the NASA Ames Re-
search Center. PLOT3D format data �les are written for both absolute and relative 
ows
(see Chapter 2 for a description of the PLOT3D format). The user may also elect to have
additional PLOT3D absolute 
ow data �les output at constant iteration intervals during
the course of the solution. These �les may be used as instantaneous 
ow \snapshots" of an
unsteady 
ow prediction.

3.3 Con�guring ADPAC07 Maximum Array Dimensions

The �rst step required before attempting to compile and run the ADPAC07 program is
to set the maximum array size required for the analysis prior to the compilation process.
The maximum array size will ultimately determine the largest problem (in terms of total
number of mesh points) which can be run with the code. The larger the array limits, the
larger the number of grid points which may be used. Unfortunately, setting larger array
limits also increases the total amount of memory required by the program, and hence, can
impede the execution of the code on memory-limited computing systems. Ideally, the code
should be dimensioned just large enough to �t the problem at hand. It should be mentioned
that storage requirements are dependent on whether the multigrid convergence acceleration
technique is used or not. This dependency is explained in more detail in the paragraphs
which follow. Approximate total computational storage and CPU requirements can be
estimated for the ADPAC07 aerodynamic analysis from the formulas listed in Section 3.2.

Array dimensions are speci�ed in the ADPAC07 program by a set of FORTRAN PA-
RAMETER statements. The array limits are speci�ed in the source code �le parame-
ter.inc. A sample parameter.inc �le is given below:

parameter ( nbmax = 101 )

parameter ( nra3d = 150000 )

parameter ( nra1d = 3200 )

parameter ( nbl2d = 28000 )

parameter ( nraint = 1 )

parameter ( nbcpbl = 7 )

parameter ( nbfra = 65000 )
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parameter ( lgrafx = 1 )

parameter ( nsyst = 1 )

parameter ( nbffile = 16 )

parameter ( nbcnt1 = 100000 )

parameter ( nimpra = 1 )

parameter ( n2eqra = 1 )

Each statement in the parameter.inc �le is ultimately embedded in every subroutine
through a FORTRAN include statement. During execution, the ADPAC07 program au-
tomatically checks to make sure enough storage is available for all the blocks and issues a
fatal error message if an array size is exceeded.

Before proceeding with a description of the various parameter variables, it should be
mentioned that a computational tool is available called ADSTAT which will read in an
ADPAC07 ready mesh �le and determine the required parameter sizes for either a multigrid
or non-multigrid run. The ADSTAT program is described in more detail in Chapter 10.

The various PARAMETER variables utilized in the parameter.inc �le are described
below.

NBMAX

The parameter NBMAX de�nes the maximum number of grid blocks permitted during

execution of the ADPAC07 multiple block solver. This number must be large enough to in-
clude every level of coarse mesh blocks created during a multigrid run. The ADPAC07 code
exploits the multiple block mesh structure during multigrid runs by creating and storing
coarse mesh blocks from the corresponding �ne mesh blocks. In other words, if it is intended
to run a 5 block mesh with 3 levels of multigrid, then the parameter NBMAX must be at
least 15.

NRA3D

The parameterNRA3D de�nes the maximum total number of computational cells permit-

ted for the �nite volume time-marching algorithm. This parameter essentially limits the
maximum total number of mesh points (including multigrid coarse meshes, when applica-
ble) which are permitted during an ADPAC07 run. The minimum value for the NRA3D
parameter for a given mesh system may be calculated as follows:

NRA3D �
m=NBLKSX

m=1

[(IMX)m+ 1][(JMX)m+ 1][(KMX)m+ 1]

where (IMX)m, (JMX)m, and (KMX)m indicate the number of mesh points in the i,
j, and k mesh coordinate directions, respectively, for mesh block m, and NBLKS is the
total number of grid blocks. Sample calculations of the minimum value for the NRA3D
parameter for a multiple block mesh are provided below.

Suppose we intend to perform a solution on a mesh consisting of 3 mesh blocks with
49x17x17, 25x17x17, and 129x33x49 mesh points, respectively. For a non-multigrid calcu-
lation, the total number of mesh blocks is simply 3, and the minimum value for parameter
NRA3D may be computed as:

NRA3D = (49 + 1)(17 + 1)(17 + 1) + (25 + 1)(17+ 1)(17 + 1)

+(129 + 1)(33+ 1)(49+ 1) = 245; 624
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If, using the same mesh system, it is desired to employ 3 levels of multigrid, additional
storage must also be allocated for the coarse mesh systems, and the minimum value for
parameter NRA3D must be recomputed as:

(NRA3D)1 = (49 + 1)(17+ 1)(17+ 1) + (25 + 1)(17 + 1)(17 + 1)

+(129 + 1)(33+ 1)(49+ 1) = 245; 624

(NRA3D)2 = (25 + 1)(9 + 1)(9 + 1) + (13 + 1)(9 + 1)(9 + 1)

+(65 + 1)(17+ 1)(25+ 1) = 34; 888

(NRA3D)3 = (13 + 1)(5 + 1)(5 + 1) + (7 + 1)(5 + 1)(5 + 1)

+(33 + 1)(9 + 1)(13+ 1) = 5; 552

NRA3D = (NRA3D)1 + (NRA3D)2+ (NRA3D)3 = 286; 064

The requirement that the parameter variable NRA3D (and others) be based on array
sizes 1 element larger than the grid dimensions results from the use of phantom points
outside the computational domain to impose the numerical boundary conditions.

NBL2D

The parameter NBL2D is used to de�ne the size of the temporary 2-D arrays utilized

during the advancement of the time-marching algorithm for a given mesh block. As such,
the parameter is based on the largest single dimension of any mesh block (2-D or 3-D) and
may be determined by the following formula:

NBL2D � (maxm=1;NBLKS[(IMX)m + 1; (JMX)m + 1; (KMX)m+ 1])2

where the variables IMX; JMX;KMX;NBLKS are de�ned in the section describing
NRA3D above.

Returning to the example mesh system utilized in the description of the parameter
NRA3D, the minimum value for the parameter NBL2D may be computed as:

NBL2D = (129 + 1)2 = 16900

This value is unchanged regardless of the number of multigrid levels since coarser meshes
always result in smaller mesh sizes.

NRA1D

The parameter NRA1D is used to de�ne the size of several 1-D arrays used to do various

bookkeeping operations during the execution of the ADPAC07 code. As such, the parameter
is based on the sum of the maximum single dimension of all mesh blocks in the following
manner:

NRA1D �
m=NBLKSX

m=1

max[(IMX)m+ 1; (JMX)m+ 1; (KMX)m+ 1]

Returning to the example mesh system utilized in the description of the parameterNRA3D,
the minimum value for the parameter NRA1D for a non-multigrid run be determined as:

NRA1D = (49 + 1) + (25 + 1) + (129 + 1) = 206
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and for a 3 level multigrid run as:

(NRA1D)1 = (49 + 1) + (25 + 1) + (129 + 1) = 206

(NRA1D)2 = (25 + 1) + (13 + 1) + (65 + 1) = 106

(NRA1D)3 = (13 + 1) + (7 + 1) + (33 + 1) = 56

NRA1D = (NRA1D)1+ (NRA1D)2 + (NRA1D)3 = 368

NBCPBL

The parameterNBCPBL is used to de�ne the size of the arrays used to store the boundary

condition speci�cations for a given ADPAC07 run. Since the number of boundary conditions
normally scales according to the number of mesh blocks (as a minimum, 6 boundary con-
ditions are required for each 3-D mesh block, see Section 3.7), the parameter NBCPBL
implies the maximum number of boundary conditions per block, and the overall num-
ber of boundary conditions is determined by multiplying the parameters NBMAX and
NBCPBL. It should be noted that a single block can, in fact, possess more thanNBCPBL
boundary condition speci�cations as long as the total number of boundary condition speci-
�cations for the entire problem does not exceed NBMAX �NBCPBL.

NRAINT

The parameter NRAINT is used to de�ne the size of the temporary arrays used to store

interpolation data for the non-contiguous mesh patching boundary condition speci�cation
PINT, described in Section 3.7. The PINT speci�cation controls the numerical coupling
between two mesh blocks possessing non-contiguous mesh boundaries which lie on a com-
mon surface. The numerical scheme utilizes a rather simple interpolation scheme based on
an electrical circuit analogy, and stores the \nearest neighbors" for each mesh point to avoid
the expense of constantly searching for the interpolation stencil between the two mesh sur-
faces. Determining the value required for the parameter NRAINT is normally performed
by summing up all of the mesh elements involved in all of the PINT speci�cations (in-
cluding coarse mesh speci�cations from a multigrid run). For example, if two meshes with
noncontiguous mesh boundaries of 49x33 and 25x17 are being updated using the PINT
speci�cation, then the minimum value for the NRAINT parameter for a nonmultigrid run
would be determined as:

NRAINT = (49� 1)(33� 1) + (25� 1)(17� 1) = 1920

In this case, the NRAINT parameter is based on the mesh indices minus one, since the
storage in the �nite volume solver is actually based on the number of mesh cells, not the
number of mesh points, even though the boundary speci�cation is based on actual mesh
indices. The equivalent value for a run utilizing 3 levels of multigrid would be:

(NRAINT )1 = (49� 1)(33� 1) + (25� 1)(17� 1) = 1920

(NRAINT )2 = (25� 1)(17� 1) + (13� 1)(9� 1) = 480

(NRAINT )3 = (13� 1)(9� 1) + (7� 1)(5� 1) = 120

NRAINT = (NRAINT )1+ (NRAINT )2+ (NRAINT )3 = 2520

Naturally, if additional PINT speci�cations are employed then the contributions from
these speci�cations must also be added to the total.
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NBFRA

The parameter NBFRA is used to de�ne the size of the 2-D arrays used to store the blade

element blockage, body force, and energy source terms for the 2-D block solution scheme.
Since these arrays are utilized for any 2-D mesh block regardless of whether blade element
blockage and source terms are utilized, the arrays must be dimensioned large enough to
store all the elements of all of the 2-D mesh blocks (including coarse meshes for multigrid
runs) much in the manner that NRA3D is used to store all of the elements of all of the
mesh blocks. Mathematically, the minimum value for the parameter NBFRA may be
calculated as:

NBFRA �
m=NBLKSX

m=1

[(IMX)m+ 1][(JMX)m + 1]L2D(m)

where the variables IMX; JMX;KMX and NBLKS are described in the de�nition of
parameter NRA3D, above. The variable L2D(m) is a trigger to indicate whether the grid
block m is 2-D (1) or 3-D (0). For example, suppose a multiple block solution is being
performed for a mesh system comprised of two 2-D meshes sized 49x25x1 and 33x17x1 and
a 3-D mesh sized 33x25x29. For a non-multigrid run, the minimum value for the parameter
NBFRA may be calculated as:

NBFRA = (49 + 1)(25 + 1)(1) + (33 + 1)(17 + 1)(1) + (129 + 1)(25+ 1)(0) = 1912

and for a run employing 3 levels of multigrid as:

(NBFRA)1 = (49 + 1)(25+ 1)(1)+ (33 + 1)(17+ 1)(1)+ (129 + 1)(25 + 1)(0) = 1912

(NBFRA)2 = (25 + 1)(13 + 1)(1) + (17 + 1)(9 + 1)(1) + (65 + 1)(13+ 1)(0) = 544

(NBFRA)3 = (13 + 1)(7 + 1)(1) + (9 + 1)(5 + 1)(1)+ (33 + 1)(7 + 1)(0) = 172

NBFRA = (NBFRA)1 + (NBFRA)2 + (NBFRA)3 = 2628

LGRAFX

The parameter LGRAFX is used to de�ne the size of the temporary 3-D arrays used

for the run-time graphics display option available in the ADPAC07 code. If the run-time
graphics option is employed, then the parameter LGRAFX can be determined in the
same manner as the parameter NRA3D. If the run-time graphics option is not employed,
then the parameter LGRAFX should be set to 1, resulting in a considerable savings in
computational storage.

NSYST

The parameter NSYST is used to de�ne the size of a character array which stores system

call commands during the execution of the boundary condition routine SYSTEM (see
Section 3.7). Normally, this is not used and may be set to a value of 1 to minimize storage.
If the SYSTEM boundary routine is used, then NSYST must be at least as large as the
number of SYSTEM boundary speci�cations in the ADPAC07 boundary data �le.

NBFFILE

The parameter NBFFILE is used to de�ne the size of a character array which stores body

force �le names speci�ed by the input variable BFFILE (see Section 3.6). Normally, this is
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not used and may be set to a value of 1 to minimize storage. If the BFFILE input variable
is used, then NBFFILE must be at least as large as NBMAX.

NBCNT1

The parameter NBFFILE is used to de�ne the size of the arrays used to save the interpo-

lation stencils used in the BCINT1 and BCINTM non-aligned mesh boundary coupling
schemes. In an e�ort to increase computational and communication e�ciency, the inter-
polation stencils used to update the non-aligned boundaries in these boundary condition
routines are only calculated on the �rst step, and are subsequently saved to eliminate any
redundant calculation. The NBCNT1 parameter must be at least as large as the sum
of the total number of points along all BCINT1 and BCINTM non-aligned boundary
patches. If BCNT1 is set to 1, then the interpolation stencil saving feature is disabled,
and the interpolation stencil is recalculated at every time step.

NIMPRA

The parameterNIMPRA is used to de�ne the size of the arrays used in the ADPAC07 im-

plicit solution algorithm. For time-dependent solutions involving the iterative implicit so-
lution algorithm, up to two additional time levels of the conserved 
ow variables must be
stored, and this storage is de�ned based on the value of (NIMPRAxNRA3D+1). The
value of NIMPRA should therefore be either 0 (no implicit time level storage) or 1 (pro-
vide implicit time level storage). If an implicit solution is attempted when the code has
been compiled with NIMPRA=0, an error will result.

N2EQRA

The parameterN2EQRA is used to de�ne the size of the arrays used in the ADPAC07 two-

equation turbulence model solution algorithm. For solutions involving the two-equation
turbulence model, additional storage is required for the dependent variables and numerical

uxes employed in the solution of the turbulence transport equations, and this storage is
de�ned based on the value of (N2EQRAxNRA3D+1). The value of N2EQRA should
therefore be either 0 (no two-equation turbulence model storage) or 1 (provide two-equation
turbulence model storage). If a two-equation turbulence model solution is attempted when
the code has been compiled with N2EQRA=0, an error will result.

3.4 ADPAC07 Compilation Using Make�le

Compilation of the ADPAC07 source code into an executable form is handled through a
UNIX-based Make�le facility. A Make�le is included with the standard distribution which
permits automatic compilation of the code for several operational capabilities (both serial
and parallel) and computer systems. The format of the Make�le compiling command is
described below.

Several items should be mentioned prior to detailed discussion on the actual Make�le

utilities. Section 3.5 describes the format of the binary �les using the Scienti�c Database
Library developed at NASA-Lewis [13]. The original version of the Scienti�c Database
Library was found to be rather slow on some machines, and an equivalent limited capability
C-based library was developed to accelerate the I/O processing in the code. This library
is referred to as CSDB, and separate options for utilizing the CSDB library are included
in the Make�le. In addition, the consolidated code is capable of both serial and parallel
operation depending on the Make�le operation selected.
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In the directory containing the FORTRAN source of the ADPAC07 code, compilation
is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically interrogates the
�le Make�le for instructions on how to perform the compilation. The option argument may
be any of the variables listed below:

Standard UNIX (Silicon Graphics) Make Options

(No argument) This is the standard UNIX system compilation for the
serial version of the ADPAC07 code. All non-standard programming
constructs are avoided (such as graphics, or multi-processor features).
This option will deliver a working executable on most UNIX systems
which support standard naming conventions (f77 as the standard com-
piler, etc.). The compilation includes basic compiler optimization (f77
-O). The executable name is adpac.

csdb This is the same as link above, except that the faster C-based scienti�c
database library is linked instead of the standard scienti�c database
library. Prior to performing this compilation, the appropriate make

command must be issued in the CSDB directory to assemble the CSDB
library for the local machine. The executable name is adpac.

pfa This option is used on Silicon Graphics computers supporting the
Power FORTRAN compiler option. Power FORTRAN is a Silicon
Graphics product which does automatic multiprocessor compilation
and is therefore not related to the ADPAC07 message-passing paral-
lelization strategy. The pfa compiled code is therefore still operated
as a serial code, although it may execute on multiple processors for
Silicon Graphics workstations. The number of processors used is set
by the NUM THREADS environment variable. The compilation in-
cludes basic compiler optimization (f77 -O). The executable name is
adpac pfa.

csdb pfa This option is the same as pfa above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropri-
ate make command must be issued in the CSDB directory to assemble
the CSDB library for the local machine. The executable name is ad-
pac pfa.

graphics This option compiles ADPAC07 with the necessary routines needed to
permit interactive graphics between network connected Silicon Graph-
ics workstations. This option will only work when compiling on a Sili-
con Graphics workstation with IRIX operating system 4.0.1 or above.
The full Silicon Graphics shared graphics libraries and X-windows sys-
tem graphics libraries must be installed on the compiling workstation
in order for this option to work. This feature is not recommended as
it generally decreases performance and other visualization techniques
are likely to produce more desirable results. The executable name is
adpac graphics.
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csdb graphics This option is the same as graphics above, except that the faster C-
based scienti�c database library is linked instead of the standard sci-
enti�c database library. Prior to performing this compilation, the ap-
propriate make command must be issued in the CSDB directory to
assemble the CSDB library for the local machine. The executable
name is adpac graphics.

dbx This option is used for generating an executable version of the serial
code which is compatible with the standard UNIX dbx-based debug-
ging facility. This should work on any standard UNIX machine which
supports dbx (Note: the code will run much more slowly when com-
piled in this fashion.) This option is used mainly for code development
or debugging. The executable name is adpac dbx.

csdb dbx This option is used for generating an executable version of the serial
code which is compatible with the standard UNIX dbx-based debugging
facility using the CSDB library. This should work on any standard
UNIX machine which supports dbx (Note: the code will run much more
slowly when compiled in this fashion.) This option is used mainly for
code development or debugging. The executable name is adpac dbx.

dbx graphics This option is used for generating an executable version of the se-
rial code with run-time graphics enabled which is compatible with the
standard UNIX dbx-based debugging facility using the CSDB library.
This should work on any standard UNIX machine which supports dbx
(Note: the code will run much more slowly when compiled in this fash-
ion.) This option is used mainly for code development or debugging.
The executable name is adpac dbx graphics.

parallel This is the standard UNIX system compilation for the parallel version
of the ADPAC07 code. The standard APPL message passing library
is incorporated, and therefore creation of this executable requires that
a make has been issued in the APPL directory on the current machine.
The parallel code may only be executed using the APPL compute func-
tion with a corresponding APPL procdef �le. Prior to performing this
compilation, the appropriate make command must be issued in the
APPL directory to assemble the APPL library for the local machine.
The executable name is adpacp.

parallel csdb This is the same as parallel above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropriate
make command must be issued in the CSDB and APPL directories to
assemble the CSDB and APPL libraries for the local machine. The
executable name is adpacp.

parallel dbx This is the same as parallel above, except that speci�c compiler options
have been enabled to utilize the UNIX dbx debugging facility. Prior
to performing this compilation, the appropriate make command must
be issued in the SDBLIB and APPL directories to assemble the SDB
and APPL libraries for the local machine. This should work on any
standard UNIX machine which supports dbx (Note: the code will run
much more slowly when compiled in this fashion.) This option is used
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mainly for code development or debugging. The executable name is
adpacp.

parallel csdb dbx This is the same as parallel csdb dbx above, except that the faster
C-based scienti�c database library is linked instead of the standard
scienti�c database library. Prior to performing this compilation, the
appropriate make command must be issued in the CSDB and APPL
directories to assemble the CSDB and APPL libraries for the local
machine. This should work on any standard UNIX machine which
supports dbx (Note: the code will run much more slowly when compiled
in this fashion.) This option is used mainly for code development or
debugging. The executable name is adpacp dbx.

parallel pvm This is the standard UNIX system compilation for the parallel ver-
sion of the ADPAC07 code using the PVM message passing library.
The standard APPL message passing library is incorporated as a sub-
layer between the native PVM calls and the ADPAC07 programming
message-passing calls, and therefore creation of this executable requires
that a make has been issued in the APPL directory on the current
machine. The parallel code may only be executed using the APPL
compute function with a corresponding APPL procdef �le. Prior to
performing this compilation, the appropriate make command must be
issued in the APPL directory to assemble the APPL library for the
local machine. The executable name is adpacp pvm.

Silicon Graphics Power Challenge Make Options

power challenge This option is utilized when compiling the standard serial code on
a Silicon Graphics R8000 (Power Challenge c
) computer. For best
performance, several machine speci�c optimizations are enabled. The
executable name is adpac power challenge.

Cray (UNICOS) Make Options

cray This option is utilized when compiling the standard code on a Cray
computer (implies a serial code). For best performance, the aggressive
optimization option of the Cray compiler has been invoked (cf77 -Zv
-Wf\-o aggress"). The executable name is adpac cray.

cray dbx This option is used for generating an executable version of the code
which is compatible with the Cray cdbx debugging facility. (Note:
the code will run much more slowly when compiled in this fashion.)
This option is used mainly for code development or debugging. The
executable name is adpac cray dbx.

nCUBE2 Vertex Operating System Make Options

ncube This is the standard nCUBE 2 system compilation for the parallel
version of the ADPAC07 code. The nCUBE version of the APPL
message passing library is incorporated, and therefore creation of this
executable requires that a make has been issued in the APPL directory
on the current machine. The parallel code may only be executed using
the APPL compute function with a corresponding APPL procdef �le.
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Prior to performing this compilation, the appropriate make command
must be issued in the APPL directory to assemble the APPL library
for the local machine. The executable name is adpacp ncube.

ncube csdb This option is identical to ncube above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropriate
make command must be issued in the CSDB and APPL directories to
assemble the CSDB and APPL libraries for the local machine. The
executable name is adpacp ncube.

ncube dbx This option is used when compiling the parallel code for the nCUBE
parallel computer using the VERTEX operating system and the nCUBE
dbx debugging facility. (Note: the code will run much more slowly when
compiled in this fashion.) This option is used mainly for code devel-
opment or debugging. The executable name is adpacp ncube dbx.

ncube csdb dbx This option is the same as ncube dbx above, except that the faster C-
based scienti�c database library is used instead of the standard scien-
ti�c database library. (Note: the code will run much more slowly when
compiled in this fashion.) The executable name is adpacp ncube dbx.

ncube csdb no2d This option is used when compiling the parallel code for the nCUBE
parallel computer using the VERTEX operating system and the faster
C-based scienti�c database library instead of the standard scienti�c
database library. This option also eliminates all 2-D subroutines to
minimize the size of the executable, which is useful for strictly 3-D
problems on multiprocessing computers with limited memory per pro-
cessor. Prior to performing this compilation, the appropriate make

command must be issued in the CSDB and APPL directories to as-
semble the CSDB and APPL libraries for the local machine. The
executable name is adpacp ncube no2d.

IBM RS-6000 AIX Make Options

aix This option is used when compiling the standard serial code on an
IBM RS-6000 workstation running the AIX operating system. The
executable name is adpac aix.

aix csdb This option is identical to aix above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropri-
ate make command must be issued in the CSDB directory to assemble
the CSDB library for the local machine. The executable name is ad-
pac aix.

aix dbx This option is used for generating an executable version of the code
which is compatible with the IBM AIX dbx debugging facility. (Note:
the code will run much more slowly when compiled in this fashion.)
This option is used mainly for code development or debugging. The
executable name is adpac aix dbx.

aix csdb dbx This option is identical to aix dbx above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
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database library. Prior to performing this compilation, the appropriate
make command must be issued in the CSDB directory to assemble
the CSDB library for the local machine. (Note: the code will run
much more slowly when compiled in this fashion.) This option is used
mainly for code development or debugging. The executable name is
adpac aix dbx.

aix parallel This is the standard IBM RS-6000 AIX UNIX system compilation
for the parallel version of the ADPAC07 code. The standard APPL
message passing library is incorporated, and therefore creation of this
executable requires that a make has been issued in the APPL directory
on the current machine. The parallel code may only be executed using
the APPL compute function with a corresponding APPL procdef �le.
Prior to performing this compilation, the appropriate make command
must be issued in the APPL directory to assemble the APPL library
for the local machine. The executable name is adpacp aix.

aix parallel csdb This option is identical to aix parallel above, except that the faster
C-based scienti�c database library is linked instead of the standard
scienti�c database library. Prior to performing this compilation, the
appropriate make command must be issued in the CSDB directory
to assemble the CSDB library for the local machine. The executable
name is adpacp aix.

aix parallel dbx This option is used for generating an executable parallel version of
the code which is compatible with the IBM AIX dbx debugging facil-
ity. (Note: the code will run much more slowly when compiled in this
fashion.) This option is used mainly for code development or debug-
ging. The executable name is adpacp aix dbx.

NASA-Lewis Research Center Speci�c Make Options

lace This option is used when compiling the standard parallel code for the
NASA-Lewis LACE workstation cluster computing environment. The
executable name is adpacp lace.

lace csdb This option is identical to lace above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropri-
ate make command must be issued in the CSDB directory to assemble
the CSDB library for the local machine. The executable name is ad-
pacp lace.

leather This option is used when compiling the standard parallel code for
the NASA-Lewis SP2 (leather) workstation cluster computing envi-
ronment. The executable name is adpacp leather.

leather csdb This option is identical to leather above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. Prior to performing this compilation, the appropri-
ate make command must be issued in the CSDB directory to assemble
the CSDB library for the local machine. The executable name is ad-
pacp leather.
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Source Directory Maintainance Make Options

help This option lists and describes all available make�le options. No exe-
cutable is created.

clean This option cleans up the source directory by removing all object �les.
No executable is created.

realclean This option really cleans up the source directory by removing all object
and library �les. No executable is created.

onesource This option concatenates all the ADPAC07 source �les into a single
source �le name adpac.onesource.f. This single source can then be
compiled by hand on those machines for which an appropriate make
option is not available. It is up to the user to link in the necessary
library �les (CSDB, APPL, etc) for creation of an executable. No
executable is created.

At the completion of the compilation process on any system, an executable version of the
code is written in the source directory (see Appendix A for an application of the compilation
and execution processes for a sample test case).

3.5 ADPAC07 Input/Output Files

In this section, the various input/output data �les related to a calculation using the AD-
PAC07 program are described. In order to understand the �le naming convention, the
concept of a case name must �rst be detailed. All �les used in an ADPAC07 calculation
are named according to a standard naming convention of the form:

case.extension

where case is a unique, user-speci�able name identifying the geometry or 
ow condition
being investigated, and extension is a name describing the type of �le. The case name must
be speci�ed in the standard input �le described below. A list and description of each of the
�les used or generated by ADPAC07 is given in Table 3.1.

The standard input, standard output, boundary data, and convergence history �les are
stored in ASCII format. All other �les utilize the Scienti�c DataBase Library (SDBLIB) [13]
format. The mesh �le and PLOT3D plot output �les are compatible with the PLOT3D

multiple grid, binary de�nition (see Sections 3.8 and 3.11 for a description and coding
examples of the SDBLIB binary format). Files dealing with the parallel execution of the
ADPAC07 code are described in Chapter 4.

The standard input and standard output �les are directed at runtime using the standard
UNIX redirection syntax as:

adpac < case.input > case.output

If a restart run is desired, the user must move the most current output restart �le from

case.restart.new
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Table 3.1: Description of input/output �les and UNIX-based �lenames for AD-

PAC07 Euler/Navier-Stokes solver
Name Description

case.input Standard input �le
case.boundata Block boundary de�nition �le
case.output Standard output �le (from output redirection only)
case.mesh Mesh �le (PLOT3D compatible)
case.p3dabs Final PLOT3D output �le (absolute 
ow)
case.p3drel Final PLOT3D output �le (relative 
ow)
case.p3d2eq Final PLOT3D output �le (turbulence model data)
case.bf.# 2-D blockage/body force �le for block number #
case.p3fr.# Instantaneous PLOT3D interval output �le

(absolute 
ow). The frame number is given by #.
case.img.# Instantaneous Silicon Graphics image �le for graphics

interactive display. The frame number is given by #.
case.restart.new New restart �le (output by code)
case.restart.old Old restart �le (used as input for restart runs)
case.2eqrest.new New turbulence model restart �le (output by code)
case.2eqrest.old Old turbulence model restart �le (used as input for restart runs)
case.converge Solution residual convergence history �le
case.sixpac SIXPAC block subdivision �le (parallel only)
Ncase.bacpac BACPAC block reconstruction �le (parallel only)
Ncase.blkproc ADPAC07 block/processor assignment �le (parallel only)
procdef APPL process description �le (parallel only)
case.axi.mesh Equivalent axisymmetric mesh output by body

force calculation
case.axi.restart.new Equivalent axisymmetric 
ow restart output by

body force calculation
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to the default input restart �le name

case.restart.old

each time the code is restarted. A more detailed description of the use and format of the
ADPAC07 �les is presented in the sections which follow.

3.6 ADPAC07 Standard Input File Description

The standard ADPAC07 input �le case.input contains the user-speci�able parameters
which control the basic operation of the code during execution. These parameters tend
to be less case dependent (as opposed to the boundary data �le which is entirely case de-
pendent). During code execution, the input �le is read one line at a time as a character
string, and each string is parsed sequentially to determine the speci�c program action in
each case. The standard input �le utilizes a keyword input format, such that any line which
does not contain a recognizable keyword is treated as a comment line. Therefore, the user
may place any number of comments in the �le (so long as the line does not contain a key-
word input string in the form described below), and code execution is unaltered. Comments
may also be placed after the variable assigned to the keyword as long as there are one or
more blanks separating the keyword value from the comment string. All input �le lines
are echoed to the standard output, and the program response to each line is listed when a
speci�c action is taken.

All keyword input lines are given in the following format:

KEYWORD = Value Comment String

where KEYWORD is one of the recognized keywords described below, and Value is the
speci�c value to be assigned to that variable. The input line must contain the equals sign
(=) with one or more blanks on both sides in order to be recognized. The Comment
String must be separated by one or more blank spaces from the Value. Therefore, the lines

DIAM = 10.000

DIAM = 10.000

DIAM = 10.000 This is the diameter.

are valid keyword input lines assigning the value 10.0 to the variable associated with the
keyword DIAM. Conversely, the lines

DIAM= 10.000

DIAM =10.000

DIAM=10.000

are not recognizable keyword input lines (in spite of the presence of the keyword DIAM),
because of the lack of proper placement of the blanks about the equals (=) sign. The
purpose for this restriction is to permit keyword variables in comment lines, and to help
users to generate readable input �les. All keyword values are either real numbers (which,
in many cases, are converted to integers in the code) or character strings.

A sample ADPAC07 standard input �le containing a number of typical use keywords is
listed below:
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ADPAC07 Sample Standard Input File

----------------------------------------------------

ADPAC Input File

----------------------------------------------------

NASA 1.15 PRESSURE RATIO FAN - 2 BLADE ROWS

----------------------------------------------------

VARNAME = VARIABLE VALUE COMMENT

----------------------------------------------------

CASENAME = nasa The case name is "nasa"

FMULTI = 3.0 Three mesh levels for multigrid

FSUBIT = 1.0 1 subiteration on each coarse mesh level

FFULMG = 1.0 Use "full" multigrid

FCOAG1 = 3.0 Start "full" multigrid on 3rd mesh level

FCOAG2 = 2.0 End "full" multigrid on 2nd mesh level

FITFMG = 150.0 150 "full" multigrid iterations

RMACH = 0.750000 Reference Mach Number for initialization

FINVVI = 0.000000 0.0-Inviscid Flow, 1.0-viscous flow

GAMMA = 1.400000 Specific heat ratio

PREF = 2116.220000 Reference Total Pressure (lbf/ft**2)

TREF = 518.670000 Reference Total Temperature (Deg. R)

RGAS = 1716.260010 Gas constant (ft-lbf/slug-deg R)

DIAM = 9.000000 Reference diameter (ft.)

EPSX = 1.000000 Residual smoothing coefficient in i direction

EPSY = 1.000000 Residual smoothing coefficient in j direction

EPSZ = 1.000000 Residual smoothing coefficient in k direction

VIS2 = 0.500000 Fine mesh 2nd order dissipation coefficient

VIS4 = 0.015625 Fine mesh 4th order dissipation coefficient

VISCG2 = 0.125000 Coarse mesh dissipation coefficient

CFL = -5.000000 <0.0, Steady flow, >0.0, unsteady flow

FNCMAX = 150.000000 150 iterations on fine mesh level

PRNO = 0.700000 Gas Prandtl number = 0.7

PRTNO = 0.900000 Turbulent Prandtl number = 0.9

FREST = 0.000000 No restart file is read in

ADVR(1) = -2.780000 Advance ratio for block #1 is -2.78

ADVR(2) = -2.780000 Advance ratio for block #2 is -2.78

ADVR(3) = 0.000000 Advance ratio for block #3 is 0.00

ADVR(4) = 0.000000 Advance ratio for block #4 is 0.00

ENDINPUT

It is unnecessary to specify all possible keywords in every input �le. The ADPAC07 code
is programmed with a default set of input variables such that the only input variable
which must be present is the CASENAME (described below) which is used to assign
input/output �le names. A list and description of all input keywords and their default
values are listed below.

ADPAC07 Standard Input File Keyword Description
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ADVR(NUM)
(Default Value = 0.0)

ADVR(1) = 0.0

ADVR(2) = 0.0

ADVR(3) = 0.0

TheADVR keyword value determines the rotational speed (in terms of an advance ratio) of
the mesh block number speci�ed by the value NUM. Block rotational speeds are, by default,
zero, unless either an RPM or an ADVR keyword are speci�ed otherwise. The advance
ratio is inherently tied to the freestream Mach number speci�ed in the value associated
with the keyword RMACH. If the mesh has not been correctly non-dimensionalized, or if
the value of RMACH is incorrect, it is possible that an incorrect value of rotational speed
would be speci�ed in the calculation. The use of ADVR is normally only employed for
propeller performance calculations.

BFFILE(NUM)
(Default Value = default �le name)

BFFILE(1) = case.bf.b1

The BFFILE keyword value determines the name of the �le used to read in the data for
the blade blockage and body force source terms used to represent the e�ects of embedded
blade rows in 2-D axisymmetric 
ow calculations. The �le speci�ed by BFFILE is used to
describe the terms for the block number indicated by the value of NUM. Body force data
�les created by the ADPAC07 program are named according to the �le naming convention
described in Section 3.9.

CASENAME
(No Default Value)

CASENAME = case

The CASENAME keyword value is used to set the case name which is used to de�ne all
input/output �le names during an ADPAC07 run (see Section 3.5 for details). The case
name is limited to an 8 character string, and cannot contain embedded blanks. The case
name has no default value, and as such, all input �les must contain the CASENAME

keyword.

CFL
(Default Value = -5.0)

CFL = -5.0

The CFL keyword de�nes the value of the time step multiplier used in the time-marching
solver. The algorithm is sensitive to the sign of the value used for CFL in determining the
manner in which the time-marching solver is applied. If CFL < 0.0, local time stepping
is used (steady 
ow only) and each cell is advanced in time according to the local maxi-
mum allowable time step. If CFL > 0.0, then a time-accurate time-marching solution is
performed using the explicit algorithm where the time step is based on the value of j CFL
j x (�t)min where (�t)min is the minimum of all local time steps. The absolute value of
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CFL is used as a multiplier for the time step (larger absolute values indicate larger time
steps). A value of -5.0 is normally used for steady 
ow calculations, and values as high as
7.0 have been used successfully for time-accurate calculations. The value of CFL is also
used implicitly in the eigenvalue scaling terms in the implicit residual smoothing algorithm,
such that larger values of CFL imply increased residual smoothing (see the description
of the implicit residual smoothing algorithm in the companion Final Report [21] and the
description of CFMAX). For implicit calculations, the global time step is set by the input
keyword FDELTAT. In this case, the value of CFL now controls the \pseudo" time step
used during the inner iteration strategy at each global time step. In this case, each global
time step can be viewed as a steady state solution, and the variables CFL, CFMAX,

FMULTI, etc retain their meanings in this context, and should be set as in any steady
state solution. The implicit time-dependent solution (and global time-dependent iteration
strategy) is controled by the variables FIMPLIC, FDELTAT, FNTSTEP, FMGT-

STEP, FIMPFAC, FTIMFAC.

CFMAX
(Default Value = 2.5 (four stage scheme), 3.5 (�ve stage scheme))

CFMAX = 2.5

The CFMAX variable is used to de�ne the maximum allowable time step multiplier for
the explicit time-marching scheme without residual smoothing. This value is used in the
implicit residual smoothing routine to adjust the smoothing coe�cients for variations in
time steps (see the Final Report [4]). Normally referred to as a CFL number, the variable
CFMAX represents the maximum allowable CFL number for the time-marching scheme
without residual smoothing, while the variable CFL represents the actual CFL number
used in the calculation with residual smoothing. The ratio of CFL to CFMAX is used to
adjust the amount of smoothing in the residual smoothing operator. Increasing CFMAX

decreases the magnitude of the residual smoothing coe�cients and therefore decreases the
overall smoothing. Based on linear stability analysis, the four stage Runge-Kutta time-
marching scheme permits a maximum CFL number of 2

p
2. For simplicity, this value is

normally approximated as 2.5 which provides an additional margin of safety. Under certain
circumstances, it may be desirable to reduce CFMAX as low as 2.0 to aid convergence by
arti�cially increasing the amount of residual smoothing. For the �ve stage scheme values of
3.0 to 3.5 are recommended.

CMUTSS, CMUTPS
(Default Value = 14.0)

CMUTSS = 14.0

CMUTPS = 14.0

The CMUTSS, CMUTPS keywords determine the ratio of local turbulent to laminar
viscosity required to initiate transition for the point transition model in the ADPAC07 body
centered mesh algebraic turbulence model activated by the keyword FTURBCHT. This
simpli�ed transition model maintains laminar 
ow until the ratio of near wall turbulent
viscosity to near wall laminar viscosity exceeds the value of CMUTSS or CMUTPS

for the \suction side" and \pressure side", respectively, of the airfoil in question. The
transition model parameters are illustrated in Figure 3.1. A ratio of 14.0 is recommended
for all cases unless speci�c testing has indicated an alternate value. It should be noted that
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these variables will have no e�ect when FINVVI=0.0 (inviscid 
ow), or when F2EQ=1.0
(two-equation turbulence model enabled) or when FTURBCHT=0.0 (transition model
not activated).

DIAM
(Default Value = 1.0)

DIAM = 1.0

The DIAM keyword is used as a dimensionalizing length scale for the mesh system for a
given case. The ADPAC07 code assumes that the mesh has been generated in a nondi-
mensional fashion, and must be dimensionalized before execution. The value of the DIAM
variable is used to convert the supposed nondimensional mesh coordinates into a dimen-
sional length scale with units of feet. In other words, if the mesh has been generated using
a length scale of inches, then the value of DIAM should be 1

12
, or 0.083333 in order to

convert the mesh units to units of feet. If the mesh units are already in feet, then the
value of DIAM should be simply 1.0. Many mesh generation systems for turbomachinery
geometries nondimensionalize the mesh by a reference diameter determined from the tur-
bomachinery geometry such that the maximum value of any radial coordinate in the mesh
is 0.5. In this case, the value of DIAM should be the diameter of the turbomachine in feet
used to nondimensionalize the mesh. Proper speci�cation of the DIAM value is critical
to achieve the correct 
ow Reynolds number and rotational speed for rotating geometries.
Many problems can be traced to improper speci�cation of the DIAM value and the user
should take care to understand the use of this keyword. When in doubt, the user should re-
member the simple rule that the actual mesh units, when multiplied by the value of DIAM
should result in physical lengths expressed in feet.

ENDINPUT

ENDINPUT

When the ADPAC07 program encounters the keyword ENDINPUT, the parser which
searches each line for a valid input keyword string is terminated, and no additional input �le
lines are parsed for input keyword values. Any lines following the ENDINPUT statement
are ignored, except when the graphics display system is in e�ect across a network, in which
case the statements following the ENDINPUT statement must contain two blank lines
and the Internet network address of the destination display device (see Chapter 9 for a
description of the Interactive Graphics Display option).

EPSTOT
(Default Value = 0.1)

EPSTOT = 0.1

The EPSTOT keyword determines the value of the smoothing coe�cient employed in the
post multigrid smoothing algorithm described by the trigger FTOTSM. This coe�cient is
only used when FTOTSM = 1.0. The value of the coe�cient may be any positive number,
but for most circumstances, a value between 0.0 and 0.25 is suggested (larger values imply
more smoothing). This option is normally employed for enhanced code stability during the
multigrid solution process.

EPSX, EPSY, EPSZ
(Default Value = 1.0)
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Body−Centered Mesh Block
Turbulence Model Nomenclature

Axial Chord

Pressure Side

Suction Side

i direction

Transition forced at XTRANSS
on suction surface

XTRANSS

XTRANPS

Transition forced at XTRANPS
on pressure surface

CMUTSS sets transition
when x<XTRANSS

CMUTPS sets transition
when x<XTRANPS

0.0 1.0

Figure 3.1: ADPAC07 Body-Centered Mesh Turbulence Model Nomenclature Summary
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EPSX = 1.0

EPSY = 1.0

EPSZ = 1.0

The EPSX, EPSY, EPSZ keywords set the value of the implicit residual smoothing
coe�cient multipliers in the i, j, and k coordinate directions, respectively. The values
of EPSX, EPSY, and EPSZ are used as simple multipliers for the residual smoothing
coe�cients calculated by the eigenvalue scaling residual smoothing scheme described in the
Final Report [4]. If EPSX, EPSY or EPSZ = 0.0, then no smoothing is applied for the
given coordinate direction. The user should be aware that the keyword variable FRESID
controls the global application of residual smoothing in the solution algorithm, and in the
case where FRESID=0.0 (residual smoothing disabled), the EPSX, EPSY, EPSZ have
no impact on the solution. The default value for the coe�cient multipliers is 1.0. Any value
larger than 1.0 simply implies excess smoothing and may be useful for cases with poor
convergence or undesirable mesh quality. If a value larger than 3.0 is required to stabilize a
solution, this generally indicates some sort of problem in the calculation (such as poor mesh
aspect ratio, bad boundary speci�cation, etc.), or might suggest that FRESID has been
set to 0.0. Values less than 1.0 will likely cause code instabilities for values of CFL greater
than 2.0. Occasionally for cylindrical coordinate system solutions involving a centerline or
sting with very small radii, the value of EPSX, EPSY, EPSZ which corresponds to the
\radial" direction must be reduced to 0.25-0.5 to maintain stability.

F2EQ
(Default Value = 0.0)

F2EQ = 0.0

The F2EQ keyword assigns a trigger which determines the activation of the two-equation
(kR) turbulence model. This turbulence model can provide superior prediction of turbulent

ows with separation, but at a substantially larger computational cost. The two-equation
model utilizes additional speci�cation of data at in
ow boundaries (see e.g. INLETT,

INLETG to prescribe the \freestream" turbulence level, and the turbulent viscosity is
updated through the solution of two additional transport equations and a \pointwise" eddy
viscosity evaluation (for additional details, see the Final Report [21]). The two-equation
model is not enabled when F2EQ=0, and is enabled when F2EQ=1.0.

FBCONF
(Default Value = 99999.0)

FBCONF = 99999.0

The FBCONF keyword assigns a trigger which determines the iteration number at which
the boundary conditions are frozen. This trigger was added for those cases where conver-
gence is apparently hindered by \noise" from the boundary conditions. Caution must be
exercised when using the FBCONF variable due to the fact that the ADPAC07 code could
ultimately diverge when all of the boundary conditions are frozen. This option is normally
only used for debugging purposes.

FBCWARN
(Default Value = 1.0)
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FBCWARN = 1.0

The FBCWARN keyword assigns a trigger which controls the error checking for outer
block boundary conditions normally performed by the ADPAC07 code prior to execution.
Following initialization, ADPAC07 normally processes each mesh block and checks to see
if the user has adequately speci�ed boundary conditions over the six outer surfaces of each
mesh block. If any portion of an outer boundary does not have some type of boundary con-
ditions speci�ed, an error message is normally issued and the code will terminate processing.
Under some conditions, the user may have intentionally neglected to specify a boundary
condition on an outer mesh block surface, and it is therefore convenient to eliminate this
error processing. The FBCWARN trigger controls the actuation of this error handling
facility. When FBCWARN=1.0, the error handling is enabled. When FBCWARN=0.0,
the error handling is disabled.

FCARB(NUM)
(Default Values = 0.0)

FCARB(1) = 1.0

FCARB(2) = 0.0

FCARB(3) = 0.0

FCARB(4) = 0.0

FCARB(5) = 0.0

The keyword FCARB(NUM) sets a block speci�c trigger for the mesh block number
speci�ed by NUM which determines, on a block by block basis, whether the Cartesian
(FCARB(NUM) = 1.0) or the cylindrical (FCARB(NUM) = 0.0) solution algorithm is
employed by that block. The ADPAC07 code permits mixed cylindrical and Cartesian so-
lution blocks in a single calculation. While the variable FCART may be used to set the
global value of mesh blocks for either cylindrical or Cartesian solution status, the variable
FCARB(NUM) may be utilized to set speci�c blocks one way or the other. It must be
noted that the variable FCARB(NUM)will always override the status implied by FCART.
At present, the only boundary condition which permits interblock communication between
mixed cylindrical and Cartesian blocks is BCPRR (see Section 3.7).

FCART
(Default Value = 0.0)

FCART = 0.0

The FCART keyword assigns a trigger which controls the cylindrical/Cartesian coordinate
system solution scheme in the the ADPAC07 code. If FCART = 0.0, then all blocks
(except those speci�cally altered by the FCARB input variable) are treated as cylindrical
coordinate system blocks. If FCART = 1.0, then all blocks (except those speci�cally
altered by the FCARB input variable) are treated as Cartesian coordinate system blocks.

FCOAG1
(Default Value = 1.0)

FCOAG1 = 1.0
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The FCOAG1 keyword speci�es the initial, or coarsest coarse mesh level upon which the
\full" multigrid calculation is initially applied (for additional details, see the description of
FFULMG). When multiple coarse mesh levels are available for processing, it is occasionally
useful to specify the initial coarse mesh level in the \full" multigrid sequence in order to
avoid wasted computations on lower mesh levels. Typically, FCOAG1 is set to FMULTI

(start \full" multigrid on coarsest mesh level). In some cases (when FMULTI is larger than
3.0) it may be advisable to set FCOAG1 to 3.0, and avoid additional processing on coarser
meshes during the \full" multigrid startup process. A 
owchart of the ADPAC07 iteration
and multigrid control algorithm is given in Figure 3.2. An example is given in the description
of FCOAG2.

FCOAG2
(Default Value = 2.0)

FCOAG2 = 2.0

The FCOAG2 keyword speci�es the �nal, or �nest coarse mesh level upon which the \full"
multigrid calculation is applied (for additional details, see the description of FFULMG).
When multiple coarse mesh levels are available for processing, it is occasionally useful to
specify the �nal coarse mesh level in the \full" multigrid sequence in order to examine the

ow�eld without actually performing any calculations on the �ne mesh. For example, the
combination

FMULTI = 3.0

FCOAG1 = 3.0

FCOAG2 = 3.0

FNCMAX = 10.0

FITFMG = 100.0

would direct a \full" multigrid startup of 100 iterations on mesh level 3, and since FCOAG2=3.0,
the \full" multigrid sequence is ended at this mesh level. The solution is then interpolated
to the �ne mesh, and then 10 �ne mesh iterations using 3 levels of multigrid would be per-
formed. Typically, FCOAG1 is set to 2.0, which indicates that the \full" multigrid startup
procedure utilizes all mesh levels from FCOAG1 to 2 before starting any processing on the
�ne mesh. A 
owchart of the ADPAC07 iteration and multigrid control algorithm is given
in Figure 3.2.

FCOCOM
(Default Value = 0.0)

FCOCOM = 0.0

The FCOCOM keyword assigns a trigger which determines the method by which cell face
areas and cell volumes are determined for the coarse mesh levels of a multigrid solution.
When FCOCOM=0.0, coarse mesh cell face areas and cell volumes are determined in
exactly the same manner as the �ne mesh (using the 8mesh points de�ning the vertices of the
cell and computing a series of cell face diagonal cross products for the areas, and computing
a cell center and additional dot products for the cell volume). When FCOCOM=1.0, the
coarse mesh cell face areas and cell volumes are computed by summing the cell face areas
and cell volumes of the enclosed �ne mesh cells relative to each coarse mesh cell. The
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procedure de�ned by FCOCOM=1.0 is believed to be a more consistent representation of
the coarse to �ne mesh injection/interpolation process, but experience has not shown any
great di�erence using either method.

FCONVRG
(Default Value = -100.0)

FCONVRG = -7.0

The FCONVRG keyword speci�es the log 10 root-mean-square residual level at which
the solution is deemed converged. The solution convergence is monitored and when the log
10 root-mean-square residual level is less than FCONVRG, the time-marching process is
terminated and the solution is output. In general, the solution should not be considered
converged unless the log 10 root-mean-square residual is less than -6.0. The authors do not
recommend the use of this variable for explicit time-dependent calculations. The FCON-
VRG variable is useful for terminating the inner iterations of an implicit time-dependent
solution.

FDEBUG(NUM)
(Default Values = 0.0)

FDEBUG(1) = 0.0

FDEBUG(2) = 0.0

FDEBUG(3) = 3.0

FDEBUG(4) = 0.0

FDEBUG(5) = 0.0

The keywordFDEBUG(TYPE) de�nes a block number for the debug output type speci�ed
by TYPE which determines, on a type by type basis, whether debug output from the
ADPAC07 run is printed to the standard output. When enabled, this variable will generate
an extreme amount of output and should therefore be used only in a controled debugging
environment. The value of the variable FDEBUG(TYPE) determines for which blocks
the particular type of output is enabled. The following debug output types are currently
supported:

FDEBUG(1) Print the input (Cartesian) mesh points

FDEBUG(2) Print the (converted) cylindrical mesh points

FDEBUG(3) Print the cell face areas

FDEBUG(4) Print the cell volumes

FDEBUG(5) Print the cell 
ow data

FDEBUG(6) Print the cell time steps

FDEBUG(7) Print the cell convective 
uxes

FDEBUG(8) Prin the cell dissipative 
uxes

FDEBUG(9) Print the cell di�usive 
uxes
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FDEBUG(10) Print the cell implicit residual smoothing data

FDELTAT
(Default Value = 0.0)

FDELTAT = 1.0e-7

The FDELTAT keyword assigns the value for the physical time increment (in seconds)
used during a time-dependent solution (either explicit or implicit). For explicit solutions,
it is up to the user to ensure that the value of FDELTAT does not violate the stability
characteristics of the explicit 
ow solver. For implicit solutions, this value should re
ect
a reasonable number of global time steps over the course of the unsteady aerodynamic
phenomena of interest.

FDESIGN
(Default Value = 0.0)

FDESIGN = 0.0

The FDESIGN keyword assigns a trigger which determines directly whether to use the
body force design system calculation procedure developed under Task 18 of NASA Contract
NAS3-25950. When enabled, this option dictates that a solution be performed on a 2-D
axisymmetric grid representative of a through
ow calculation for a turbomachinery 
ow-
path. The solution requires the input of a body force �le (see the description of BFFILE)
which speci�es the blade blockage (a description of the contents of a body force �le is given
in Section 3.9). The 2-D grid must be constructed such that it represents the 2-D hub to
tip mean 
ow stream surface. In other words, if the mean 
ow involves swirl, then the grid
is warped in the circumferential direction to indicate the degree of swirl represented by the
mean stream surface. The ADPAC07 
ow solver then iteratively updates the body forces
internal to the code until the predicted mean stream surface matches the mean stream sur-
face de�ned by the mesh. This feature was developed for use in a design-like environment
wherein gross 
ow properties such as turning may be known, but speci�c airfoil shapes may
not be known.

FFAST
(Default Value = 0.0)

FFAST = 0.0

The FFAST keyword assigns a trigger which incorporates some simpli�cations of the AD-
PAC07 multigrid algorithm which reduces the CPU time per multigrid cycle. The CPU
savings a�orded when this option is enabled (FFAST=1.0) is estimated to be about 20%.
Unfortunately, the ADPAC07 algorithm is less stable using the procedures enabled by
FFAST=1.0 and in general, this option is not recommended.

FFILT
(Default Value = 1.0)

FFILT = 1.0
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The FFILT keyword assigns a trigger which determines directly whether the added dissipa-
tion routines are called during the time-marching process. If FFILT = 0.0, then no added
dissipation is calculated. It is also possible to turn o� the added dissipation by setting the
values of VIS2 and VIS4 to 0.0; however, the use of FFILT avoids the calculation of the
dissipation terms entirely. It is unlikely that any value other than 1.0 is required except for
code debugging purposes.

FFULMG
(Default Value = 0.0)

FFULMG = 0.0

The FFULMG keyword assigns a trigger which determines whether the \full" multigrid
solution procedure is applied or whether the standard multigrid procedure is used. The use
of \full" multigrid is advisable (but not required) when a new calculation is being started
as a means of rapidly generating a better initial guess for the �nal 
ow�eld. If the solution
is being restarted from a previous calculation (FREST=1.0), it is usually advisable to set
FFULMG to 0.0 to avoid destroying the initial data read from the restart �le (a warning
message is issued when this combination is speci�ed). A 
owchart of the ADPAC07 iteration
and multigrid control algorithm is given in Figure 3.2.

FGRAFINT
(Default Value = 1.0)

FGRAFINT = 1.0

The FGRAFINT keyword determines the number of iterations between 
ow�eld display
updates for the ADPAC07 real time graphics display system. This option is only valid
when FGRAFIX = 1.0, and is subject to a number of other restrictions for the graphics
display system (see the description of input keywords FGRAFIX and FIMGSAV, and the
description of the graphics display system, Chapter 9). The default value for FGRAFINT
is 1.0, which indicates that the graphics display will be updated every iteration. This can
cause excessive computational and network overhead, and the user should be aware of the
potential problems when using the graphics display features. The use of the graphical
display features of the ADPAC07 code are not generally recommended.

FGRAFIX
(Default Value = 0.0)

FGRAFIX = 0.0

The FGRAFIX keyword sets a trigger which controls the generation of the real time
interactive graphics display in the ADPAC07 program. A value of FGRAFIX = 1.0
indicates that the interactive graphics display facility is desired, while FGRAFIX = 0.0
turns this option o�. When functional, the graphics screen is updated with the latest
available 
ow data every FGRAFINT iterations. Graphics images can be automatically
captured on speci�c computer hardware every FIMGSAV iterations as a means of creating

ow�eld animations (see Graphics Display, Chapter 9). In order for the graphics display to
work, the code must be compiled with either the graphics or pfagraphicsMake�le option (see
Section 3.4 for a description of the Make�le and the ADPAC07 code compilation process).
There are also speci�c machine requirements for this option to work as well (see the section
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on Graphics Display, Chapter 9). The generation of interactive, real time graphics images
increases the overall computational cost, and can cause network overloading in some cases
due to the transmission of graphics information. The use of the graphical display features
of the ADPAC07 code are not generally recommended.

FIMGINT
(Default Value = 99999.0)

FIMGINT = 99999.0

The FIMGINT keyword determines the number of iterations between 
ow�eld graphics
display image capturing available on Silicon Graphics computers for the ADPAC07 real time
graphics display system. This option is only valid when FGRAFIX= 1.0, and FIMGSAV

= 1.0, and is subject to a number of other restrictions for the graphics display system (see
the description of input keywords FGRAFIX and FGRAFINT, and the description of
the graphics display system, Chapter 9). The default value for FIMGINT is 99999.0,
which indicates that a screen image will be saved every 99999 iterations. This large value
was chosen to prohibit accidental image capturing, which can quickly �ll up a large amount
of disk storage. The graphics display system can cause excessive computational and network
overhead, and the user should be aware of the potential problems when using this feature
of the ADPAC07 code. The use of the graphical display features of the ADPAC07 code are
not generally recommended.

FIMGSAVE
(Default Value = 0.0)

FIMGSAV = 0.0

The FIMGSAV keyword sets a trigger which controls the Silicon Graphics computer screen
image capturing facility of the real time interactive graphics display in the ADPAC07 pro-
gram. A value of FIMGSAV = 1.0 indicates that the graphics image capturing facility is
desired, while FIMGSAV= 0.0 turns this option o�. When the interactive graphics display
option has been enabled (see details for input keywords FGRAFIX, FGRAFINT) the
graphics screen is updated with the latest available 
ow data every FGRAFINT iteration.
When the image capturing facility is enabled, these graphics images can be automatically
captured on speci�c computer hardware every FIMGINT iterations as a means of creat-
ing 
ow�eld animations (see Graphics Display, Chapter 9).In order for the graphics display
image capturing facility to work, the code must be compiled with either the graphics, or
pfagraphics Make�le option (see Section 3.4 for a description of the Make�le and the AD-
PAC07 code compilation process). There are also speci�c machine requirements for this
option to work as well (see the section on Graphics Display, Chapter 9). The generation
of interactive, real time graphics images increases the overall computational cost, and can
cause network overloading in some cases due to the transmission of graphics information.
The capturing of many screen images will also require a large amount of �le storage space
(see Section 3.5 for a description of the image capturing �le naming convention). The use
of the graphical display features of the ADPAC07 code are not generally recommended.

FIMPFAC
(Default Value = 2.0)

FIMPFAC = 2.0
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The FIMPFAC keyword is a simple trigger which determines the degree of time-accuracy
employed in the implicit solution algorithm enabled by the keyword FIMPLIC. There are
four options available for this keyword. Values of 1.0 and 2.0 utilize the \fully" implicit
strategy described in [21] and are �rst and second order accurate in time, respectively.
Values of -1.0 and -2.0 utilize a \lagged" \fully" implicit strategy (thought to improve
stability) and are �rst and second order accurate in time, respectively.

FIMPLIC
(Default Value = 0.0)

FIMPLIC = 0.0

The FIMPLIC keyword is a simple trigger to determine whether the iterative implicit
solution mode is enabled (enabled when FIMPLIC= 1.0). The implicit algorithm is used
only for time dependent 
ow calculations, and requires that the additional input 
ow
variables FDELTAT, and FNTSTEP be speci�ed. The ADPAC07 code must also be
compiled with array parameter FIMPRA set to 1 to properly allocate array storage in
the code. When enabled, the implicit algorithm performs a global time marching loop
strategy whereby each interation of the global loop involves an iterative solution of a pseudo
steady state problem using the standard explicit time-marching strategy. The features of
this inner iteration problem is still governed by input variables such as CFL, CFMAX,

FMULTI, FNCMAX, etc. The global time increment for the outer loop is set by the
value of FDELTAT. The implicit algorithm occasionally exhibits unstable behavior and
the solution should initially be closely monitored. The user should fully understand the
implications and use of the implicit algorithm before attempting to utilize this option. A
theoretical description of the procedure is given in Reference [21].

FINVVI
(Default Value = 0.0)

FINVVI = 0.0

The FINVVI keyword is a simple trigger to determine whether the solution mode is for
inviscid 
ow (FINVVI = 0.0) or for viscous 
ow (FINVVI = 1.0). This trigger con-
trols whether the viscous stress 
ux contributions are calculated during the time-marching
process. This does not a�ect the application of boundary conditions, as this is completely
controled by the speci�cations in the boundary data �le (see Section 3.7). As such, it is pos-
sible to run viscous boundary conditions in an inviscid 
ow solution, and inviscid boundary
conditions in a viscous 
ow solution.

FITCHK
(Default Value = 100.0)

FITCHK = 100.0

The FITCHK keyword controls the number of iterations between job checkpointing in
the ADPAC07 program. Job checkpointing refers to the process of periodically saving
the 
ow�eld information to minimize the loss of data in the event that the job does not
terminate normally. As a safety feature, the ADPAC07 program writes out an updated
restart �le every FITCHK iterations in case the job stops before the �nal restart �le
output procedures are completed. It is not necessary to write out intermediate restart �les,
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but this is considered a good precaution against unexpected problems such as computer
failures, or system administration quotas. A good interval for checkpointing is 100 iterations
(FITCHK = 100.0). The intermediate restart �les, as well as the �nal restart �le, are all
written to the same �le name, and therefore previous checkpoints cannot be retrieved when
the �le is overwritten (see Section 3.5 for restart �le naming conventions). Job checkpointing
only applies to the iterative cycles involving the �ne mesh, and does not apply to the coarse
mesh iterations calculated during a "full" multigrid startup (see FFULMG ).

FITFMG
(Default Value = 100.0)

FITFMG = 100.0

The FITFMG keyword dictates the number of iterations to be performed on each of
the coarse mesh levels during a \full" multigrid startup sequence (see the description of
FFULMG). Typically, the startup sequence is used only to generate a reasonable initial
guess for the �ne mesh, so the value of FITFMG is kept relatively low (� 100). The
function of the keyword FITFMG is illustrated graphically in Figure 3.2.

FMASSAVG
(Default Value = 3.0)

FMASSAVG = 3.0

The FMASSAVG keyword describes a trigger which determines the type of mass averaging
used in the ADPAC07 code for various boundary conditions. In particular, the MBCAVG

boundary condition which imposes a circumferential mixing plane for simpli�ed representa-
tion of multistage turbomachinery blade row 
ows is the most commonly a�ected routine.
A value of FMASSAVG = 0.0 implies that an algebraic average is to be used in the av-
eraging operator in the ADPAC07 code. A value of FMASSAVG = 1.0 implies that an
area average is to be used in the averaging operator in the ADPAC07 code. A value of
FMASSAVG = 2.0 implies that a mass-weighted average is to be used in the averaging
operator in the ADPAC07 code. Values of 2.0 and 3.0 are recommended, as the algebraic
average introduces a fair amount of error.

FMGTSTEP
(Default Value = 0.0)

FMGTSTEP = 100.0

The FMGTSTEP keyword assigns the number of global time steps to be evaluated on
coarse mesh levels for the implicit 
ow solver when the \full" multigrid option FFULMG

is enabled. In the processing of large time-dependent calculations using the implicit 
ow
solver, it has been found useful to employ the \full" multigrid type of startup procedure
for the time-dependent runs as well as the steady state analyses. This basically initializes
the multiple time levels data arrays such that when the �ne mesh solution is activated, the
data in the previous time level arrays are initialized with something other than the current
solution, and a hopefully better approximation of the time-derivatives can be performed.
FMGTSTEP sets the number of implicit time steps performed on the coarse meshes during
the \full" multigrid startup. This keyword will only be active when FIMPLIC=1.0, and
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FFULMG=1.0. For a more detailed description of the \full" multigrid startup procedure,
see the descriptions of FFULMG, FCOAG1, FCOAG2, and Section 2.5.

FMULTI
(Default Value = 1.0)

FMULTI = 1.0

The FMULTI keyword assigns the number of multigrid levels to be used during the cal-
culation (for a description of the multigrid algorithm, see Reference [4]). The code will
analyze the dimensions of the �ne mesh to determine whether it can be properly subdi-
vided according to the number of multigrid levels requested. If FMULTI � 1.0, then the
number of multigrid levels is set to 1, and the calculation is performed on the �nest mesh
only without multigrid acceleration. For unsteady 
ows using the explicit time-marching
strategy, the current multigrid scheme is not valid, and FMULTI should be set to 1.0. For
time-dpendent 
ows based on the implicit time-marching strategy (FIMPLIC=1.0), the
multigrid algorithm may be enabled as with any steady state solution. A 
owchart of the
ADPAC07 iteration and multigrid control algorithm is given in Figure 3.2.

FNCMAX
(Default Value = 100.0)

FNCMAX = 100.0

The FNCMAX keyword controls the total number of iterations for a non-multigrid cal-
culation (FMULTI � 1.0), or the number of global iterations on the �nest mesh for a
multigrid calculation (FMULTI > 1.0). The total number of iterations performed on
all meshes for a multigrid run is controled by a combination of FNCMAX, FMULTI,
FCOAG1, FCOAG2, FFULMG, FITFMG, and FSUBIT. For example, the values

FNCMAX = 200.0

FMULTI = 1.0

FITFMG = 0.0

FFULMG = 0.0

FSUBIT = 0.0

would prescribe 200 iterations of a non-multigrid run (only the �ne mesh is used). The
values

FNCMAX = 200.0

FMULTI = 3.0

FITFMG = 0.0

FFULMG = 0.0

FSUBIT = 1.0

would prescribe 200 multigrid iterations using 3 mesh levels (but still only 200 global iter-
ations, where each iteration involves a single subiteration on each of 3 mesh levels). And
�nally, the values
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FNCMAX = 200.0

FMULTI = 3.0

FITFMG = 50.0

FFULMG = 1.0

FSUBIT = 1.0

FCOAG1 = 3

FCOAG2 = 2

would prescribe an initial pass of 50 iterations on the third mesh level, followed by 50 multi-
grid iterations on the second mesh level, and �nally 200 global multigrid iterations on the
�nest mesh level. See the descriptions of the variables FNCMAX, FMULTI, FCOAG1,
FCOAG2, FFULMG, FITFMG, and FSUBIT for further details. A 
owchart of the
ADPAC07 iteration and multigrid control algorithm is given in Figure 3.2.

FNTSTEP
(Default Value = 0.0)

FNTSTEP = 100.0

The FNTSTEP keyword assigns the number of global time steps to be evaluated on
the �nest mesh during an implicit time-dependent solution. FNTSTEP essentially sets
the number of global time steps performed (while FNCMAX sets the number of inner
iterations for each global time step). The total physical time of the time-dependent implicit
solution is therefore FNTSTEP multiplied by FDELTAT. This variable is only active
when FIMPLIC=1.0.

FRDMUL
(Default Value = 0.0)

FRDMUL = 0.0

The FRDMUL keyword determines whether boundary condition data for the coarse mesh
levels of a multigrid run are generated from the �ne mesh boundary conditions speci�ed
in the ADPAC07 boundary data �le (FRDMUL = 0.0), or whether the coarse mesh
boundary speci�cations are actually read in from the boundary data �le (FRDMUL =
1.0). In most cases, FRDMUL should be set to 0.0, and the program will determine
the equivalent coarse mesh boundary conditions from the �ne mesh speci�cations. For the
purposes of code debugging, or to permit multigrid calculation on a mesh which does not
possess perfect \multigrid" boundary segments (a boundary condition for the �ne mesh does
not begin or end at a mesh index which is compatible with the multigrid sequence), it is
possible to \fool" the program into running multigrid by arti�cially specifying an equivalent
coarse mesh boundary condition.

FRESID
(Default Value = 1.0)

FRESID = 1.0

The FRESID keyword assigns a trigger which determines directly whether the implicit
residual smoothing routines are called during the time-marching process. If FRESID =

0.0, then no residual smoothing is applied. It is also possible to turn o� the residual
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Figure 3.2: ADPAC07 input keyword multigrid cycle and time-marching iteration manage-
ment 
owchart
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smoothing by setting the values of EPSX, EPSY, and EPSZ to 0.0; however, the use
of FRESID avoids the calculation of the smoothed residuals entirely. It is unlikely that
any value other than 1.0 is required except for code debugging purposes, or for calculations
involving CFL� 2.0.

FREST
(Default Value = 0.0)

FREST = 0.0

The FREST keyword assigns a trigger which controls the restart characteristics of the
ADPAC07 code. If FREST = 0.0, then no restart �le is used, and the 
ow variables
are initialized according to the scheme described under the input keyword RMACH. If
FREST = 1.0, then the code attempts to open a restart �le (case.restart.old) described
by the �le naming convention (see Section 3.5), and the 
ow variables are initialized by the
values given in the restart �le. Restarting a calculation from a previous calculation is often
useful for breaking up large calculations into smaller computational pieces, and may also
provide faster convergence for cases which involve minor changes to a previous calculation.

A third option is provided (FREST = -1.0) which allows the ADPAC07 to restart from
a coarser mesh solution restart �le. For very large meshes which permit multigrid, it may be
desirable to initiate the solution using lesser computers by running on a coarsened mesh level
generated independently from the �ne mesh solution (using the COARSEN program). For
example, if a solution is ultimately desired on a 257x257x257 mesh, this obviously would
require a fair amount of computer resources to complete. During the solution initiation
phase, it might be desirable to start the solution on a coarsened version of the �nal �ne
mesh (129x129x129) using a smaller computer (a workstation for example). This can be
accomplished through the following procedure. First, create a coarse mesh equivalent of the
desired �ne mesh solution (the COARSEN program was developed for this purpose). Create
a solution for the coarsened mesh using ADPAC07 using whatever computer is available.
Next, using the restart �le from the coarsened mesh solution, \restart" the �ne mesh solution
using FREST = -1.0. The coarsened mesh must represent an exact coarsened mesh from
the ultimate �ne mesh (every other mesh line removed) for this procedure to work properly.

It should be mentioned that restart �les generated by the implicit time-dependent so-
lution strategy will contain additional time level data compared to a steady state restart
�le. It is possible to restart a time-dependent implicit solution from an explicit steady
state restart �le and vice versa, at the expense of some loss of information. For long time-
dependent solutions involving multiple restarts, the proper restart �les must be utilized to
properly predict the time-dpendent 
ow behavior.

FSAVE
(Default Value = 1.0)

FSAVE = 1.0

The FSAVE keyword assigns a trigger which controls the restart �le output characteris-
tics of the ADPAC07 code. If FSAVE = 0.0, then no restart �le is written at the end
of an ADPAC07 run. If FSAVE = 1.0, then the code attempts to open a restart �le
(case.restart.new) described by the �le naming convention (see Section 3.5), and the 
ow
variables are written to the restart �le for future processing. Restarting a calculation from
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a previous calculation is often useful for breaking up large calculations into smaller com-
putational pieces, and may also provide faster convergence for cases which involve minor
changes to a previous calculation. The recommended procedure is to always write a restart
�le.

FSOLVE
(Default Value = 1.0)

FSOLVE = 1.0

The FSOLVE keyword assigns a trigger which determines which type of time-marching
strategy is employed on both �ne and coarse meshes. For FSOLVE = 0.0, the stan-
dard 4-stage Runge Kutta time-marching scheme is used with a single added dissipation
evaluation, and implicit residual smoothing at alternating stages. For FSOLVE = 1.0, a
modi�ed 4-stage Runge Kutta time-marching scheme is used with two evaluations of the
added dissipation, and implicit residual smoothing at every stage. For FSOLVE = 2.0,
a 5-stage Runge Kutta time-marching scheme is used with three weighted added dissipa-
tion evaluations, and implicit residual smoothing at every stage. FSOLVE = 1.0 is the
recommended value, although the other schemes may provide improved convergence at a
somewhat di�erent computational cost per iteration.

FSUBIT
(Default Value = 1.0)

FSUBIT = 1.0

The FSUBIT keyword determines the number of subiterations performed on coarse meshes
during the coarse mesh portion of the multigrid cycle. As such, this variable is actually only
used when FMULTI > 1.0. Additional subiterations on coarse meshes during the multigrid
cycle can often improve convergence, at the expense of some additional computational work.
The number of subiterations speci�ed by FSUBIT is applied at each coarse mesh level
during the multigrid calculations process. A value of 1.0, 2.0, or 3.0 is typically best. A
complete description of the multigrid calculation process is given in the Final Report [4]. A

owchart of the ADPAC07 iteration and multigrid control algorithm is given in Figure 3.2.

FTIMEI
(Default Value = 1.0)

FTIMEI = 1.0

The FTIMEI keyword assigns a trigger which determines the number of iterations between
time step evaluations. For best results, this should be 1.0, which implies that the time step
is re-evaluated at every iteration. However, this value can be increased (< 10) to reduce
CPU time by reevaluating the time step every FTIMEI iterations instead (at the possible
expense of irregular convergence).

FTIMERM
(Default Value = 0.0)

FTIMERM = 0.0
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The FTIMERM keyword is utilized to control CPU quota during a run of the AD-

PAC07 code. The e�ect of this variable is di�erent during execution on a Cray computer
and a UNIX workstation. On the Cray, for jobs running under the Network Queuing Sys-
tem (NQS), any nonzero value for FTIMERM directs the code to determine how much
CPU time remains allocated to the current job during each time-marching iteration, and
the ADPAC07 code estimates how much of that CPU time is required to normally shut
down the current job. If the time remaining to the job allocation is indicated by TIME,
and if the time required to shutdown is SHUT , then the code will evaluate the expression

TIME � SHUT + FTIMERM

where each term is in CPU seconds. If this expression is less than 0.0, then the code will
halt the time marching process and attempt to shut down so the various output �les can
be written prior to termination by NQS due to CPU quota. Note that if FTIMERM is a
negative number, then the code will shut down \early" in case additional programs must run
under a given NQS run. On a UNIX workstation, NQS is usually not available, and in this
case, the code keeps track of accumulated CPU time and terminates normal job processing
when the accumulated CPU time exceeds the value of FTIMERM. If FTIMERM=0.0,
then no action is taken under any circumstances.

FTIMFAC
(Default Value = 1.0)

FTIMFAC = 1.0

The FTIMFAC keyword is a coe�cient multiplier which determines the limiting time
step for the implicit iteration strategy enabled by the keyword FIMPLIC. Under most
circumstances, the pseudo time step (as opposed to the physical time step) employed by
the implicit inner iteration strategy requires some limiting to prevent instabilities in the
global time marching process. The value of FTIMFAC is a \safety factor" of sorts by
simply limiting the value of the psuedo time step. Larger values of FIMPFAC imply
more limiting, and hence improved stability (theoretically). Under no circumstances should
FTIMFAC ever be less than 1.0. Values of between 1.0 and 10.0 are recommended. Again,
this value only has meaning when FIMPLIC = 1.0.

FTOTSM
(Default Value = 0.0)

FTOTSM = 0.0

The FTOTSM keyword is used to trigger the post multigrid smoothing algorithm. In
this scheme, the residual corrections from the multigrid process are combined with the �ne
mesh residuals and are smoothed globally using a simple constant coe�cient version of the
implicit residual smoothing algorithm. The smoothing coe�cient is determined by the value
of the input keyword variable EPSTOT. The scheme is disabled when FTOTSM has a
value of 0.0, and is employed when FTOTSM has a value of 1.0. This scheme has been
found to aid stability, but can actually hinder convergence in some cases.

FTURBB
(Default Value = 10.0)
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FTURBB = 10.0

The FTURBB keyword assigns a trigger which determines the number of iterations before
the turbulence model is activated. For laminar 
ow, set FTURBB to a very large number
(FTURBB > FNCMAX + (FMULTI-1) * FITFMG) * FFULMG) so the turbulence
model is never called. For turbulent 
ow, the value should be large enough (e.g., � 10) to
ensure that the solution has developed adequately enough to permit stable implementation
of the turbulence model (i.e., the 
ow�eld should at least exhibit the gross characteristics
(correct 
ow direction, some boundary layer development) of the expected �nal 
ow before
the turbulence model is activated).

FTURBCHT(NUM)
(Default Values = 0.0)

FTURBCHT(1) = 1.0

FTURBCHT(2) = 0.0

FTURBCHT(3) = 0.0

FTURBCHT(4) = 0.0

FTURBCHT(5) = 0.0

The keyword FTURBCHT(NUM) sets a block speci�c trigger for the mesh block number
speci�ed by the value NUM to enable the body-centered mesh turbulence model described
in Figure 3.1. If FTURBCHT(NUM) is set to 0.0, the standard turbulence model is used
for the block speci�ed by NUM. If FTURBCHT(NUM) is set to 1.0, then the special
transition and body centered turbulence model is used for the block speci�ed by NUM. The
body-centered turbulence model locates the airfoil leading and trailing edges, and utilizes
axial chord notation in conjunction with the input variables XTRANSS, XTRANPS
and CMUTSS, CMUTPS to determine the natural transition point on the airfoil. This
turbulence model was developed during an analysis of surface heat transfer (where transition
plays a critical role) on a turbine vane cascade using a C-type mesh. The use of this model
is recommended whenever the mesh topology is compatible with the scheme illustrated in
Figure 3.1. Note that the \pressure" and \suction" surfaces de�ned in Figure 3.1 actually
refer to geometric orientation rather than aerodynamic function.

It should be noted that these variables will have no e�ect when FINVVI=0.0 (inviscid

ow), or when F2EQ=1.0 (two-equation turbulence model enabled) or when FTURBCHT=0.0
(transition model not activated).

FTURBF
(Default Value = 99999.0)

FTURBF = 99999.0

The FTURBF keyword assigns a trigger which determines the iteration number at which
the turbulence model is frozen. This trigger was added for those cases where convergence is
apparently hindered by \noise" from the turbulence model. Caution must be exercised when
using the FTURBF variable due to the fact that the ADPAC07 restart �le does not contain
any turbulent viscosity data. If the ADPAC07 code is restarted from a turbulent 
ow
solution when the value of FTURBF is less than the current iteration level, no turbulent
quantities will be generated and the 
ow will exhibit laminar 
ow characteristics. In general,
it is safest to make this a very large number to avoid problems.



ADPAC07 Standard Input File Description 57

FTURBI
(Default Value = 1.0)

FTURBI = 0.0

The FTURBI keyword assigns a trigger which determines the number of iterations between
turbulence model evaluations. For best results, this should be 1.0, which implies that
the turbulence parameters are reevaluated at every iteration. However, this value can
be increased (< 10) to reduce CPU time by reevaluating the turbulence quantities every
FTURBI iterations instead (at the possible expense of irregular convergence).

FUNINT
(Default Value = 99999.0)

FUNINT = 99999.0

The FUNINT keyword is used to determine the number of iterations between instanta-
neous PLOT3D absolute 
ow �le output. For a time-dependent calculation, it is often
desirable to print out data at several intervals during the course of the solution to examine
the time-dependent nature of the 
ow. The ADPAC07 program provides a mechanism by
which a PLOT3D format 
ow �le can be printed at a �xed iteration interval (the interval
de�ned by the value of FUNINT) as a means of extracting time-dependent data during a
calculation. For steady 
ow calculations, it is normally desirable to set FUNINT to a very
large number, and simply use the �nal output PLOT3D format �les if needed. For unsteady

ow calculations, the value of FUNINT can be highly case dependent, and some numerical
experimentation may be required to prevent excessive output, or a de�ciency in data. The
�le naming convention for the unsteady output �les is given in Section 3.5. Proper selection
of FDELTAT and FUNINT resulting in PLOT3D output �les at speci�c intervals of time
will likely produce the most useful results.

FUPWIND
(Default Value = 0.0)

FUPWIND = 0.0

The FUPWIND keyword is a simple trigger to activate the upwind di�erencing scheme
(on=1.0, o�=0.0) available for the 2-D mesh block solver in the ADPAC07 code. The
upwind di�erencing scheme is a �rst order scheme available for experimentation only, and
is not a recommended solution technique for actual 
ow calculations at this point.

FVTSFAC
(Default Value = 2.5)

FVTSFAC = 2.5

The FVTSFAC keyword determines the value of the viscous time step evaluation fac-
tor used to stabilize the time-marching solution for viscous 
ows. This factor is used to
magnify the importance of the di�usion-related contributions to the time step evaluation
(larger values suggest larger restrictions due to di�usion related parameters). This factor is
particularly useful for meshes with rapid changes in grid spacing, and the default value of
2.5 was prescribed somewhat arbitrarily following numerical experimentation. It is unlikely
that this value needs modi�cation for most cases.
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FWALLF
(Default Value = 1.0)

FWALLF = 1.0

The FWALLF keyword is used to trigger the use of wall functions in the ADPAC07 turbu-
lence model. Wall functions are normally desirable for meshes which are not highly clustered
near solid surfaces. The ADPAC07 code can determine when the wall function model is
necessary and will automatically disable the wall function model (even if FWALLF is en-
abled) in favor of the standard turbulence model wall treatment for meshes with acceptable
near wall spacing (roughly 0.0001 times airfoil chord for turbomachinery applications). The
wall function model is not recommended for applications involving signi�cant heat transfer
or massive 
ow separation at this point.

GAMMA
(Default Value = 1.4)

GAMMA = 1.4

The GAMMA keyword sets the value for the gas speci�c heat ratio. For most cases
involving air at moderate pressures and temperatures, a value of 1.4 is adequate. For cases
involving combustion products, this value may be quite di�erent, and should be considered
appropriately. Extreme care must be taken when post-processing a calculation which is
based on a value of GAMMA other than 1.4 as many post processors use an assumed
value of the speci�c heat ratio equal to 1.4 (PLOT3D is a common example). It should
be mentioned that the present version of the code does not permit user speci�cation of the

uid viscosity, as the formula for air is hardwired into the code.

P3DPRT
(Default Value = 1.0)

P3DPRT = 1.0

The P3DPRT keyword assigns a trigger which determines whether PLOT3D format output
�les are written at the end of a calculation. A value of P3DPRT = 1.0 indicates that the
output �les should be written. Conversely, a value of P3DPRT = 0.0 indicates that the
PLOT3D format output �les should not be written. The PLOT3D output �les (see Section
3.5 for �le naming conventions for output �les) are useful for graphically examining the
predicted 
ow quantities using widely available plotting software such as PLOT3D, FAST,
SURF, etc. Occasionally, however, due to disk space limitations or simply to speed up
execution, it may be desirable to eliminate this output feature, and therefore P3DPRT
can be used to control this output.

PREF
(Default Value = 2116.22)

PREF = 2116.22

The PREF keyword sets the dimensional value (in pounds force per square foot) of the
reference total pressure used to nondimensionalize the 
ow�eld. For viscous 
ows, this value
must be accurately speci�ed in order to properly set the nondimensional 
ow viscosity, (and
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hence, the Reynolds number). For inviscid 
ow predictions, this value has no real signi�-
cance because of the similarity of inviscid 
ows with Mach number. It is very important
to choose an average representative value for this variable, such that the nondimensional
total pressure at any point in the 
ow is near a value of 1.0. An extended discussion on the
reason for this choice is given in the description of RMACH. In general, PREF is set to
the freestream or inlet 
ow average total pressure.

PRNO
(Default Value = 0.7)

PRNO = 0.7

The PRNO keyword assigns the value of the gas Prandtl number. For air (and many other
gases) at moderate pressures and temperatures, a value of 0.7 is appropriate.

PRTNO
(Default Value = 0.9)

PRTNO = 0.9

The PRTNO keyword assigns the value of the gas turbulent Prandtl number. The tur-
bulence model in ADPAC07 determines the turbulent thermal conductivity via a turbulent
Prandtl number and the calculated turbulent viscosity (see the Final Report [4]). The
recommended value is 0.9.

RGAS
(Default Value = 1716.26)

RGAS = 1716.26

The RGAS keyword sets the dimensional value (in foot-pounds force per slug-degree Rank-
ine) of the gas constant. The default value is for atmospheric air at standard pressure and
temperature. This value is used in conjunction with GAMMA in determining the gas
speci�c heats at constant pressure and constant volume.

RMACH
(Default Value = 0.5)

RMACH = 0.5

The RMACH keyword value is intended to set an initial or reference 
ow Mach number.
This value is used primarily to set the initial freestream 
ow variables (density, pressure,
temperature and axial velocity) for a given calculation based on a �xed Mach number.
The freestream values are used to initialize the 
ow�eld prior to the execution of the time-
marching solver in the absence of a restart �le. It should be mentioned that the initial
data values are assigned based on the assumption that the nondimensional freestream total
pressure and total temperature are 1.0 where the nondimensional values are referenced to
the dimensional values determined by the PREF and TREF input variables. This implies
that it is advisable to set up all input variables (in particular PREF and TREF), and
boundary data for PEXIT (described in Section 3.7 on boundary data �le speci�cations)
such that the imposed inlet and exit 
ow boundary conditions are compatible with the
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initial conditions derived from RMACH, based on the assumed global nondimensional total
pressure and temperature. For example, suppose that the desired solution for an internal
stage compressor rotor has an inlet total pressure of 24 psia, and an exit static pressure
of 23.5 psia. For compressor designers, these numbers might commonly be referenced to
standard atmospheric pressure (14.7 psia), resulting in nondimensional upstream total and
exit static pressures of 1.6326 and 1.5986, respectively. If RMACH is set to 0.5, and the
reference pressure is 14.7 psia, then the interior mesh points will be initiated with a static
pressure value of 0.84302. It is unlikely that a stable solution will result when the exit
static pressure is 1.5986, and the interior static pressure is 0.84302 (reversed 
ow at the
exit boundary will result). A better approach is to specify 24 psia as the reference pressure,
such that the nondimensional inlet total and exit static pressures are 1.0, and 0.97917, and
the initial nondimensional static pressure at the interior cells is 0.84302. With these values,
it is much more likely that a stable solution will result. In addition, the value ofRMACH is
used in conjunction with the value of advance ratio speci�ed by the keyword ADVR, when
the rotational speed is de�ned in this manner. In this case, the value of RMACH must be
the freestream Mach number associated with the advance ratio speci�ed by ADVR or an
incorrect rotational speed will be calculated. A common error when using the RMACH

input variable is to assume that the speci�cation of the reference Mach number will set the

ow for the case of interest. This is not true, as the boundary condition speci�cations will
ultimately determine the 
ow conditions for any case.

RPM(NUM)
(Default Value = 0.0)

RPM(1) = 0.0

RPM(2) = 0.0

RPM(3) = 0.0

RPM(4) = 0.0

RPM(5) = 0.0

The RPM keyword value determines the rotational speed (in revolutions per minute) of
the mesh block number speci�ed by the value NUM. The value of RPM is, by nature, a
dimensional value. Block rotational speeds are, by default, zero, unless either anRPM or an
ADVR keyword are speci�ed otherwise. The user should be aware that if the mesh has not
been correctly non-dimensionalized, it is then possible that an incorrect value of rotational
speed would be used in the calculation (see the description of the keyword DIAM). The
user should also be aware that this value is sign speci�c, and many computational problems
traced to geometries which were rotating the wrong way. The proper orientation for the
RPM speci�cation is illustrated in Figure 3.10.

TREF
(Default Value = 518.67)

TREF = 518.67

The TREF keyword sets the dimensional value (in degrees Rankine) of the reference total
temperature used to nondimensionalize the 
ow�eld. For viscous 
ows, this value must be
accurately speci�ed in order to properly set the nondimensional 
ow viscosity, (and hence,
the Reynolds number). This value is also important for the speci�cation of wall temperature
used in the viscous wall boundary condition SSVI, SS2DVI (see the description of the
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boundary data �le, Section 3.7). For inviscid 
ow predictions, this value has no real signi�-
cance because of the similarity of inviscid 
ows with Mach number. It is very important to
choose an average representative value for this variable, such that the nondimensional total
temperature at any point in the 
ow is near a value of 1.0. An extended discussion on the
reason for this choice is given in the description of RMACH. In general, TREF is set to
the freestream or inlet 
ow average total temperature.

VIS2
(Default Value = 1/2)

VIS2 = 0.5

The VIS2 keyword de�nes the value of the second order added dissipation term used in
the �ne mesh time-marching solver (see the Final Report [4]). This value is a simple
multiplier of the second order dissipation term, and hence, larger values imply more added
dissipation. Second order dissipation is used mainly to control the solution in the vicinity
of 
ow discontinuities such as shock waves, but can also be important in any high gradient
region. The recommended value is 0.5, but values from 0.0 (no second order dissipation)
to 2.0 may be necessary. Any value larger than 2.0 is of questionable use, as the added
dissipation will likely dominate the solution.

VIS4
(Default Value = 1/64)

VIS4 = 0.015625

The VIS4 keyword de�nes the value of the fourth order added dissipation term used in
the �ne mesh time-marching solver (see the Final Report [4]). This value is a simple
multiplier of the fourth order dissipation term, and hence, larger values imply more added
dissipation. Fourth order dissipation is used mainly to provide a background dissipation to
control the odd/even point decoupling associated with centered di�erencing schemes. The
recommended value is 0.015625 (1/64), but values from 0.0 (no fourth order dissipation) to
0.0625 (1/16) may be necessary. Any value larger than 0.0625 is of questionable use, as the
added dissipation will likely dominate the solution.

VISCG2
Format:(Default Value = 1/8)

VISCG2 = 0.125

The VISCG2 keyword controls the value of the second order added dissipation coe�cient
for coarse mesh subiterations during the multigrid time-marching solution process. Coarse
mesh subiterations utilize a simpler dissipation scheme than the �ne mesh time-marching
scheme, and therefore, a di�erent damping constant is required. Larger values imply in-
creased added dissipation. The recommended value is VISCG2 = 0.125, although values
from 0.0 (no dissipation) to 1.0 are possible. Values larger than 1.0 are not recommended
as the solution would then likely be dominated by the dissipation.

XTRANSS, XTRANPS
(Default Value = 0.0)
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XTRANSS = 0.0

XTRANPS = 0.0

The XTRANSS, XTRANPS keywords determine the percentage of axial chord at which
transition is forced to occur for the point transition model in the ADPAC07 body centered
mesh turbulence model activated by the keyword FTURBCHT. This simpli�ed transition
model maintains laminar 
ow until the percentage of axial chord indicated byXTRANSS,
XTRANPS is exceeded at which point complete transition is forced. Separate variables are
provided for the \suction side" and \pressure side", respectively, of the airfoil in question.
The transition model parameters are illustrated in Figure 3.1. Fully turbulent (nontran-
sitional) 
ows should set XTRANSS, XTRANPS to 0.0 (transition occurs at leading
edge). Other values must be determined on a case by case basis.

It should be noted that these variables will have no e�ect when FINVVI=0.0 (inviscid

ow), or when F2EQ=1.0 (two-equation turbulence model enabled) or when FTURBCHT=0.0
(transition model not activated).

ZETARAT
(Default Value = 0.6)

ZETARAT = 0.6

The keyword ZETARAT controls a parameter used in the eigenvalue scaling operator in
the residual smoothing algorithm (see the Final Report [4]). The value of ZETARAT
represents the exponent the ratio of two coordinate eigenvalues and therefore large values
of ZETARAT (� 0.6) imply increased bias for meshes with large di�erences in coordinate
spacing while small values of ZETARAT (� 0.5) imply decreased bias for meshes with large
di�erences in coordinate spacing. Normally, values between 0.5 and 0.6 are recommended.

3.7 ADPAC07 Boundary Data File Description

The ADPAC07 boundary data �le contains the user-speci�able parameters which control
the application of boundary conditions on the multiple-block mesh during a time-marching
solution. These boundary speci�cations determine the location of solid walls, input/output

ow regions, and block-to-block communication paths. Prior to a detailed discussion of the
actual boundary condition speci�cations, several boundary condition application concepts
should be explained. It is important to understand how boundary conditions are applied in
the ADPAC07 �nite volume solution scheme. Finite volume solution algorithms typically
employ the concept of a phantom cell to impose boundary conditions on the external faces
of a mesh block. This concept is illustrated graphically for a 2-D mesh representation in
Figure 3.3.

A phantom cell is a �ctitious neighboring cell which is utilized in the application of
boundary conditions on the outer boundaries of a mesh block. Since 
ow variables cannot
be directly speci�ed at a mesh surface in a �nite volume solution (the 
ow variables are
calculated and stored at cell centers, where the corners of a cell are described by the 8
surrounding mesh points), the boundary data speci�ed in the phantom cell are utilized
to control the 
ux condition at the cell faces of the outer boundary of the mesh block,
and, in turn, satisfy a particular boundary condition. All ADPAC07 boundary condition
speci�cations provide data values for phantom cells to implement a particular mathematical
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2−D Mesh Block Phantom Cell Representation

Grid Point

Mesh Block Boundary

Phantom Cell Representation

Grid Line

i

j

Boundary condition specifications control the
flow variables for the phantom cells adjacent to
the mesh block boundary

"Corner" phantom cells cannot be controlled
through boundary conditions, but must be updated
to accurately compute grid point averaged values

Figure 3.3: 2-D mesh block phantom cell representation
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Boundary condition "patch"
on a k=constant face

Boundary condition "patch"
on a j=constant face

Boundary condition "patch"
on an i=constant face

ADPAC 3−D Boundary Condition Specification

All block boundary conditions are specified as a grid−defined
"patch" on an i=constant, j=constant, or k=constant mesh face

ik

j

Patches may be internal to the mesh as well

Figure 3.4: ADPAC07 3-D boundary condition speci�cation
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Boundarycondition"B"applied
after boundary condition "A"− part
of boundary condition "A" is
overwritten

Boundary condition "A" applied first Boundarycondition"C"applied
after boundary condition "B" and
"A"−part of boundary conditions
"B"and"A"areoverwritten

Effect of Ordering in Application of Boundary
Conditions for ADPAC Code

Computational Domain

Figure 3.5: E�ect of ordering in application of boundary conditions for the ADPAC07 code

boundary condition on the mesh. It should be emphasized that the phantom cells are
automatically de�ned within the ADPAC07 code, and the user need not be concerned
about generating �ctitious points within the mesh to accommodate the boundary condition
application procedure (mesh points need only be generated for the actual 
ow domain).

Although boundary conditions are imposed at phantom cells in the numerical solution,
the boundary speci�cation is still most conveniently de�ned in terms of grid points, not
computational cells. An illustration of the boundary speci�cation method for ADPAC07 is
given in Figure 3.4. All boundary conditions are speci�ed in terms of the grid points on
either an i=constant, j=constant, or k=constant mesh surface. In practice, these surfaces
are typically on the outer boundaries of the mesh block, but it is also possible to impose a
boundary on the interior of a mesh block (see the description of the boundary speci�cations
KILL and KIL2D, below).

The third important aspect of the application of boundary conditions in the AD-

PAC07 code involves the order in which boundary conditions are applied. During the
execution of the ADPAC07 code, all boundary conditions are applied to the various mesh
blocks in the order in which they are speci�ed in the case.boundata �le. As a result, it is
possible to overwrite a previously speci�ed boundary patch with a di�erent boundary condi-
tion than was originally speci�ed. This concept is illustrated graphically in Figure 3.5. The
user must take proper precautions to prohibit accidentally overwriting a desired boundary
patch as the ADPAC07 code cannot distinguish the proper order for the user.

During code execution, the boundary data �le is read one line at a time as a charac-
ter string, and each string is parsed sequentially to determine the speci�c program action
in each case. The boundary data �le utilizes a keyword input format, such that any line
which does not contain a recognizable keyword is treated as a comment line. Therefore, the
user may place any number of comments in the �le (so long as the line does not contain
a keyword input string in the form described below), and code execution is unaltered. All
boundary data �le lines are echoed to the standard output, and the program response to
each line is listed when a speci�c action is taken. A line in the boundary data �le can also
be e�ectively commented by inserting a # character in the �rst column. Therefore the lines
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PATCH 1 1 K K P M I J 1 17 1 129 1 17 1 129 1 17

PATCH 2 2 K K P M I J 1 17 1 129 1 17 1 129 1 17

are acceptable boundary speci�cations; however, the lines

#PATCH 1 1 K K P M I J 1 17 1 129 1 17 1 129 1 17

#PATCH 2 2 K K P M I J 1 17 1 129 1 17 1 129 1 17

would be neglected.

All keyword input lines are given in the format listed in Figure 3.6. The actual speci-
�cation in the boundary data �le may be free format, as long as the individual parameter
speci�cations are given in the correct order and are separated by one or more blank spaces.

All boundary speci�cations begin with a line containing 19 variables as outlined by the
vertical labels in Figure 3.6. A description of the function of each of the variables in the
boundary speci�cation line is given in the proper order in the section below:

Description of Boundary Speci�cation Line Variables

BCTYPE The �rst variable, BCTYPE, is a character string de�ning the type of
boundary condition to be applied to a given mesh block. BCTYPE
must correspond to one of the reserved boundary condition keywords
de�ned later in this section to be a proper boundary speci�cation. If
BCTYPE is not one of the reserved names, then the boundary speci-
�cation line is ignored.

LBLOCK1 The variable LBLOCK1 is an integer de�ning the grid block num-
ber to which the boundary condition implied by BCTYPE is applied.
Naturally, this implies LBLOCK1 �1, and LBLOCK1 � NBLKS,
where NBLKS represents the last mesh block number.

LBLOCK2 The variable LBLOCK2 is an integer de�ning the grid block number
from which the boundary condition data implied by BCTYPE and ap-
plied to mesh block LBLOCK1 is obtained. In some cases, a boundary
speci�cation may involve more than one block (patching two blocks to-
gether is an example), and the LBLOCK2 variable is provided for this
purpose. The value of the LBLOCK2 variable is only used in cer-
tain routines, but it is a good idea to be consistent in every boundary
speci�cation by duplicating the LBLOCK1 value for the LBLOCK2
variable if only a single mesh block is involved in a boundary speci�ca-
tion (If the boundary speci�cation only involves a single block, then set
LBLOCK2 = LBLOCK1).

LFACE1 The variable LFACE1 is a single character (one of the letters I, J, or
K) specifying the grid plane (i=constant, j=constant, or k=constant)
to which the boundary condition is applied in block LBLOCK1. This
speci�cation determines the grid face to which the boundary speci�ca-
tion is applied, based on the method by which boundary conditions are
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CASE.BOUNDATA FILE

condition applications are represented by 1 or more lines in this file.
This file contains case-specific boundary data information. All boundary

A sample line is given in the highlighted region below:

This is the keyword
describing the type of
boundary condition to

This is the mesh block
number to which 
the boundary data
is applied

This is the mesh block
number from which 
the boundary data
is derived

This indicates the
grid surface (i,j,k)
to which the boundary
data is applied in block 
LBLOCK1

This indicates the
grid surface (i,j,k)
from which the boundary
data is derived in block
LBLOCK2

This indicates the direction
(+=P, -=M) along the LFACE1
coordinate which travels towards
the interior of the flow (away from
the bounding surface) in mesh

This indicates the direction
(+=P, -=M) along the LFACE2
cooridinate which travels towards
the interior of the flow (away from
the bounding surface) in mesh

These are triggers resverved
for special use in some 
boundary conditions (usually

This is the index in the
LDIR1 direction for 
boundary data in block
LBLOCK1

This is the index in the
LDIR2 direction for
boundary data in block
LBLOCK2

These are the begining
and ending indices for
the remaining coordinate
directions in block
LBLOCK1 to which
boundary data is applied

These are the begining
and ending indices for
the corresponding coordinate
directions in block
LBLOCK1 from which
boundary data is applied
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be applied

block LBLOCK1 block LBLOCK2

the value I,J, or K, which indicates

the correspondance of the coordinates

in mesh block LBLOCK2 with the

remaining (non LFACE1) coordinates

in mesh block LBLOCK1

Figure 3.6: ADPAC07 boundary data �le speci�cation format
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implemented in the �nite-volume solution scheme (see the discussion
and �gures above).

LFACE2 The variable LFACE2 is a single character (one of the letters I, J, or K)
specifying the grid plane (i=constant, j=constant, or k=constant) from
which the boundary condition data is derived in block LBLOCK2.
This speci�cation determines the grid face from which the neighboring
block boundary data is derived, based on the method by which bound-
ary conditions are implemented in the �nite-volume solution scheme
(see the discussion and �gures above). Naturally, this variable is only
useful for boundary speci�cations involving more than one block. If
only one block is involved, simply set LFACE2 = LFACE1.

LDIR1 The variable LDIR1 is a single character (one of the letters P or M)
specifying the direction (P=plus, M=minus) along the LDIR1 coordi-
nate in LBLOCK1 which is directed away (towards the interior 
ow re-
gion) from the boundary surface patch. The speci�cation of this variable
is normally automatic when the boundary speci�cation is applied to the
external surface of a grid block - (LDIR1 = P when L1LIM = 1, and
LDIR1 = M when L1LIM = IMX,JMX, or KMX. (IMX,JMX,KMX

indicate the maximum indices of the LBLOCK1 mesh block in the i,
j, and k directions, respectively). The intent here is to provide a means
of specifying which side of the boundary surface plane the interior com-
putational cells (non-phantom cells) lie on. This speci�cation is made
by providing the coordinate direction of the interior computational cells
- the phantom cells are then assumed to lie in the opposite direction.

LDIR2 The variable LDIR2 is a single character (one of the letters P or M)
specifying the direction (P=plus, M=minus) along the LDIR2 coor-
dinate in LBLOCK2 which is away (towards the interior 
ow region)
from the boundary surface patch. This variable is only used in boundary
speci�cations cases involving more than one mesh block. The speci�ca-
tion of this variable is normally automatic when the boundary speci�-
cation data is obtained from the external surface of a neighboring grid
block - (LDIR2= P when L2LIM= 1, and LDIR2=Mwhen L2LIM
= IMX,JMX, or KMX. (IMX,JMX,KMX indicate the maximum indices
of the LBLOCK2mesh block in the i, j, and k directions, respectively).
The intent here is to provide a means of specifying which side of the
boundary surface plane the interior computational cells (non-phantom
cells) lie on. This speci�cation is made by providing the coordinate di-
rection of the interior computational cells - the phantom cells are then
assumed to lie in the opposite direction. If the boundary speci�cation
involves only a single mesh block, then simply set LDIR2 = LDIR1.

LSPEC1 The variable LSPEC1 is a single character (usually I, J, K, L, or
H) which implies some special information about the boundary con-
dition speci�cation. This parameter is boundary condition dependent.
The most common application of this variable is in the boundary data
�le keyword PATCH, which provides the cell-to-cell connection for
two grid blocks with a mating contiguous surface. For boundary con-
ditions involving more than one mesh block (such as PATCH), it
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is possible that the connection between blocks may involve connec-
tions between di�erent grid surfaces, and that the indices in block
LBLOCK2 correspond to a di�erent coordinate in block LBLOCK1.
In the case of a PATCH boundary condition, the LSPEC1 variable
determines the grid coordinate direction in the LBLOCK1 mesh block
which corresponds with the �rst remaining grid coordinate in mesh
block LBLOCK2. (The extent of the �rst remaining coordinate in
mesh block LBLOCK2 is determined by the values of M2LIM1 and
M2LIM2 )

LSPEC2 The variable LSPEC2 is a single character (usually I, J, K, L, or H)
which implies some special information about the boundary condition
speci�cation. This parameter is usually boundary condition depen-
dent. The most common application of this variable is in the boundary
data �le keyword PATCH, which provides the cell-to-cell connection
for two grid blocks with a mating contiguous surface. For boundary
conditions involving more than one mesh block (such as PATCH),
it is possible that the connection between blocks may involve con-
nections between di�erent grid surfaces, and that the indices in block
LBLOCK2 correspond to a di�erent coordinate in block LBLOCK1.
In the case of a PATCH boundary condition, the LSPEC2 variable
determines the grid coordinate direction in the LBLOCK1 mesh block
which corresponds with the second remaining grid coordinate in mesh
block LBLOCK2. (The extent of the second remaining coordinate in
mesh block LBLOCK2 is determined by the values of N2LIM1 and
N2LIM2 )

L1LIM The variable L1LIM is an integer specifying the index of the grid in the
LFACE1 direction to which the boundary condition should be applied
in block LBLOCK1. This value determines the actual mesh index of
the i=constant, j=constant, or k=constant mesh face (determined by
LFACE1) to which the boundary condition is applied in mesh block
LBLOCK1.

L2LIM The variable L2LIM is an integer specifying the index of the grid in the
LFACE2 direction from which the boundary condition data is derived
in block LBLOCK2. This value determines the actual mesh index of
the i=constant, j=constant, or k=constant mesh face (determined by
LFACE2) from which the boundary condition data is derived in mesh
block LBLOCK2.

M1LIM1 The variable M1LIM1 is an integer representing the initial index of
the �rst remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary spec-
i�cation applies to either an i=constant, j=constant, or k=constant
surface, the variables M1LIM1, M1LIM2, N1LIM1 and N1LIM2

determine the extent of the patch in the remaining coordinate direc-
tions. The remaining coordinate directions for block LBLOCK1 are
speci�ed in the natural order. (For example, if LFACE1=I , then the
variables M1LIM1, M1LIM2 refer to the extent in the j direction
and the variables N1LIM1, N1LIM2 refer to the extent in the k di-
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rection. If LFACE1=J , then the variables M1LIM1, M1LIM2 refer
to the extent in the i direction and the variables N1LIM1, N1LIM2

refer to the extent in the k direction. If LFACE1=K, then the vari-
ables M1LIM1, M1LIM2 refer to the extent in the i direction and
the variables N1LIM1, N1LIM2 refer to the extent in the j direc-
tion.) The indices speci�ed in M1LIM1 and M1LIM2 must be given
in increasing order. The indices speci�ed in N1LIM1 and N1LIM2

must also be given in increasing order.

M1LIM2 The variable M1LIM2 is an integer representing the �nal index of
the �rst remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary spec-
i�cation applies to either an i=constant, j=constant, or k=constant
surface, the variables M1LIM1, M1LIM2, N1LIM1 and N1LIM2

determine the extent of the patch in the remaining coordinate direc-
tions. The remaining coordinate directions for block LBLOCK1 are
speci�ed in the natural order. (For example, if LFACE1=I , then the
variables M1LIM1, M1LIM2 refer to the extent in the j direction
and the variables N1LIM1, N1LIM2 refer to the extent in the k di-
rection. If LFACE1=J , then the variables M1LIM1, M1LIM2 refer
to the extent in the i direction and the variables N1LIM1, N1LIM2

refer to the extent in the k direction. If LFACE1=K, then the vari-
ables M1LIM1, M1LIM2 refer to the extent in the i direction and
the variables N1LIM1, N1LIM2 refer to the extent in the j direc-
tion.) The indices speci�ed in M1LIM1 and M1LIM2 must be given
in increasing order. The indices speci�ed in N1LIM1 and N1LIM2

must also be given in increasing order.

N1LIM1 The variable N1LIM1 is an integer representing the initial index of
the second remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary spec-
i�cation applies to either an i=constant, j=constant, or k=constant
surface, the variables M1LIM1, M1LIM2, N1LIM1 and N1LIM2

determine the extent of the patch in the remaining coordinate direc-
tions. The remaining coordinate directions for block LBLOCK1 are
speci�ed in the natural order. (For example, if LFACE1=I , then the
variables M1LIM1, M1LIM2 refer to the extent in the j direction
and the variables N1LIM1, N1LIM2 refer to the extent in the k di-
rection. If LFACE1=J , then the variables M1LIM1, M1LIM2 refer
to the extent in the i direction and the variables N1LIM1, N1LIM2

refer to the extent in the k direction. If LFACE1=K, then the vari-
ables M1LIM1, M1LIM2 refer to the extent in the i direction and
the variables N1LIM1, N1LIM2 refer to the extent in the j direc-
tion.) The indices speci�ed in M1LIM1 and M1LIM2 must be given
in increasing order. The indices speci�ed in N1LIM1 and N1LIM2

must also be given in increasing order. For boundaries on 2-D mesh
blocks, this must always be 1.

N1LIM2 The variable N1LIM2 is an integer representing the �nal index of the
second remaining grid coordinate direction to which the boundary con-



ADPAC07 Boundary Data File Description 71

dition is applied in block LBLOCK1. Since the boundary speci�cation
applies to either an i=constant, j=constant, or k=constant surface, the
variables M1LIM1, M1LIM2, N1LIM1 and N1LIM2 determine
the extent of the patch in the remaining coordinate directions. The
remaining coordinate directions for block LBLOCK1 are speci�ed in
the natural order. (For example, if LFACE1=I , then the variables
M1LIM1, M1LIM2 refer to the extent in the j direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k direction.
If LFACE1=J , then the variables M1LIM1, M1LIM2 refer to the
extent in the i direction and the variables N1LIM1, N1LIM2 refer
to the extent in the k direction. If LFACE1=K, then the variables
M1LIM1, M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the j direction.)
The indices speci�ed in M1LIM1 and M1LIM2 must be given in in-
creasing order. The indices speci�ed in N1LIM1 and N1LIM2 must
also be given in increasing order. For boundaries on 2-D mesh blocks,
this must always be 2.

M2LIM1 The variableM2LIM1 is an integer representing the initial index of the
grid coordinate direction in block LBLOCK2 corresponding to the �rst
remaining coordinate in block LBLOCK1. For boundary conditions
involving more than one mesh block, it is possible that the connection
between blocks may involve connections between di�erent grid surfaces,
and that the indices in block LBLOCK2 correspond to a di�erent coor-
dinate in block LBLOCK1. The variables M2LIM1, M2LIM2 con-
trol the indices in the LSPEC1 direction in block LBLOCK2 which
correspond to the indices determined byM1LIM1, M1LIM2 in block
LBLOCK1. The user should note that it is possible for M2LIM1

> M2LIM2 and N2LIM1 > N2LIM2 but it is not possible for
M1LIM1 > M1LIM2 and N1LIM1 > N1LIM2. If only a single
mesh block is involved in the boundary speci�cation, set M2LIM1 =
M1LIM1.

M2LIM2 The variable M2LIM2 is an integer representing the �nal index of the
grid coordinate direction in block LBLOCK2 corresponding to the �rst
remaining coordinate in block LBLOCK1. For boundary conditions
involving more than one mesh block, it is possible that the connection
between blocks may involve connections between di�erent grid surfaces,
and that the indices in block LBLOCK2 correspond to a di�erent coor-
dinate in block LBLOCK1. The variables M2LIM1, M2LIM2 con-
trol the indices in the LSPEC1 direction in block LBLOCK2 which
correspond to the indices determined byM1LIM1, M1LIM2 in block
LBLOCK1. The user should note that it is possible for M2LIM1

> M2LIM2 and N2LIM1 > N2LIM2 but it is not possible for
M1LIM1 > M1LIM2 and N1LIM1 > N1LIM2. If only a single
mesh block is involved in the boundary speci�cation, set M2LIM2 =
M1LIM2.

N2LIM1 The variable N2LIM1 is an integer representing the initial index of
the grid coordinate direction in block LBLOCK2 corresponding to
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the second remaining coordinate in block LBLOCK1. For bound-
ary conditions involving more than one mesh block, it is possible that
the connection between blocks may involve connections between dif-
ferent grid surfaces, and that the indices in block LBLOCK2 corre-
spond to a di�erent coordinate in block LBLOCK1. The variables
N2LIM1, N2LIM2 control the indices in the LSPEC2 direction
in block LBLOCK2 which correspond to the indices determined by
N1LIM1, N1LIM2 in block LBLOCK1. The user should note that
it is possible forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2 but
it is not possible forM1LIM1 >M1LIM2 andN1LIM1 >N1LIM2.
If only a single mesh block is involved in the boundary speci�cation, set
N2LIM1 = N1LIM1. For boundary data on 2-D mesh blocks, this
must always be 1.

N2LIM2 The variable N2LIM2 is an integer representing the �nal index of
the grid coordinate direction in block LBLOCK2 corresponding to
the second remaining coordinate in block LBLOCK1. For bound-
ary conditions involving more than one mesh block, it is possible that
the connection between blocks may involve connections between dif-
ferent grid surfaces, and that the indices in block LBLOCK2 corre-
spond to a di�erent coordinate in block LBLOCK1. The variables
N2LIM1, N2LIM2 control the indices in the LSPEC2 direction
in block LBLOCK2 which correspond to the indices determined by
N1LIM1, N1LIM2 in block LBLOCK1. The user should note that
it is possible forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2 but
it is not possible forM1LIM1 >M1LIM2 andN1LIM1 >N1LIM2.
If only a single mesh block is involved in the boundary speci�cation, set
N2LIM2 = N1LIM2. For boundary data on 2-D mesh blocks, this
must always be 2.

Some boundary condition speci�cations require additional data beyond that incorpo-
rated in the boundary speci�cation line. In these cases, described in detail for the speci�c
boundary types later in this Section, the additional data is included immediately after the
boundary speci�cation line.

A sample ADPAC07 boundary data �le containing several keywords is listed below.

Sample ADPAC07 Boundary Data File

BLOCKDATA FOLLOWS: LABELS

B L L L L L L L L L L M M N N M M N N C

C B B F F D D S S 1 2 1 1 1 1 2 2 2 2 O

T L L A A I I P P L L L L L L L L L L M

Y O O C C R R E E I I I I I I I I I I M

P C C E E 1 2 C C M M M M M M M M M M E

E K K 1 2 1 2 1 2 1 2 1 2 1 2 N

1 2 T

------ -- -- -- -- -- -- -- -- --- --- --- --- --- --- --- --- --- --- ---------

#
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#---> The next two lines do the periodic boundary at K=1, K=17

#

PATCH 1 1 K K P M I J 1 17 1 49 1 17 1 49 1 17 K=1

PATCH 1 1 K K M P I J 17 1 1 49 1 17 1 49 1 17 K=KL

#

#---> Hub surface is at J=1

#

SSIN 1 1 J J P P S S 1 1 1 49 1 17 1 49 1 17 Hub

#

#---> Next two lines define the blade surfaces at K=1, K=17

#

SSIN 1 1 K K P P S S 1 1 17 33 1 17 17 33 1 17 K=1

SSIN 1 1 K K M M S S 17 17 17 33 1 17 17 33 1 17 K=KL

#

#---> Set the inflow data at I=1

#

INLETT 1 1 I I P P S S 1 1 1 17 1 17 1 17 1 17 INL

NDATA

3

RAD PTOT TTOT BETAR BETAT

0.100000 1.000000 1.000000 0.000000 0.000000

0.300000 1.000000 1.000000 0.000000 0.000000

0.500000 1.000000 1.000000 0.000000 0.000000

#

#---> Set the exit flow data at I=49 (Note that the exit static pressure

# is set here: this determines the blade loading and the flow rate

#

EXITT 1 1 I I M M H H 49 49 1 17 1 17 1 17 1 17 INL

PEXIT

1.200000

#

#---> Define the case surface at J=17

#

SSIN 1 1 J J M M S S 17 17 1 49 1 17 1 49 1 17 Case

#

#---> That's all folks

#

ENDDATA

A list and description of all valid boundary data keywords and any additional data
required for the given boundary condition is now presented in the pages which follow.
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BCINT1

BCINT1 Type Non-Contiguous Mesh Block Interface Patching
Scheme

Mesh Block #2
(51x11x51)

i
k j

 

 

 
 

Non−Contiguous Mesh Block Interface Along
Wake Cut Line Can Employ a BCINT1 Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #1
(193x25x1)

Application

The BCINT1 speci�cation is used in any application involving neighboring mesh blocks
with a non-contiguous grid line to grid line interface in one coordinate direction. The
interface must be contiguous in the other direction. BCINT1 patches one block to one
other block by interpolation along the non-contiguous index.

The example graphic above illustrates a two-dimensional mesh system used to predict
the 
ow through a turbine vane passage. The C-type mesh utilizes a noncontiguous wake cut
line as shown in the trailing edge detail. The BCINT1 speci�cation is applied along either
side of the wake cut line to permit communication of 
ow variables across the noncontiguous
mesh interface. Here, the interpolation direction is i, and part of the block is patched to
itself. Note that the i index increases in di�erent directions at the wake cut line. BCINT1
can handle interpolation along any index, regardless of the orientation of the mating surface.
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Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCINT1 boundary condition are given below:

BCINT1 1 1 J J P P L L 1 1 1 33 1 2 193 177 1 2

IDIRNT1 IDIRNT2

I I

ISHFTDR DSHIFT

2 0.0

BCINT1 1 1 J J P P L L 1 1 177 193 1 2 33 1 1 2

IDIRNT1 IDIRNT2

I I

ISHFTDR DSHIFT

2 0.0

Note that a completeBCINT1 speci�cation generally requires twoBCINT1 statement
lines in the boundary data �le. In the example above, the �rst speci�cation provides the
interblock communication for one side of the C-grid wake cut, while the second speci�cation
provides the communication for the other side of the C-grid wake cut. It is a common error
to underspecify a BCINT1 boundary by only providing a single line per interface.

Description

The BCINT1 boundary statement provides a means for block to block communication
for cases involving neighboring mesh boundaries which share a common surface, but are
non-contiguous in one grid index. BCINT1 can be applied to either stationary or rotating
block interfaces, but the results are physically correct only if both blocks are rotating at
the same speed. (The BCPRR speci�cation should be used for cases with relatively ro-
tating blocks.) A proper BCINT1 boundary is speci�ed much like a PATCH boundary.
The LFACE1 and LFACE2 determine which faces are mated together. BCINT1 also
requires the speci�cation of additional information. The second line in a BCINTM speci-
�cation is a comment line, normally labeling the variables INTDIR1 and INTDIR2. The
third line de�nes the variables INTDIR1 and INTDIR2 as either I , J , or K, depending
on the direction of interpolation for the receiving and sending blocks, respectively. One
mesh restriction to note is that BCINTM allows only one interpolation direction for each
side of the interface. The fourth line is a comment line normally labeling the variables
ISHFTDR and DSHIFT. The �fth line de�nes the values for the variables ISHFTDR
and DSHIFT. These variables provide a mechanism for shifting the boundary in one of
the three coordinate directions (x; y; z for Cartesian 
ows, or x; r; � for cylindrical 
ows).
The value of ISHFTDR identi�es the variable to be shifted (1-x, 2-y, 3-z for Cartesian
and (1-x, 2-r, 3-� for cylindrical) and the value of DSHIFT is the increment by which the
sending boundary is shifted (normalized in the same manner as the mesh coordinates) to
mate to the receiving boundary. BCINTM expects that the two sides of the interface lie
on a common physical surface, but the grid itself may not have both sides of the interface
in the same physical location. The most common use for this feature is a noncontiguous pe-
riodic boundary for a single passage turbomachinery blade row solution. The ISHFTDR
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and DSHIFT variables are provided to allow the user to temporarily shift the physical
location of the \sending" blocks to the \receiving" blocks physical location. For the case
of a noncontiguous periodic boundary in a 2-D turbine cascade, for example, ISHFTDR
would be 2 (shift in the y direction) and the amount of the shift de�ned byDSHIFT would
be the circumferential spacing of the blade rows in mesh units. The blocks are assumed
to be contiguous in the remaining index. The M2LIM or N2LIM variables are speci�ed
much as they would be for a PATCH speci�cation. The exception is that the number of
points spanned by the limits in the direction of interpolation need not be equal.

The search routine which determines the interpolation stencil assumes that the mating
grid lines are piecewise linear approximations to the same curve in the interpolation direc-
tion. A global search is performed for the proper mating cell of the �rst index. The closest
cell to the point of interest is taken as the mating cell. A localized search is performed for
the mating cells of the remaining points. The local search starts at the mating cell of the
preceding point and searches along the mating boundary until the mating cell containing
the new point is found. In the event that the mating cell is not found before the upper
limit is reached in the mating block, the search continues from the lower limit in the mating
block. This implies two things: the physical domain of the interpolation must be the same
in the two blocks, and the domain is assumed to be periodic if the search routine goes past
an endpoint.

Restrictions/Limitations

TheBCINT1 boundary speci�cation is restricted to mesh interfaces which lie on a common
surface (no signi�cant overlap).

Generally, endpoints of the interpolated region in the two blocks should be coincident.
There is at least one exception to this rule based on the above description of the search
routine. In the case of concentric O-grids, the endpoints of the two blocks may be misaligned
as shown in the �gure below. The interpolation routine will �nd the appropriate stencil for
each point because the grids are periodic.

TheADPAC07COARSEN program cannot properly handle subdivision of mesh bound-
aries involving a BCINT1 or BCINTM speci�cation.
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Mesh Block 1

i = 1

Mesh Block 2

i = 1

i

j

The BCINT1 condition reduces to a PATCH condition if the mating blocks are actu-
ally contiguous. However, due to the linear interpolation used in BCINT1, the scheme does
not maintain either global or local conservation of 
ow variables across a non-contiguous
mesh interface.

The BCINT1 condition also performs the same function as the TRAF condition, but
with fewer restrictions. The TRAF condition employs a cubic spline for interpolation,
rather than the linear procedure used by BCINT1, and therefore, BCINT1 may be less
accurate.

Common Errors

� Failure to provide 2 BCINT1 statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1 orLBLOCK2.

� Attempt to use BCINT1 for a boundary which has 2 misaligned coordinates.

� Attempt to use BCINT1 for boundaries which are not monotonic along the interpo-
lated index.

� Attempt to use COARSEN for a problem involving a BCINT1 boundary speci�ca-
tion.
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BCINTM

BCINTM Type Non-ContiguousMesh Block Interface Patching
Scheme

J

I

Block 1
(5 x 5)

Block 2
(9 x 3)

Block 3
(6 x 4)

Block 4
(6 x 3)

Block 5
(7 x 4)

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

Multiblock Non−Contiguous Interface

Non−contiguous mesh block interface involving multiple blocks
requires a BCINTM specification (illustrated in boundary data file
format statements below

Application

The BCINTM speci�cation is used in any application involving neighboring mesh blocks
with a non-contiguous mesh interface in one coordinate direction. The interface must be con-
tiguous in the remaining coordinate direction. BCINTM provides a mechanism whereby
noncontiguous boundaries involving groups of blocks may be coupled to other groups of
blocks by interpolation along the non-contiguous index. BCINTM is a multi-block version
of BCINT1.

The example graphic above illustrates a two-dimensional mesh system used to predict
the 
ow through a stepped duct passage. The grid was constructed with a non-contiguous
interface between the various blocks on the top and bottom of the duct. The BCINTM
speci�cation is applied along either side of the interface to permit communication of 
ow
variables along the interface. Here, the interpolation direction is the i coordinate direction.
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Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCINTM boundary condition are given below:

BCINTM 1 3 J J P M I K 1 4 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

3

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

3 J M 4 1 6 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

2

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

BCINTM 3 1 J J M P I K 4 1 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

2

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

3

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

3 J M 4 1 6 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

Note that a complete BCINTM speci�cation generally requires two BCINTM state-
ment lines in the boundary data �le. In the example above, the �rst speci�cation provides
the interblock communication for the upper blocks along the interface, while the second
speci�cation provides the communication for the lower blocks along the interface. It is a
common error to underspecify a BCINTM boundary by only providing a single line per
interface.

Description
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The BCINTM boundary statement provides a means for block to block communication
for cases involving neighboring mesh boundaries which share a common surface, but are
non-contiguous in one grid index. A proper BCINTM boundary is speci�ed much like a
BCINT1 boundary, except that all of the blocks involved with a particular interface are
speci�ed in a table on both sides of the interface. A large amount of additional data is
required for each BCINTM speci�cation. The sample application and speci�cations given
above are designed to demonstrate the overall structure of this boundary condition. In
the sample application, a noncontiguous mesh block interface lies between blocks 1,2 and
blocks 3,4,5. A single pair of BCINTM speci�cations is all that is required to completely
couple the mesh blocks along this interface, in spite of the fact that 5 mesh blocks are
involved in the overall boundary de�nition. The key to this compact speci�cation is that
each BCINTM speci�cation includes tables of data which specify which blocks lie along
the receiving side of the interface (where the boundary data is being applied) and which
blocks lie along the sending side of the interface (where the boundary data is derived).
A description of the various additional speci�cations required for a complete BCINTM
speci�cation are given below.

Immediately following the BCINTM boundary speci�cation line is a series of multi-line
segments which de�ne the details of the boundary coupling. The �rst segment consists of 4
lines, and describes some general characteristics of the interpolation along the noncontiguous
boundary. The second segment is the table describing the \sending" blocks from which the
boundary data is extracted. The third segment is a table describing the \receiving" blocks
where the boundary data is eventually interpolated and applied. The second line in a
BCINTM speci�cation is a comment line, normally labeling the variables INTDIR1 and
INTDIR2. The third line de�nes the variables INTDIR1 and INTDIR2 as either I ,
J , or K, depending on the direction of interpolation for the receiving and sending blocks,
respectively. One mesh restriction to note is that BCINTM allows only one interpolation
direction for each side of the interface. The fourth line is a comment line normally labeling
the variables ISHFTDR and DSHIFT. The �fth line de�nes the values for the variables
ISHFTDR and DSHIFT. These variables provide a mechanism for shifting the boundary
in one of the three coordinate directions (x; y; z for Cartesian 
ows, or x; r; � for cylindrical

ows). The value of ISHFTDR identi�es the variable to be shifted (1-x, 2-y, 3-z for
Cartesian and (1-x, 2-r, 3-� for cylindrical) and the value of DSHIFT is the increment
by which the sending boundary is shifted (normalized in the same manner as the mesh
coordinates) to mate to the receiving boundary. BCINTM expects that the two sides of
the interface lie on a common physical surface, but the grid itself may not have both sides
of the interface in the same physical location. The most common use for this feature is a
noncontiguous periodic boundary for a single passage turbomachinery blade row solution.
The ISHFTDR andDSHIFT variables are provided to allow the user to temporarily shift
the physical location of the \sending" blocks to the \receiving" blocks physical location.
For the case of a noncontiguous periodic boundary in a turbine blade row solution, for
example, ISHFTDR would be 3 (shift in the � direction) and the amount of the shift
de�ned by DSHIFT would be the circumferential spacing of the blade rows in radians.
The sixth line in the speci�cation is a comment normally labeling the variable NBLINT2,
and the seventh line speci�es the number of blocks associated with the LBLOCK2 side of
the interface (the \sending" blocks. The eigth line is again a comment normally labeling
the variables NBLDAT, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1,
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and N2LIM2. The next NBLINT2 lines de�ne the table containing the limits, directions
and faces for each of the LBLOCK2 blocks. For each block in this table, LFACE2 de�nes
the coordinate face upon which the interface lies I , J , or K), and LDIR2 de�nes the
direction (P for plus, or M for minus) along the LFACE2 coordinate which travels away
from the bounding surface (see Section 3.7 for more details). L2LIM de�nes the value
of the LFACE2 coordinate upon which the surface is located, and M2LIM1, M2LIM2,
and N2LIM1, and N2LIM2 de�ne the extent of the remaining coordinates for each of
the NBLINT2 blocks in their \natural" order (again see Section 3.7 for more details).
Following the table for the LBLOCK2 side of the interface, there is a commment line
normally labeling the variableNBLINT1, followed by a line specifying the number of blocks
on the LBLOCK1 side of the interface. Next a comment line labeling the variables L1LIM,
M1LIM1, M1LIM2, N1LIM1, and N1LIM2 is given. Finally, a table consisting of
NBLINT1 lines de�ning the LBLOCK1 side (\receiving" blocks) information similar to
the LBLOCK2 (\sending" blocks) table is speci�ed.

BCINTM creates a single interpolation stencil from all of the blocks in the LBLOCK2
table. This stencil must be monotonic in the INTDIR2 direction. Thus, the blocks in the
LBLOCK2 must be speci�ed in the order they occur physically, and the limits must be
speci�ed so that they form a continous line. The block numbers and extents identi�ed in
the �rst line of the BCINTM speci�cation should match the �rst entry in each of the
respective LBLOCK tables.

As withBCINT1, the search routine which determines the interpolation stencil assumes
that the mating grid lines are piecewise linear approximations to the same curve in the
interpolation direction. A global search is performed for the proper mating cell of the �rst
index. The closest cell to the point of interest is taken as the mating cell. A localized
search is performed for the mating cells of the remaining points. The local search starts at
the mating cell of the preceding point and searches along the mating boundary until the
mating cell containing the new point is found. In the event that the mating cell is not found
before the upper limit is reached in the mating block, the search continues from the lower
limit in the mating block. This implies two things: the physical domain of the interpolation
must be the same in the two blocks, and the domain is assumed to be periodic if the search
routine goes past an endpoint.

Restrictions/Limitations

The BCINTM boundary speci�cation is restricted to mesh interfaces which lie on a com-
mon surface (no signi�cant overlap). Generally, endpoints of the interpolated region in the
two blocks should be coincident. As with BCINT1, there is at least one exception to this
rule based on the above description of the search routine. In the case of concentric O-grids,
the endpoints of the two blocks may be misaligned (see the BCINT1 description for de-
tails). The interpolation routine will �nd the appropriate stencil for each point because the
grids are periodic.

TheADPAC07COARSEN program cannot properly handle subdivision of mesh bound-
aries involving a BCINT1 or BCINTM speci�cation. A typical fan rotor was analyzed
using the BCINTM boundary condition at the interface between the tip clearance grid and
the neighboring O-type grid. The �gure below shows the non-contiguous interface between
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the two grid blocks, and the corresponding predicted static pressure contours. The solution
was run in parallel on an nCUBE 2 computer.

BCINTM Boundary Condition Results

Non−Contiguous Boundary in Tip Clearance Region

Mesh

Static Pressure

The BCINTM condition reduces to a PATCH condition if the mating blocks are
actually contiguous. However, due to the linear interpolation used in BCINTM, the
scheme does not maintain either global or local conservation of 
ow variables across a
non-contiguous mesh interface.

The BCINTM condition is the only non-contiguous patching routine for multiple
blocks. The BCINTM condition will run in either serial or parallel ADPAC07 calcu-
lations.

Common Errors

� Failure to provide 2 BCINTM statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1 orLBLOCK2.

� Attempt to use BCINTM for a boundary which has 2 misaligned coordinates.

� Attempt to use BCINTM for boundaries which are not monotonic along the inter-
polated index.
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� Incorrect ordering of the LBLOCK2 table of data.

� Attempt to use BCINTM for interfaces with multiple interpolation directions on the
same side of the interface.

� Attempt to useBCINTM for interfaces with multiple LFACE or LDIR requirements
in the LBLOCK1 table of data.

� Attempt to use COARSEN for a problem involving a BCINTM boundary speci�-
cation.
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BCPRM

Boundary Condition Procedure for Patched Relatively Rotating
Mesh Blocks with Multiple Speci�cations

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Can Employ a BCPRM Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application

The BCPRM speci�cation is used in application involving neighboring relatively rotating
mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCPRM boundary condition and a simple outline of the mesh topography
are given below. Note that blocks 1 and 2 require multiple BCPRM entries in the data
tables due to the location of the O-grid cut line. The topography below depicts a multiple
passage 3-D O-grid system for a turbine stage.
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BCPRM 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

4

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

1 K M 7 1 6 1 6

1 K M 7 76 81 1 6

2 K M 7 1 6 1 6

2 K M 7 76 81 1 6

BCPRM 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

3

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

Note that a complete BCPRM speci�cation generally requires at least two BCPRM

statement lines in the boundary data �le. In the example above, the �rst speci�cation
provides the interblock communication for the meshes representing blade row 1 from the
meshes representing blade row 2, and the second speci�cation provides the communication
for the meshes representing blade row 2 from the meshes representing blade row 1. It is
a common error to underspecify a BCPRM boundary by only providing a single line per
interface.

Description:

The BCPRM statement is an extension of the BCPRR statement to include the speci�ca-
tion of multiple LBLOCK1 patches. As with BCPRR, the BCPRM statement speci�es
that a time-space interpolation utilizing data from several neighboring mesh blocks is to be
performed to determine the boundary data for the LBLOCK1 patches. See the discussion
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of BCPRR for details about specifying the LBLOCK2 table of data, and restrictions
on the use of BCPRM. BCPRM di�ers from BCPRR only in the following way: an
additional table of values allows multiple LBLOCK1 patches to be speci�ed. One advan-
tage of BCPRM is clearly visible in the above example: only two boundary speci�cations
are required to patch the two blade rows together, compared to seven speci�cations using
BCPRR. Another, less obvious advantage is that BCPRM executes much faster than
BCPRR in a parallel computing environment. Any BCPRM speci�cation can be equally
represented as a series of BCPRR speci�cations. The additional table of data associated
with the LBLOCK1 patches in a BCPRM statement is essentially the same as the table
for the LBLOCK2 patches (see the description of BCPRR for additional details. A com-
ment line is followed by a line containing the number of patches in the LBLOCK1 row.
Another comment line is followed by the speci�cation of the limits on each LBLOCK1

patch. One restriction on the use of BCPRM is that all of the LBLOCK1 patches must
share a common LFACE and LDIR. This requirement can be met by the use of multiple
BCPRM or BCPRR speci�cations.

It should be noted that BCPRM is limited to similarly oriented row 1 blocks. In partic-
ular, the face and direction of all blocks in row 1 are taken to be the same as those speci�ed
for LBLOCK1. BCPRR may be used in cases requiring more generality.

BCPRM has been successfully applied to a compressor stage with H-type grids and to
a turbine stage using O-type grids. The results were veri�ed to be the same as if multiple
calls to BCPRR were used.

The signi�cance of BCPRM is not in new capability, but in performance. Obviously, the
bene�ts of BCPRM are extremely problem and machine dependent, but a small turboshaft
compressor test case (36 blocks, 4 blade rows, 2,000,000 mesh points) serves as an example.
The use of BCPRM instead of BCPRR in a �ne grid calculation resulted in an estimated
factor of 1.5 improvement in total CPU time on the LACE cluster of workstations (without
the ALLNODE switch). With the ALLNODE switch, the improvement was on the order
of 20%, which is still signi�cant. The ALLNODE switch is a special hardware device to
enable low latency communications between IBM RS6000 workstations in a cluster. This
means that overhead from BCPRR communications was taking at least 1=3 of the total run
time per iteration when the ALLNODE switch was not used. This is probably a worst-case
scenario for BCPRR because of the large number of blocks in each airfoil row, but it is
typical of multistage compressor simulations.

Restrictions/Limitations

TheBCPRM boundary speci�cation is restricted to mesh interfaces which lie on a common
surface (no signi�cant overlap), and have common axial and radial mesh coordinates. The
mesh must satisfy the coordinate restrictions listed in the table above. The LBLOCK1
table of patches must share a common face and direction as noted above. The BCPRM
procedure is only applicable to 3-D mesh systems.

Common Errors
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Time dependent patch condition for multiple relatively rotating blocks

BCPRM is similar to BCPRR except that multiple Row 1 blocks are specified. This
condition is more efficient than BCPRR in parallel, and reduces the length of the
casename.boundata file. BCPRM requires fewer interprocessor messages than
BCPRR, but total amount of data passed is unchanged. BCPRRM is limited to
patches involving similarly oriented Row 1 blocks.

(LBLOCK2 row values are interpolated into phantom cells of LBLOCK1 row)

BCPRM 1 5 I I M P J K 49 1 1 31 1 31 1 31 1 31
PERIODIC SPACING

1.57079637
NBCPRR − NUMBER OF BLOCKS IN ROW 2 (LBLOCK2 ROW)

9
NRRDAT − RELATIVELY ROTATING BLOCK NUMBERS

5 I P 1 1 31 1 31
6 I P 1 1 31 1 31
7 I P 1 1 31 1 31
8 I P 1 1 31 1 31
9 I P 1 1 31 1 31

10 I P 1 1 31 1 31
11 I P 1 1 31 1 31
12 I P 1 1 31 1 31
13 I P 1 1 31 1 31

NUMBL1 − NUMBER OF BLOCKS IN ROW 1 (LBLOCK1 ROW)
4
BLOCKS IN LBLOCK1 BLADE ROW

1 49 1 31 1 31
2 49 1 31 1 31
3 49 1 31 1 31
4 49 1 31 1 31

block # llim mlim1 mlim2 nlim1 nlim2

LBLOCK1 row LBLOCK2 row

Figure 3.7: Boundary condition BCPRM provides an alternate method of patching relatively
rotating blocks in a time-dependent calculation.
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� Failure to provide 2 BCPRM statements for each interface

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1B,M2LIM2B, N2LIM1B, N2LIM2B

do not correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B)

� Attempt to use BCPRM on a 2-D mesh block.

� Attempt to use BCPRM at an interface between two Cartesian solution meshes.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Neighboring blade row 1 segments not listed in increasing theta coordinate.

� Application of BCPRM to mesh interfaces which do not share a common surface, or
which have excess overlap.
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BCPRR

Boundary Condition Procedure for Patched Relatively Rotating
Mesh Blocks

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Requires a BCPRR Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application

The BCPRR speci�cation is used in application involving neighboring relatively rotating
mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCPRR boundary condition and a simple outline of the mesh topography
are given below. Note that blocks 1 and 2 require multiple BCPRR speci�cations due to
the location of the O-grid cut line.



90 BCPRR - Boundary Data File Speci�cations

BCPRR 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 1 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 4 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER
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0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 5 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

Note that a complete BCPRR speci�cation generally requires at least two BCPRR state-
ment lines in the boundary data �le. In the example above, the �rst four speci�cations
provide the interblock communication for the meshes representing blade row 1 from the
meshes representing blade row 2, and the �nal three speci�cations provide the communica-
tion for the meshes representing blade row 2 from the meshes representing blade row 1. It
is a common error to underspecify a BCPRR boundary by only providing a single line per
interface.

Description:

The BCPRR statement speci�es that a time-space interpolation utilizing data from sev-
eral neighboring mesh blocks is to be performed to determine the boundary data for block
LBLOCK1. This time-space interpolation provides the computational means of perform-
ing time-dependent predictions of the 
ow through multiple blade row turbomachines (see
the discussion in Section 2.2). In order to perform this type of calculation, several condi-
tions must be satis�ed. For calculations involving blade rows with dissimilar blade counts,
it is necessary to model several blade passages per blade row. The number of blade passages
modeled should be chosen such that the overall circumferential span of each blade row is
identical. This implies that the blade counts should be reducible to simple integer ratios
(1:2, 3:4, etc.) to avoid the need for modeling an excessive number of blade passages. For
example, in the illustrative graphic above, if we seek a solution for a single stage turboma-
chine involving two blade rows with blade counts of 30 and 45, respectively (reduced blade
ratio of 2:3), then the simulation would require 2 blade passages for the �rst blade row and
3 passages from the second blade row, such that the overall circumferential pitch for either
blade row is 2�

15
(the number 15 chosen as the largest common factor in the blade counts 30

and 45). The second restriction is that the interface separating two adjacent blade rows be
a surface of revolution, and that meshes along this interface have common axial and radial
grid distributions. This restriction simpli�es the time-space interpolation provided by the
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BCPRR speci�cation. This boundary condition requires the speci�cation of additional
data, as shown in the format descriptor above. The variable following the label THPER
de�nes the total circumferential span of the neighboring blade row's mesh representation in
radians. For example, using the blade counts given in the previous example, the circumferen-
tial span represented in each blade row is determined by 2�

15
, and therefore THPER should

be 0.41887903. The variable following the next label, NBCPRR, indicates the number of
mesh blocks through which the time-space interpolation is to be performed. In the example
above, if we are applying the BCPRR speci�cation to the �rst blade row, then NBCPRR
should be 3, since there are 3 mesh block surfaces in the neighboring blade row de�ning
the circumferential extent of relative motion of the �rst blade row. The numbers immedi-
ately following the labels LBLOCK2B, LFACE2B, LDIR2B, L2LIMB, M2LIM1B,
M2LIM2N, N2LIM1B, and N2LIM2B represent the values of LBLOCK2, LFACE2,
LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1, and N2LIM2 (see the beginning of
this section for an explanation of these variables) for each of the individual NBCPRR seg-
ments used in the construction of the circumferential data array. The NBCPRR segments
and their respective circumferential direction indices (either M2LIM1B, M2LIM2B or
N2LIM1B,N2LIM2B must be listed in order of increasing theta coordinate. Due to the
complex nature of the circumferential interpolation operator, this boundary condition is re-
stricted to speci�c mesh con�gurations. The following chart describes the permitted mesh
con�gurations for the BCPRR speci�cation:

BCPRR Boundary Speci�cation Mesh Coordinate Restrictions

LFACE1 LFACE2 Circumferential Grids Must be

(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

J J only K I

K I or K K or I J

In the example described above, if block numbers 1 and 2 are the block numbers for the �rst
blade row, and block numbers 3, 4, and 5 are the block numbers for the second blade row,
then the BCPRR speci�cation for each of the �rst blade row blocks would set THPER
= 0.41887903, NBCPRR = 2, and LBLOCK2B = 3, 4, 5. In a similar manner, the
speci�cation for each of the blocks in the second blade rowwould setTHPER = 0.41887903,
NBCPRR = 4 (due to the use of the O-type mesh for each airfoil, the extent of the interface
between the two blade rows requires 2 mesh surfaces from each of the blade row 1 airfoil
meshes), and LBLOCK2B = 1, 1, 2, 2. It should be mentioned that this speci�cation is
somewhat unique in that more than one block is involved in the boundary speci�cation,
therefore the variable LBLOCK2 is essentially ignored; however, since the blocks speci�ed
by the LBLOCK2B variable are assumed to be essentially duplicate representations of
neighboring blade passages, the variables L2LIM, M2LIM1, M2LIM2, N2LIM1, and
N2LIM2 are also ignored. The time-space interpolation is constructed to permit the
relative rotation of blocks representing neighboring blade rows and therefore cannot be
applied to Cartesian solution meshes. The simulation is initiated from the relative position
of the blocks at the start of the calculation t=0. The interpolation scheme is area weighted
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to maintain a conservative property across the interface between the relatively rotating mesh
blocks (see the Final Report for additional details on the implementation of this boundary
procedure).

Restrictions/Limitations

The BCPRR boundary speci�cation is restricted to mesh interfaces which lie on a common
surface (no signi�cant overlap), and have common axial and radial mesh coordinates. The
mesh must satisfy the coordinate restrictions listed in the table above. The BCPRR
procedure is only applicable to 3-D mesh systems.

Common Errors

� Failure to provide 2 BCPRR statements for each interface

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1B,M2LIM2B, N2LIM1B, N2LIM2B

do not correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B)

� Attempt to use BCPRR on a 2-D mesh block.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Neighboring blade row segments not listed in increasing theta coordinate.

� Application of BCPRR to mesh interfaces which do not share a common surface, or
which have excess overlap.

� BCPRR runs very slowly on multiple processors - use BCPRM instead.
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BDATIN

File Read In Mesh Interface Patching Scheme

 

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application

The BDATIN speci�cation is used to read in boundary data from an external �le. This
�le may be either be created by an external program, or by the ADPAC07 boundary
speci�cation BDATOU. The application illustrated above indicates an application of the
BDATIN/BDATOU combination for a two block nozzle 
ow case. TheBDATIN/BDATOU
combination is applied to the interface between the two mesh blocks and is equivalent to a
PATCH speci�cation, except that the interblock communication is accomplished through
disk read/write rather than shared memory communication.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
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graphic for the BDATIN boundary condition are given below:

BDATIN 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATIN 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

Note that a complete BDATIN speci�cation requires the speci�cation of a �lename from
which the boundary data is read.

Description

The BDATIN statement is utilized to provide boundary data for a mesh surface through
external �le speci�cation. During the application of a BDATIN speci�cation, an external
�le is opened, and phantom cell boundary data are read in for the appropriate computa-
tional cells. The external �le data may be created by an external program, or through the
application of a BDATOU speci�cation. A coupled set of BDATIN/BDATOU speci�-
cations can be e�ectively used to replace a PATCH boundary speci�cation. In this case,
interblock communication would be achieved through external �le read/write rather than
shared memory. If the BDATIN/BDATOU combination is used to replace an equivalent
PATCH condition, it should be noted that both the BDATIN and BDATOU speci�ca-
tions should be written in the same manner as the PATCH statement. In other words, the
BDATIN data is read in to the LBLOCK1 block on the mesh cells de�ned by L1LIM,

M1LIM1, M1LIM2, N1LIM1 and N1LIM2, and the BDATOU data is written out
from the LBLOCK2 block on the mesh cells de�ned by L2LIM, M2LIM1, M2LIM2,

N2LIM1 and N1LIM2. The BDATIN/BDATOU routines were developed in conjunc-
tion with early parallelization studies for the ADPAC07 to permit interblock communication
via shared disk �le read/write operations. The routines are now considered useful for cou-
pling the ADPAC07 code with other codes capable of providing or using speci�ed boundary
data.

A BDATIN speci�cation requires two additional lines in addition to the normal bound-
ary data �le descriptor, as shown above. The �rst additional line is simply a label, while
the second line indicates the �le name relative to the current directory from which data will
be read in for this particular boundary condition.

Restrictions/Limitations

The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces which have a
one to one mesh point correspondance. Other restrictions appropriate for the PATCH
boundary condition also apply to mesh coupling using the BDATIN/BDATOU scheme.
Data provided in the external �le for theBDATIN speci�cation must represent cell centered
data and must be normalized consistently with the ADPAC07 
ow variable nondimension-
alization procedure.
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Common Errors

� Failure to provide �le name for BDATIN boundary data �le speci�cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of theBDATIN/BDATOU
speci�cations provided.

� BDATIN/BDATOU coupling scheme boundary speci�cation for a periodic bound-
ary is applied to a nonperiodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied to a spatially
periodic Cartesian geometry using the cylindrical coordinate solution scheme or vice
versa (results in incorrect spatial periodicity relationships) TheBDATIN/BDATOU
coupling scheme boundary speci�cations for Cartesian geometries must use the Carte-
sian solution algorithm in ADPAC07 (see input variable FCART).
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BDATOU

File Write Out Mesh Interface Patching Scheme

 

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application

The BDATOU speci�cation is used to write out boundary data to an external �le. This �le
may either be utilized by an external program, or by the ADPAC07 boundary speci�cation
BDATIN. The application illustrated above indicates an application of theBDATIN/BDATOU
combination for a two block nozzle 
ow case. The BDATIN/BDATOU combination is
applied to the interface between the two mesh blocks and is equivalent to a PATCH speci-
�cation, except that the interblock communication is accomplished through disk read/write
rather than shared memory communication.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
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graphic for the BDATOU boundary condition are given below:

BDATOU 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATOU 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

Note that a complete BDATOU speci�cation requires the speci�cation of a �lename from
which the boundary data is read.

Description

TheBDATOU statement is utilized to export boundary data for a mesh surface through ex-
ternal �le speci�cation. During the application of aBDATOU speci�cation, an external �le
is opened, and near boundary cell-centered data are written in for the appropriate computa-
tional cells. The external �le data may then be utilized by an external program, or through
the application of a BDATIN speci�cation. A coupled set of BDATIN/BDATOU spec-
i�cations can be e�ectively used to replace a PATCH boundary speci�cation. In this case,
interblock communication would be achieved through external �le read/write rather than
shared memory. If the BDATIN/BDATOU combination is used to replace an equivalent
PATCH condition, it should be noted that both the BDATIN and BDATOU speci�ca-
tions should be written in the same manner as the PATCH statement. In other words, the
BDATIN data is read in to the LBLOCK1 block on the mesh cells de�ned by L1LIM,

M1LIM1, M1LIM2, N1LIM1 and N1LIM2, and the BDATOU data is written out
to the LBLOCK2 block on the mesh cells de�ned by L2LIM, M2LIM1, M2LIM2,

N2LIM1 and N1LIM2. The BDATIN/BDATOU routines were developed in conjunc-
tion with early parallelization studies for the ADPAC07 to permit interblock communication
via shared disk �le read/write operations. The routines are now considered useful for cou-
pling the ADPAC07 code with other codes capable of providing or using speci�ed boundary
data.

ABDATOU speci�cation requires two additional lines in addition to the normal bound-
ary data �le descriptor, as shown above. The �rst additional line is simply a label, while
the second line indicates the �le name relative to the current directory to which data will
be written out for this particular boundary condition.

Restrictions/Limitations

The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces which have a
one to one mesh point correspondance. Other restrictions appropriate for the PATCH
boundary condition also apply to mesh coupling using the BDATIN/BDATOU scheme.
Data provided in the external �le for the BDATOU speci�cation represents near-boundary
cell centered data and is normalized consistently with the ADPAC07 
ow variable nondi-
mensionalization procedure.
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Common Errors

� Failure to provide �le name for BDATOU boundary data �le speci�cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of theBDATIN/BDATOU
speci�cations provided.

� BDATIN/BDATOU coupling scheme boundary speci�cation for a periodic bound-
ary is applied to a nonperiodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied to a spatially
periodic Cartesian geometry using the cylindrical coordinate solution scheme or vice
versa (results in incorrect spatial periodicity relationships) TheBDATIN/BDATOU
coupling scheme boundary speci�cations for Cartesian geometries must use the Carte-
sian solution algorithm in ADPAC07 (see input variable FCART).
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ENDDATA

Boundary Data File Read Terminator

Application

The ENDDATA statement causes the ADPAC07 boundary data �le read utility to dis-
continue reading lines in the boundary data �le and proceeds with normal code processing.
Any lines following an ENDDATA statement in a boundary data �le are ignored.

Boundary Data File Format

The boundary data �le speci�cation for an ENDDATA statement is given below:

ENDDATA

Note that theENDDATA statement does not require the accompanying values of LBLOCK1,
LBLOCK2, LFACE1, etc. as do all other boundary data �le keywords.

Description

The ENDDATA statement is utilized to provide a terminator for the boundary data �le
read sequence in the ADPAC07 code. Under normal operating conditions, the boundary
data �le is read in one line at a time and parsed to determine if a boundary data �le
keyword is present and uncommented on each line. When the end of the �le is reached,
the boundary data �le read sequence stops, and normal processing continues as usual. In
some cases, it may be desirable to terminate the boundary data �le read sequence before
the end of the �le, and the ENDDATA statement is provided for this purpose. Whenever
an ENDDATA statement is reached, the boundary data �le read sequence is terminated,
and all remaining lines in the boundary data �le are ignored. The ENDDATA keyword is
useful for debugging boundary condition problems, as whole portions of the boundary data
�le can be e�ectively eliminated by simply preceeding the section with an ENDDATA

statement.

Restrictions/Limitations

The ENDDATA keyword has no restrictions.
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Common Errors

� Desired boundary conditions speci�cations following an ENDDATA statement are
ignored.

� ADPAC07 complains because an insu�cient number of boundary conditions were pro-
vided for the external boundaries of each mesh block (external boundaries of some
mesh blocks do not have a boundary condition see input keyword FBCWARN).
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ENDTTA

Endwall Treatment Time-Average Mesh Block Interface Patch-
ing Scheme

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

CCCCCCC
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CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

Geometry
Fan
Rotor

Casing
Treatment

Computational
Model

Block #1
(99x33x33)

Block #2
(17x17x33)

Single Blade Passage
Representation

Discrete Endwall Treatment
Representation (Only One
Treatment Passage Required)

ENDTTA Boundary Specification
Used to Couple Blade Passage
Flowfield to Discrete Treatment/
Endwall Flow

Endwall Regions Between
Discrete Treatments are
Accounted for in ENDTTA

x

r

i

j

k

Application

The ENDTTA boundary speci�cation was developed speci�cally to permit numerical pre-
diction of turbomachinery airfoil blade row 
ows employing endwall treatments such as
slots, grooves, or embedded bladed passages in a time-averaged fashion. The example
graphic above illustrates a 3-D blocked mesh system for a turbofan engine fan rotor em-
ploying an axial slot casing treatment. The ENDTTA boundary speci�cation employs a
time-averaging operator (circumferential average of 
ow variables) between adjacent rotat-
ing and nonrotating mesh blocks to simulate the e�ects of the blade row/endwall treatment
interaction. As such, it is possible to perform steady state (representative of a time average)
numerical analysis of turbomachinery blade passages and endwall treatments which have
arbitrary blade passage/treatment passage count ratios.
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Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the ENDTTA boundary condition are given below:

ENDTTA 1 2 J J M P L L 49 1 49 81 1 33 1 33 1 17

NTREAT RPMWALL TWALL

113 0.0 0.0

MBCAVG 2 1 J J P M I K 1 49 1 33 1 17 49 81 1 33

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 J M 49 49 81 1 33

Note that a complete ENDTTA speci�cation generally requires a companion MBCAVG

speci�cation to complete the blade passage mesh/treatment passage mesh interface speci�-
cation. In the example above, the �rst speci�cation provides the interblock communication
for block 1 (the blade passage mesh) to block 2 (the treatment passage mesh) which ulti-
mately accounts for the in
uence of the true endwall in the boundary speci�cation. The
second speci�cation (MBCAVG) is applied to the treatment passage mesh boundary to
simulate the time-average (circumferential average) of the neighboring blade passage mesh.
It is a common error to underspecify an ENDTTA boundary by only providing a single
line per interface.

Description

The ENDTTA boundary statement provides a means for block to block communication for
the prediction of the time-averaged 
ow for turbomachinery blade rows employing endwall
treatments such as discrete slots, grooves, or embedded bladed passages. This bound-
ary condition was developed under Task 6 of NASA Contract NAS3-25270 and theoretical
details of the procedure are provided in the Final Report for Task 7 of NASA Contract
NAS3-25270 [21]. The boundary condition is restricted to j=constant mesh surfaces only
and must possess aligned coordinates in the i direction, but have misaligned mesh points
and extents in the circumferential (k) direction. An example of an appropriate application
of the ENDTTA speci�cation is given in the illustrative graphic. The ENDTTA bound-
ary speci�cation is valid for 3-D cylindrical solution mesh blocks only. The ENDTTA
speci�cation requires the speci�cation of additional data, as shown in the format descriptor
above. The �rst additional line following an ENDTTA speci�cation is assumed to be a
label for the variables NTREAT, RPMWALL, and TWALL. The next line contains the
values for the variables NTREAT, RPMWALL, and TWALL. The variable NTREAT
represents the total number of discrete treatments for the entire rotor. The analysis is nor-
mally performed for a single rotor blade passage and a single treatment blade passage, and
the value of NTREAT is used to e�ectively set the circumferential spacing between dis-
crete treatment passages. The next variable, RPMWALL, sets the value of the rotational
speed of the endwall regions which separate the discrete treatments. Naturally, this also
implies the rotational speed of the treatments themselves, and the value of RPMWALL

in this context must be consistent with the value of RPM speci�ed in the input �le for the
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treatment passage mesh block. The third variable, TWALL, sets the thermal boundary
condition for the wall segments separating the discrete treatment passages, and is speci�ed
in the same manner as the TWALL variable described for the SSVI (viscous solid wall)
boundary condition.

Restrictions/Limitations

The ENDTTA boundary speci�cation is restricted to mesh interfaces which lie on a com-
mon surface (no signi�cant overlap). The ENDTTA procedure permits only that the k
coordinates between adjacent mesh surfaces are misaligned. The ENDTTA procedure is
only valid if applied to j=constant mesh surfaces. ENDTTA will not run across multiple
processors in a parallel computing environment.

Common Errors

� Failure to provide a coupled pair of ENDTTA and MBCAVG statements for each
interface.

� Failure to properly specify the values for RPM, TWALL and/or NTREAT

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Attempt to use ENDTTA for an i or k constant boundary.

� Attempt to use ENDTTA for a Cartesian solution mesh.

� Attempt to use ENDTTA for a boundary which has 2 misaligned coordinates.

� Attempt to use ENDTTA with multiple processors.
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EXT2DG

Generic 2-D Out
ow Boundary Condition

2−D Mesh Block #1
(28x23x1)

Duct Exit with Uniform
Static Pressure Requires an
EXT2DG Specification

i

j

Flow

2−D Mesh Block #2
(28x9x1)

Flow

Application

The EXT2DG speci�cation is used to impose a generic subsonic out
ow boundary condi-
tion with a uniform exit static pressure for 2-D mesh blocks. The example graphic above
illustrates a 2-D 2-block mesh system mixing two adjacent streams of varying properties.
In this case, the EXT2DG boundary speci�cation is used to set the out
ow boundary 
ow
properties by specifying a uniform exit static pressure. This boundary condition has been
utilized extensively as an exit 
ow speci�er for 2-D duct 
ows.

Boundary Data File Format

The boundary data �le speci�cations for the exit 
ow mesh surfaces indicated in the illus-
trative graphic for the EXT2DG boundary condition are given below:
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EXT2DG 1 1 I I M M J K 28 28 1 23 1 2 1 23 1 2

PEXIT

0.625

or the alternate speci�cation:

EXT2DG 1 1 I I M M J K 28 28 1 23 1 2 1 23 1 2

PEXIT EMDOT PRELAX

0.625 11.4 0.1

Note that a complete EXT2DG speci�cation requires two additional lines following the
EXT2DG boundary data �le speci�cation line. Failure to properly specify the data in
these additional lines is a common EXT2DG speci�cation error.

Description

The EXT2DG statement speci�es that a generic, subsonic, uniform static pressure exit

ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on
the 2-D mesh block speci�ed by LBLOCK1. The EXT2DG boundary condition should
be applied for those cases where any other \specialized" exit boundary condition (such as
EXT2DT, EXT2DP, etc.) does not apply. The EXT2DG boundary condition is also
likely to be somewhat more e�cient computationally than the other exit boundary condi-
tion procedures, at the expense of some physical simpli�cation. The EXT2DG procedure
utilizes a Riemann invariant formulation to compute exit velocities based on a speci�ed
constant exit static pressure. Included in the EXT2DG procedure is a special correction
scheme which forces the 
ow to pass out of the 
ow domain at the boundary. In other words,
if the computed velocities result in a local in
ow at the EXT2DG boundary, no matter
how small the magnitude of the in
ow, the velocities are reset to zero at that point. This
boundary condition requires the speci�cation of additional data, as shown in the boundary
data format descriptor above. The �rst additional line following the EXT2DG speci�ca-
tion is assumed to be a label and may contain any information; however, for consistency it
is recommended that the label PEXIT be used. The next line contains the value imposed
for the variables PEXIT which represents the downstream exit static pressure ratio used
in the EXT2DG characteristic solution sequence. The value of the PEXIT variable is the
desired normalized downstream static pressure computed as:

PEXIT =
Pstatic;desired

Pref

where the variable Pref is speci�ed by the input variable PREF. It should be mentioned
that for most geometries, the value of PEXIT, in combination with any inlet 
ow boundary
conditions, will normally govern the resulting solution mass 
ow rate (exceptions to this
rule will occur when the inlet mass 
ow rate boundary condition procedure INLETM is
applied). Values of PEXIT <0.0 are not permitted. As the value of PEXIT is reduced,
the 
ow through the boundary will ultimately choke, and further reductions of PEXIT
will no longer increase the mass 
ow through the boundary. Naturally, poor convergence or
solution divergence can occur if PEXIT is too high or too low when compared to the rest
of the 
ow domain. In such cases where this occurs, it is recommended that the solution be
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started with more conservative boundary values, and then restarted using the �nal boundary
values.

An alternate speci�cation is provided for the EXT2DG boundary speci�cation as shown
in the sample application above. In this case, three values are included following the original
boundary speci�cation line. The alternate speci�cation is provided as a means of achieving
a desired mass 
ow rate through the bounding surface using the EXT2DG algorithm.
The desired mass 
ow rate is achieved iteratively by incrementally adjusting the exit static
pressure speci�cation until the desired 
ow rate is achieved. Therefore, in this speci�cation,
the variable PEXIT described in detail above is the initial exit static pressure used in the
iterative process, EMDOT represents the desired mass 
ow rate through the bounding
surface in pounds mass, and PRELAX is a relaxation factor to stabilize the iterative
process (values may range from 0.0 to 1.0, though poor convergence is likely for values
larger than 0.1). For Cartesian 
ow calculations a unit depth (1.0 in mesh coordinates) is
assumed for the third coordinate direction to determine the mass 
ow rate. For cylindrical

ow calculations, the geometry is assumed to be axisymmetric and a multiple of 2� is used
in the mass 
ow integration (the mass 
ow is computed as if the full circumference of the
axisymmetric geometry were employed). This procedure is not foolproof, and su�ers from
the fact that when a job is restarted, if an updated exit pressure is not inserted in the
boundary data �le, then the pressure-mass 
ow iterative process will essentially start over.
The ADPAC07 code will automatically determine when to employ the iterative process by
identifying the additional boundary speci�cation variables.

Restrictions/Limitations

Common Errors

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass 
ow) iterative scheme.

� Reductions in the value of PEXIT do not increase the mass 
ow rate because of 
ow
choking.

� Value of PEXIT is too high (
ow cannot get started).
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EXITG

Generic Out
ow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Exit with Uniform
Exit Static Pressure Requires
an EXITG Specification

i

k

j

Flow

Application

The EXITG speci�cation is used to impose a generic subsonic out
ow boundary condition
with a uniform exit static pressure. The example graphic above depicts a simple duct 
ow
using a Cartesian-based H-grid, where the exit boundary plane is controlled by an EXITG
speci�cation. This boundary condition has been utilized extensively as an exit 
ow speci�er
for duct 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXITG boundary condition is given below:

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT

0.625

or the alternate speci�cation:



ADPAC07 Boundary Data File Speci�cations - EXITG 109

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT EMDOT PRELAX

0.625 40.0 0.001

Note that a complete EXITG speci�cation requires two additional lines following the EX-
ITG boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITG speci�cation error.

Description

The EXITG statement speci�es that a generic, subsonic, uniform static pressure exit 
ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The EXITG boundary condition should be applied for those
cases where any other \specialized" exit boundary condition (such as EXITT, EXITP,
etc.) does not apply. The EXITG boundary condition is also likely to be somewhat more
e�cient computationally than the other exit boundary condition procedures, at the expense
of some physical simpli�cation. EXITG may be used on any mesh face (I, J, or K constant)
for either cylindrical or Cartesian-based solution schemes (see the input variable FCART).
The EXITG procedure utilizes a Reimann invariant formulation to compute exit velocities
based on a speci�ed constant exit static pressure. Included in the EXITG procedure is
a special correction scheme which forces the 
ow to pass out of the 
ow domain at the
boundary. In other words, if the computed velocities result in a local in
ow at the EXITG
boundary, no matter how small the magnitude of the in
ow, the velocities are reset to zero
at that point. This boundary condition requires the speci�cation of additional data, as
shown in the Boundary Data Format descriptor above. The �rst additional line follow-
ing the EXITG speci�cation is assumed to be a label and may contain any information;
however, for consistency it is recommended that the label PEXIT be used. The next line
contains the value imposed for the variables PEXIT which represents the downstream exit
static pressure ratio used in the EXITG characteristic solution sequence. The value of the
PEXIT variable is the desired normalized downstream static pressure computed as:

PEXIT =
Pstatic;desired

Pref

where the variable Pref is speci�ed by the input variable PREF. It should be mentioned
that for most geometries, the value of PEXIT, in combination with any inlet 
ow boundary
conditions, will normally govern the resulting solution mass 
ow rate (exceptions to this
rule will occur when the inlet mass 
ow rate boundary condition procedure INLETM is
applied). Values of PEXIT <0.0 are not permitted. As the value of EXITP is reduced,
the 
ow through the boundary will ultimately choke, and further reductions of EXITP
will no longer increase the mass 
ow through the boundary. Naturally, poor convergence or
solution divergence can occur if PEXIT is too high or too low when compared to the rest
of the 
ow domain. In such cases where this occurs, it is recommended that the solution be
started with more conservative boundary values, and then restarted using the �nal boundary
values.

An alternate speci�cation is provided for the EXITG boundary speci�cation as shown
in the sample application above. In this case, three values are included following the original
boundary speci�cation line. The alternate speci�cation is provided as a means of achieving
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a desired mass 
ow rate through the bounding surface using the EXITG algorithm. The
desired mass 
ow rate is achieved iteratively by incrementally adjusting the exit static
pressure speci�cation until the desired 
ow rate is achieved. Therefore, in this speci�cation,
the variable PEXIT described in detail above is the initial exit static pressure used in the
iterative process, EMDOT represents the desired mass 
ow rate through the bounding
surface in pounds mass, and PRELAX is a relaxation factor to stabilize the iterative
process (values may range from 0.0 to 1.0, though poor convergence is likely for values
larger than 0.1). This procedure is not foolproof, and su�ers from the fact that when a
job is restarted, if an updated exit pressure is not inserted in the boundary data �le, then
the pressure-mass 
ow iterative process will essentially start over. The ADPAC07 code will
automatically determine when to employ the iterative process by identifying the additional
boundary speci�cation variables.

Restrictions/Limitations

The EXITG boundary speci�cation is not restricted to 3-D mesh surfaces (although for
consistency 2-D mesh surfaces may use the EXT2DG boundary speci�cation).

Common Errors

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass 
ow) boundary scheme.

� Reductions in the value of PEXIT do not increase the mass 
ow rate because of 
ow
choking.

� Value of PEXIT is too high (
ow cannot get started).
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EXT2DP

2-D Patched Turbomachinery Exit Boundary Condition

Patched Exit Static Pressure and Radial
Equilibrium for 2−D Turbomachinery Exit Flow
Requires an EXT2DP Specification
(illustrated in Boundary Data File Format
statements below)

Static pressure specified at either
lower or upper "j" boundary
Radial equilibrium equation integrated to
complete exit static pressure specification

Radius
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Circumferential
Flow Angle

Radius

2−D Mesh Block #3
(49x9x1)

2−D Mesh Block #2
(65x9x1)

2−D Mesh Block #1
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(49x9x1)

Flow
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Application

The EXT2DP speci�cation is used to impose a turbomachinery-based exit boundary con-
dition based on radial equilibrium for 2-D mesh systems employing multiple blocks radially
across the exit plane. The example graphic above illustrates a four block mesh system used
to predict the axisymmtric 
ow through a high bypass ratio turbofan engine geometry. The
solution utilizes a speci�ed freestream static pressure at the outer boundary of block 4, and
an EXT2DT speci�cation to integrate the radial equilibrium equation equation inward
radially along the out
ow boundary. In order to continue the radial equilibrium integration
process across the block boundary between blocks 3 and 4, an EXT2DP speci�cation is
used to patch the two blocks. This boundary condition has been utilized extensively in
conjunction with the EXT2DT speci�cation as an exit 
ow speci�er for both ducted and
unducted turbomachinery 
ows.
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Boundary Data File Format

The boundary data �le speci�cation for the 2-D mesh surface indicated in the illustrative
graphic for the EXT2DP boundary condition is given below:

EXT2DP 4 3 I I M M L H 49 49 1 9 1 2 9 9 1 2

Note that theM2LIM1, M2LIM2 variables in the EXT2DP speci�cation de�ne a single
j mesh line in mesh block LBLOCK2. Failure to properly regard this requirement is a
common EXT2DP speci�cation error. It should also be mentioned that EXT2DP also
requires proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXT2DP keyword speci�es that a turbomachinery-based radial equilibrium patched
exit 
ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on
the 2-D block speci�ed by LBLOCK1. The EXT2DP boundary condition was speci�cally
designed as an exit 
ow boundary procedure for axial and mixed 
ow turbomachinery
geometries employing multiple, stacked 2-D mesh blocks (radially) at an exit boundary
plane. The EXT2DP boundary condition procedure utilizes a combination static pressure
speci�cation and integration of the radial equilibrium equation to de�ne the static pressure
�eld at all points on the boundary surface. The initial static pressure speci�cation used
to initiate the radial equilibrium integration process is obtained from a neighboring mesh
block. As a result of the complexity of this procedure, several mesh restrictions were
imposed to simplify the application of this approach. The primary assumption is that the
integration of the radial equilibrium equation may be performed along the j coordinate
direction of the mesh. Hence, the j coordinate should be the radial-like direction. A single
speci�cation of static pressure is required at either the maximum or minimum extreme of
the j coordinate of the boundary surface in order to initiate the integration process. The
direction of integration, and location of application of the speci�ed exit static pressure
are determined by the LSPEC1 variable in the calling sequence. If LSPEC1 = L, for
LOW, then PEXIT is applied to the lower (smallest value) of the j index, and the radial
equilibrium equation is integrated outward (increasing j direction). If LSPEC1 = H,
for HIGH, then PEXIT is applied to the upper (largest value) of the j index, and the
radial equilibrium equation is integrated inward (decreasing j direction). The direction of
integration implied by LSPEC1 must be consistent with the location of the neighboring
mesh block (LBLOCK2) from which the initial pressure data is derived. The j coordinate
location from which the pressure is taken in mesh block LBLOCK2 is determined by the
M2LIM1, M2LIM1 variable, and the speci�cation of the LSPEC2 control parameter.
If the M2LIM1,M2LIM2 combination is taken from the higher j index, then LSPEC2
should be H. If theM2LIM1,M2LIM2 combination is taken from the lower j index, then
LSPEC2 should be L. Under most circumstances, the static pressure is taken from either
the uppermost or lowermost j coordinate, in which case LSPEC2 should be either H or
L, respectively. The remaining 
ow variables on the EXT2DP boundary are updated by
a Reimann invariant formulation based on the resulting local static pressure �eld. Included
in the EXT2DP procedure is a special correction scheme which forces the 
ow to pass out
of the 
ow domain. In other words, if the computed velocities result in a local in
ow at the
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EXT2DP boundary, no matter how small the magnitude of the in
ow, the velocities are
reset to zero at that point.

Restrictions/Limitations

The EXT2DP boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. Examples of
this type of mesh system can be found in the chapter de�ning standard con�gurations. The
EXT2DP boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the EXITP boundary speci�cation). By default, it is important that this type
of boundary condition be carefully speci�ed and the �nal solution carefully examined to
ensure that the desired mesh patching be adequately satis�ed. It is a common error to
patch to the wrong grid, or the wrong end of the correct grid, and still obtain a converged
solution.

Common Errors

� Application of EXT2DP to a 3-D mesh system.

� Failure to properly specify the LSPEC1, LSPEC2 variables.

� M2LIM1 and M2LIM2 di�er.

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data �le speci�ca-
tion line.

� EXT2DP speci�cation patched to the wrong grid.

� EXT2DP speci�cation patched to the wrong end of the correct grid.

� EXT2DP boundary condition used but no EXT2DT orEXITT boundary condition
speci�ed.

� EXT2DP boundary condition called before EXT2DT (not required, but could cause
problems).
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EXITP

Patched Turbomachinery Exit Boundary Condition

Mesh Block #1
(73x13x25)

Patched Exit Static Pressure and Radial
Equilibrium for Turbomachinery Exit Flow
Requires an EXITP Specification
(illustrated in Boundary Data File Format
statements below)
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Application

The EXITP speci�cation is used to impose a turbomachinery-based exit boundary condi-
tion based on radial equilibrium for mesh systems employing multiple blocks radially across
the exit plane. The example graphic illustrates a two block 3-D mesh system used to predict
the 
ow through a blade passage of a turbomachinery fan rotor with a part span shroud.
The blocks are divided radially by the part span shroud, and as a result, the exit boundary
plane consists of two mesh boundary segments. In order to employ a turbomachinery-based
radial equilibrium exit 
ow boundary condition for this case, the EXITT speci�cation is
applied to the inner mesh block (#1) and the EXITP boundary condition is used for the
outer block (#2) to complete the inner to outer integration of the radial equilibrium equa-
tion across the mesh block interface. This boundary condition has been utilized extensively
in conjunction with the EXITT speci�cation as an exit 
ow speci�er for both ducted and
unducted turbomachinery 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXITP boundary condition is given below:
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EXITP 2 1 I I M M L H 73 73 1 21 1 25 13 13 1 25

Note that the M2LIM1, M2LIM2 variables in the EXITP speci�cation de�ne a single
j mesh line in mesh block LBLOCK2. Failure to properly regard this requirement is a
common EXITP speci�cation error. It should also be mentioned that EXITP also requires
proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXITP keyword speci�es that a turbomachinery-based radial equilibrium patched exit

ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the
block speci�ed by LBLOCK1. The EXITP boundary condition was speci�cally designed
as an exit 
ow boundary procedure for axial and mixed 
ow turbomachinery geometries
employing multiple, stacked mesh blocks (radially) at an exit boundary plane. The EX-
ITP boundary condition procedure utilizes a combination static pressure speci�cation and
integration of the radial equilibrium equation to de�ne the static pressure �eld at all points
on the boundary surface. The initial static pressure speci�cation used to initiate the radial
equilibrium integration process is obtained from a neighboring mesh block. As a result of
the complexity of this procedure, several mesh restrictions were imposed to simplify the
application of this approach. The primary assumption is that the integration of the radial
equilibrium equation may be performed along the j coordinate direction of the mesh. Hence,
the j coordinate should be the radial-like direction. A single speci�cation of static pressure
is required at either the maximum or minimum extreme of the j coordinate of the bound-
ary surface in order to initiate the integration process. The direction of integration, and
location of application of the speci�ed exit static pressure are determined by the LSPEC1
variable in the calling sequence. If LSPEC1 = L, for LOW, then PEXIT is applied to
the lower (smallest value) of the j index, and the radial equilibrium equation is integrated
outward (increasing j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to
the upper (largest value) of the j index, and the radial equilibrium equation is integrated
inward (decreasing j direction). The direction of integration implied by LSPEC1 must be
consistent with the location of the neighboring mesh block (LBLOCK2) from which the
initial pressure data is derived. The j coordinate location from which the pressure is taken
in mesh block LBLOCK2 is determined by the M2LIM1, M2LIM1 variable, and the
speci�cation of the LSPEC2 control parameter. If the M2LIM1,M2LIM2 combination
is taken from the higher j index, then LSPEC2 should be H. If the M2LIM1,M2LIM2

combination is taken from the lower j index, then LSPEC2 should be L. Under most
circumstances, the static pressure is taken from either the uppermost or lowermost j coor-
dinate, in which case LSPEC2 should be either H or L, respectively. The remaining 
ow
variables on the EXITP boundary are updated by a Reimann invariant formulation based
on the resulting local static pressure �eld. Included in the EXITP procedure is a special
correction scheme which forces the 
ow to pass out of the 
ow domain. In other words, if
the computed velocities result in a local in
ow at the EXITP boundary, no matter how
small the magnitude of the in
ow, the velocities are reset to zero at that point.

Restrictions/Limitations
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The EXITP boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. Examples
of this type of mesh system can be found in the chapter de�ning standard con�gurations.
The EXITP boundary speci�cation is restricted to 3-D mesh surfaces (2-D mesh surfaces
should use the EXT2DP boundary speci�cation).

Common Errors

� Application of EXITP to a 2-D mesh system.

� Failure to properly specify the LSPEC2 variable.

� M2LIM1 and M2LIM2 di�er.

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data �le speci�ca-
tion line.
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The EXT2DT speci�cation is used to impose a turbomachinery-based exit boundary con-
dition based on radial equilibrium for 2-D mesh blocks. The example graphic illustrated
above depicts an EXT2DT speci�cation for a 2-D (axisymmetric) 
ow solution for a tur-
bomachinery blade row. This boundary condition has been utilized extensively as an exit

ow speci�er for both ducted and unducted 2-D turbomachinery 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXT2DT boundary condition is given below:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2

PEXIT

1.105

or the alternate speci�cation:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2
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PEXIT EMDOT PRELAX

1.105 13.7 0.001

Note that a complete EXT2DT speci�cation requires two additional lines following the
EXT2DT boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a commonEXT2DT speci�cation error. It should also be mentioned that
EXT2DT also requires proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXT2DT keyword speci�es that a turbomachinery-based radial equilibrium exit 
ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the 2-D
mesh block speci�ed by LBLOCK1. The EXT2DT boundary condition was speci�cally
designed as an exit 
ow boundary procedure for 2-D axial and mixed 
ow turbomachinery
geometries. Pure radial 
ow turbomachinery exit 
ow boundaries may usually be speci�ed
by the EXT2DG boundary condition. Due to the form of the radial equilibrium equation
utilized in the EXT2DG routine, only cylindrical coordinate solution meshes are permitted
to use this routine. The EXT2DT boundary condition procedure utilizes a combination
static pressure speci�cation and integration of the radial equilibrium equation to de�ne the
static pressure �eld at all points on the boundary surface. As a result of the complexity of
this procedure, several mesh restrictions were imposed to simplify the application of this
approach. The primary assumption is that the integration of the radial equilibrium equation
may be performed along the j coordinate direction of the mesh. Hence, the j coordinate
should be the radial-like direction. A single speci�cation of static pressure is required at
either the maximum or minimum extreme of the j coordinate of the boundary surface in
order to initiate the integration process. The direction of integration, and location of appli-
cation of the speci�ed exit static pressure are determined by the LSPEC1 variable in the
calling sequence. If LSPEC1 = L, for LOW, then PEXIT is applied to the lower (smallest
value) of the j index, and the radial equilibrium equation is integrated outward (increasing
j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to the upper (largest
value) of the j index, and the radial equilibrium equation is integrated inward (decreasing
j direction). The remaining 
ow variables on the EXT2DT boundary are updated by a
Reimann invariant formulation based on the resulting local static pressure �eld. Included
in the EXT2DT procedure is a special correction scheme which forces the 
ow to pass out
of the 
ow domain. In other words, if the computed velocities result in a local in
ow at
the EXT2DT boundary, no matter how small the magnitude of the in
ow, the velocities
are reset to zero at that point. This boundary condition requires the speci�cation of addi-
tional data, as shown in the boundary data format descriptor above. The �rst additional
line following the EXT2DT speci�cation is assumed to be a label and may contain any
information; however, for consistency it is recommended that the label PEXIT be used.
The line following the PEXIT label contains the value of speci�ed nondimensional exit
static pressure used to initiate the radial equilibrium integration procedure. The value of
the PEXIT variable is computed as follows:

PEXIT =
Pexitstatic;desired

Pref

The variable Pref is speci�ed by the input variable PREF. Values of PEXIT <0.0 are
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not permitted. Naturally, poor convergence or solution divergence can occur if the value of
PEXIT suggests boundary data which are signi�cantly di�erent from the remainder of the

ow�eld. In such cases where this occurs, it is recommended that the solution be started
with more conservative boundary values, and then restarted using the �nal boundary values.

An alternate speci�cation is provided for the EXDT2DT boundary speci�cation as
shown in the sample application above. In this case, three values are included following
the original boundary speci�cation line. The alternate speci�cation is provided as a means
of achieving a desired mass 
ow rate through the bounding surface using the EXT2DT
algorithm. The desired mass 
ow rate is achieved iteratively by incrementally adjusting
the exit static pressure speci�cation until the desired 
ow rate is achieved. Therefore, in
this speci�cation, the variable PEXIT described in detail above is the initial exit static
pressure used in the iterative process, EMDOT represents the desired mass 
ow rate
through the bounding surface in pounds mass, and PRELAX is a relaxation factor to
stabilize the iterative process (values may range from 0.0 to 1.0, though poor convergence
is likely for values larger than 0.1). For Cartesian 
ow calculations a unit depth (1.0 in
mesh coordinates) is assumed for the third coordinate direction to determine the mass 
ow
rate. For cylindrical 
ow calculations, the geometry is assumed to be axisymmetric and
a multiple of 2� is used in the mass 
ow integration (the mass 
ow is computed as if the
full circumference of the axisymmetric geometry were employed). This procedure is not
foolproof, and su�ers from the fact that when a job is restarted, if an updated exit pressure
is not inserted in the boundary data �le, then the pressure-mass 
ow iterative process will
essentially start over. The ADPAC07 code will automatically determine when to employ
the iterative process by identifying the additional boundary speci�cation variables.

Restrictions/Limitations

The EXT2DT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. Examples of
this type of mesh system can be found in the chapter de�ning standard con�gurations. The
EXT2DT boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the EXITT boundary speci�cation).

Common Errors

� Application of EXT2DT to a 3-D mesh system.

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass 
ow) iterative scheme.

� Radial-like direction of the mesh is not the j coordinate.
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� Cylindrical solution procedure not selected (FCART=1.0)

� Failure to properly specify the LSPEC1 variable on the boundary data �le speci�ca-
tion line.

� Value of PEXIT is too high (
ow cannot get started).
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The EXITN speci�cation is used to impose a non-re
ecting out
ow boundary condition
for time-dependent 
ow calculations where spuroius numerical re
ections normally imposed
by other boundary procedures are undesirable. The example graphic above depicts a simple
duct 
ow using a Cartesian-based H-grid, where the exit boundary plane is controlled by
an EXITN speci�cation. This boundary condition should be used for time-dependent 
ow
calculations only.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXITN boundary condition is given below:

EXITN 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

Description
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The EXITN statement speci�es that a non-relecting exit 
ow boundary condition is to be
applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by LBLOCK1.
The EXITN boundary condition should be used for time-dependent 
ow calculations where
spurious numerical re
ections which normally occur for other exit boundary conditions (such
as EXITT, EXITP, etc.) are undesirable. EXITN may be used on any mesh face (I, J, or
K constant) for either cylindrical or Cartesian-based solution schemes (see the input variable
FCART). The EXITN procedure utilizes a characteristic-based formulation described in
the ADPAC07 �nal report [21].

Restrictions/Limitations

The EXITN boundary speci�cation should only be applied for time-dependent 
ow cal-
culations. Steady state problems can usually use the EXT2DG, EXITX, or EXITT
boundary speci�cation).

Common Errors

� Application of EXITN for a steady state solution.
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The EXITT speci�cation is used to impose a turbomachinery-based exit boundary condi-
tion based on radial equilibrium. The illustrative graphic above depicts an application of
the EXITT out
ow boundary condition for an H-type mesh for a turbomachinery fan rotor
blade passage. The EXITT speci�cation provides the radial variation of 
ow properties
at the out
ow boundary resulting from the application of a simpli�ed form of the radial
equilibrium equation. This boundary condition has been utilized extensively as an exit 
ow
speci�er for both ducted and unducted turbomachinery 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXITT boundary condition is given below:

EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT

1.105

or the alternate speci�cation:
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EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT EMDOT PRELAX

1.105 13.7 0.001

Note that a complete EXITT speci�cation requires two additional lines following the
EXITT boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITT speci�cation error. It should also be mentioned that
EXITT also requires proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXITT keyword speci�es that a turbomachinery-based radial equilibrium exit 
ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The EXITT boundary condition was speci�cally designed as an
exit 
ow boundary procedure for axial and mixed 
ow turbomachinery geometries (pure
radial 
ow turbomachinery exit 
ow boundaries may be usually be speci�ed by the EXITG
boundary condition). The EXITT boundary condition procedure utilizes a combination
static pressure speci�cation and integration of the radial equilibrium equation to de�ne the
static pressure �eld at all points on the boundary surface. As a result of the complexity of
this procedure, several mesh restrictions were imposed to simplify the application of this
approach. The primary assumption is that the integration of the radial equilibrium equation
may be performed along the j coordinate direction of the mesh. Hence, the j coordinate
should be the radial-like direction. A single speci�cation of static pressure is required at
either the maximum or minimum extreme of the j coordinate of the boundary surface in
order to initiate the integration process. The direction of integration and location of appli-
cation of the speci�ed exit static pressure are determined by the LSPEC1 variable in the
calling sequence. If LSPEC1 = L, for LOW, then PEXIT is applied to the lower (smallest
value) of the j index, and the radial equilibrium equation is integrated outward (increasing
j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to the upper (largest
value) of the j index, and the radial equilibrium equation is integrated inward (decreasing
j direction). The remaining 
ow variables on the EXITT boundary are updated by a
Reimann invariant formulation based on the resulting local static pressure �eld. Included
in the EXITT procedure is a special correction scheme which forces the 
ow to pass out of
the 
ow domain. In other words, if the computed velocities result in a local in
ow at the
EXITT boundary, no matter how small the magnitude of the in
ow, the velocities are reset
to zero at that point. This boundary condition requires the speci�cation of additional data,
as shown in the boundary data format descriptor above. The �rst additional line following
the EXITT speci�cation is assumed to be a label and may contain any information; how-
ever, for consistency it is recommended that the label PEXIT be used. The line following
the PEXIT label contains the value of speci�ed non-dimensional exit static pressure used
to initiate the radial equilibrium integration procedure. The value of the PEXIT variable
is computed as follows:

PEXIT =
Pexitstatic;desired

Pref

The variable Pref are speci�ed by the input variable PREF. Values of PEXIT <0.0 are
not permitted. Naturally, poor convergence or solution divergence can occur if the value of
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PEXIT suggests boundary data which are signi�cantly di�erent from the remainder of the

ow�eld. In such cases where this occurs, it is recommended that the solution be started
with more conservative boundary values, and then restarted using the �nal boundary values.

An alternate speci�cation is provided for the EXITT boundary speci�cation as shown
in the sample application above. In this case, three values are included following the original
boundary speci�cation line. The alternate speci�cation is provided as a means of achieving
a desired mass 
ow rate through the bounding surface using the EXITT algorithm. The
desired mass 
ow rate is achieved iteratively by incrementally adjusting the exit static
pressure speci�cation until the desired 
ow rate is achieved. Therefore, in this speci�cation,
the variable PEXIT described in detail above is the initial exit static pressure used in the
iterative process, EMDOT represents the desired mass 
ow rate through the bounding
surface in pounds mass, and PRELAX is a relaxation factor to stabilize the iterative
process (values may range from 0.0 to 1.0, though poor convergence is likely for values
larger than 0.1). This procedure is not foolproof, and su�ers from the fact that when a
job is restarted, if an updated exit pressure is not inserted in the boundary data �le, then
the pressure-mass 
ow iterative process will essentially start over. The ADPAC07 code will
automatically determine when to employ the iterative process by identifying the additional
boundary speci�cation variables.

Restrictions/Limitations

The EXITT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. Examples
of this type of mesh system can be found in the chapter de�ning standard con�gurations.
The EXITT boundary speci�cation is restricted to 3-D mesh surfaces (2-D mesh surfaces
should use the EXT2DT boundary speci�cation).

Common Errors

� Application of EXITT to a 2-D mesh system.

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass 
ow) iterative scheme.

� Radial-like direction of the mesh is not the j coordinate.

� Mesh does not possess circumferential symmetry (axial, radial mesh coordinates vary
in the circumferential coordinate direction).

� Failure to properly specify the LSPEC1 variable on the boundary data �le speci�ca-
tion line.
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� Value of PEXIT is too high (
ow cannot get started).
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The EXITX speci�cation is used to impose a non-re
ecting turbomachinery-based exit
boundary condition based on radial equilibrium for steady 
ow calculations. The illustrative
graphic above depicts an application of the EXITX out
ow boundary condition for an H-
type mesh for a turbomachinery fan rotor blade passage. The EXITX speci�cation provides
the radial variation of 
ow properties at the out
ow boundary resulting from the application
of a simpli�ed form of the radial equilibrium equation. This boundary condition has been
utilized extensively as a non-re
ecting exit 
ow speci�er for both ducted and unducted
turbomachinery 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the EXITX boundary condition is given below:

EXITX 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT

1.105
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Note that a complete EXITX speci�cation requires two additional lines following the EX-
ITX boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITX speci�cation error. It should also be mentioned that
EXITX also requires proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXITX keyword speci�es that a non-re
ecting turbomachinery-based radial equilib-
rium exit 
ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1
on the block speci�ed by LBLOCK1. The EXITX boundary condition was speci�cally
designed as a non-re
ecting exit 
ow boundary procedure for steady state analysis of ax-
ial and mixed 
ow turbomachinery geometries (pure radial 
ow turbomachinery exit 
ow
boundaries may usually be speci�ed by the EXITG boundary condition). The EXITX
boundary condition procedure utilizes a combination static pressure speci�cation and in-
tegration of the radial equilibrium equation to de�ne the circumferentially averaged static
pressure �eld at all points on the boundary surface. The circumferentially-averaged pres-
sure at the exit boundary is forced to match the imposed static pressure. The use of the
circumferential average permits 
ow properties to vary across the exit plane, while still
maintaining the desired overall 
ow (additional details for this procedure are given in the
�nal report [21]. As a result of the complexity of this procedure, several mesh restrictions
were imposed to simplify the application of this approach. The primary assumption is that
the integration of the radial equilibrium equation may be performed along the j coordi-
nate direction of the mesh. Hence, the j coordinate should be the radial-like direction.
A single speci�cation of static pressure is required at either the maximum or minimum
extreme of the j coordinate of the boundary surface in order to initiate the integration
process. The direction of integration and location of application of the speci�ed exit static
pressure are determined by the LSPEC1 variable in the calling sequence. If LSPEC1 =
L, for LOW, then PEXIT is applied to the lower (smallest value) of the j index, and the
radial equilibrium equation is integrated outward (increasing j direction). If LSPEC1 =
H, for HIGH, then PEXIT is applied to the upper (largest value) of the j index, and the
radial equilibrium equation is integrated inward (decreasing j direction). The remaining

ow variables on the EXITX boundary are updated by a Reimann invariant formulation
based on the resulting local static pressure �eld. Included in the EXITX procedure is a
special correction scheme which forces the 
ow to pass out of the 
ow domain. In other
words, if the computed velocities result in a local in
ow at the EXITX boundary, no matter
how small the magnitude of the in
ow, the velocities are reset to zero at that point. This
boundary condition requires the speci�cation of additional data, as shown in the boundary
data format descriptor above. The �rst additional line following the EXITX speci�cation
is assumed to be a label and may contain any information; however, for consistency it is
recommended that the label PEXIT be used. The line following the PEXIT label contains
the value of speci�ed non-dimensional exit static pressure used to initiate the radial equi-
librium integration procedure. The value of the PEXIT variable is computed as follows:

PEXIT =
Pexitstatic;desired

Pref

The variable Pref are speci�ed by the input variable PREF. Values of PEXIT <0.0 are
not permitted. Naturally, poor convergence or solution divergence can occur if the value of
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PEXIT suggests boundary data which are signi�cantly di�erent from the remainder of the

ow�eld. In cases where this occurs, it is recommended that the solution be started with
more conservative boundary values, and then restarted using the �nal boundary values.

Restrictions/Limitations

The EXITX boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. Examples of
this type of mesh system can be found in the chapter de�ning standard con�gurations. The
EXITX boundary speci�cation is restricted to 3-D mesh surfaces. The EXITX boundary
condition is only valid for steady state 
ow calculations (a non-re
ecting exit 
ow boundary
conditions is available with EXITN).

Common Errors

� Application of EXITX to a 2-D mesh system.

� Failure to specify the additional data value PEXIT.

� Radial-like direction of the mesh is not the j coordinate.

� Mesh does not possess circumferential symmetry (axial, radial mesh coordinates vary
in the circumferential coordinate direction).

� Failure to properly specify the LSPEC1 variable on the boundary data �le speci�ca-
tion line.

� Value of PEXIT is too high (
ow cannot get started).

� Application of EXITX for time-dependent 
ow calculations.
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FIXED

Fixed Flow Boundary Speci�cation

Primary
Flow

Secondary
Flow

FIXED Boundary Specification
Used to Simulate Secondary
Flow

Application

The FIXED speci�cation is used as a \last resort" boundary speci�cation which hardwires

ow properties into the numerical solution. The application illustrated above indicates an
application of the FIXED boundary speci�cation to provide a direct implementation of the

ow properties of an injection jet into a simple duct 
ow. The same jet could have been
modeled more e�ectively using alternate boundary conditions, or through the addition of an
additional grid to simulate the jet 
ow passage; however, for the purposes of demonstration,
and to obtain a solution of this type quickly, the FIXED speci�cation was used instead.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the FIXED boundary condition are given below:

FIXED 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11

RO U V W TTOT
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0.002 100.0 100.0 0.0 600.0

Note that a complete FIXED speci�cation requires the speci�cation of additional data
beyond the standard boundary speci�cation line.

Description

The FIXED statement is used to provide a �xed speci�cation of boundary 
ow data in the
absence of any other appropriate boundary condition. This routine was provided for those
cases where other boundary conditions either cannot provide the boundary speci�cations
desired, or in those cases where a �xed boundary speci�cation is deemed appropriate. In
most cases, the FIXED speci�cation is undesirable because the boundary condition itself is
perfectly re
ecting, and will therefore inhibit solution convergence. In addition, the FIXED
speci�cation does not permit interaction between the boundary 
ow and the interior 
ow,
which runs contrary to the normal 
uid dynamics behavior.

A FIXED speci�cation requires two additional lines in addition to the normal boundary
data �le descriptor, as shown above. The �rst additional line simply contains the labels for
the additional 
ow variable RO, U, V, W, and TTOT. The next line contains the actual
values for the 
ow variable speci�cations. The variable RO de�nes the 
uid density in slugs
per cubic foot. The variables U, V, and W contain the 
uid velocity components in feet
per second for the x, y, and z coordinate directions for a Cartesian solution mesh block,
and the x, r, and � coordinate directions for a cylindrical solution mesh block, respectively.
Finally, TTOT represents the 
uid total temperature in degrees Rankine for the boundary
speci�cation. During the application of a FIXED speci�cation, phantom boundary cell
data are set according to the data provided in the extra lines following the boundary data
speci�cation line as shown above. As a result, the data is not necessarily applied at the
boundary, but the in
uence of the data is felt just outside the boundary. This phenomenon
is consistent with the behavior of a �nite volume solution algorithm.

Restrictions/Limitations

Data provided in the FIXED speci�cation should represent phantom cell centered data
and must be dimensionalized as described above.

Common Errors

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Failure to provide additional data for FIXED speci�cation.

� FIXED boundary speci�cations for cylindrical solution mesh blocks must use the
cylindrical velocity components.
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� FIXED boundary speci�cations for Cartesian solution mesh blocks must use the
Cartesian velocity components.
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FRE2D

2-D Far Field Flow Boundary Condition

2−D Mesh Block #4
(97x17x1)

Far Field Boundary with Angled
Flow Requires a FRE2D Specification

2−D Mesh Block #3
(97x17x1)

2−D Mesh Block #1
(129x17x1)

2−D Mesh Block #2
(129x17x1)
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Application

The FRE2D speci�cation is used to impose a far �eld boundary condition with uniform
far �eld 
ow properties. The example graphic above illustrates a four block mesh system
used to predict the axisymmetric 
ow through a high bypass ducted fan. The two outer
blocks (#2 and #4) require a far�eld boundary condition at the outer boundary (j=17).
The FRE2D boundary speci�cation is used to satisfy the far�eld 
ow requirement. This
boundary condition has been utilized extensively for both ducted and unducted 2-D fan
propulsion systems.

Boundary Data File Format

The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the FRE2D boundary condition is given below:

FRE2D 2 2 J J M M I K 17 17 1 129 1 2 1 129 1 2 Block 2

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 0.0

FRE2D 4 4 J J M M I K 17 17 1 97 1 2 1 97 1 2 Block 4

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 0.0
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Note that a complete FRE2D speci�cation requires two additional lines following the
FRE2D boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common FRE2D speci�cation error.

Description

The FRE2D statement speci�es that an external, free 
ow boundary condition is to be ap-
plied to the mesh surface speci�ed by LFACE1 on the 2-D block speci�ed by LBLOCK1.
The FRE2D boundary condition is primarily used for external 
ow problems at a far �eld
boundary to simulate the e�ects of the atmosphere or other large reservoir with known
properties. The FRE2D procedure utilizes a Reimann invariant formulation to compute
the local 
ow quantities, and permits both in
ow and out
ow through the bounding surface
based on the nature of the local 
ow with respect to the known far �eld conditions. This
boundary condition requires the speci�cation of additional data, as shown in the boundary
data format descriptor above. The �rst additional line following the FRE2D speci�ca-
tion is assumed to be a label and may contain any information; however, for consistency
it is recommended that the labels PTOT, TTOT, EMINF, and ALPHA be used. The
next line contains the values imposed for the variables PTOT, TTOT, EMINF, and
ALPHA, which represent the far �eld nondimensional reservoir total pressure and total
temperature, along with the Mach number and Cartesian angle of attack, respectively, used
in the FRE2D characteristic solution sequence. The value of the PTOT variable is the
desired normalized far �eld total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized far �eld total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variable EMINF represents the far
�eld Mach number. The far �eld 
ow is always assumed to progress along the positive x axis,
and therefore mesh systems should be generated with this in mind. Finally, the variable
ALPHA represents the far�eld Cartesian angle of attack, in degrees, relative to the x axis,
with positive angles resulting in far �eld velocity components in the z coordinate direction.
For 2-D 
ows, this must virtually always be zero. The angle of attack velocities are always
in the x-z plane and the velocity components in the y coordinate direction are always zero.
If there is out
ow along the FREE boundary, then some small y component velocities may
occur as a result of extrapolation from the near �eld 
ow. Naturally, poor convergence or
solution divergence can occur if PTOT, TTOT, EMINF or ALPHA suggest boundary
values which are signi�cantly di�erent from the remainder of the 
ow�eld. In such cases
where this occurs, it is recommended that the solution be started with more conservative
boundary values, and then restarted using the �nal boundary values.

Restrictions/Limitations
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The FRE2D boundary speci�cation is not restricted to 2-D mesh surfaces, although for
consistency 3-D mesh surfaces may use the FREE boundary speci�cation. For 2-D appli-
cations, the far �eld 
ow angle of attack must usually be zero.

Common Errors

� Failure to specify the additional data values PTOT, TTOT, EMINF, or ALPHA.

� ALPHA has a nonzero value.

� Failure to generate the mesh with +x as the primary 
ow direction.
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FREE

Far Field Flow Boundary Condition

Mesh Block #4
(49x9x13)

Far Field Boundary with Angled
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Mesh Block #1
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Application

The FREE speci�cation is used to impose a far �eld boundary condition with uniform far
�eld 
ow properties. The example graphic above illustrates a four block mesh system used
to predict the 3-D 
ow through a high bypass ducted fan. The two outer blocks (#2 and #4)
require a far�eld boundary condition at the outer boundary (j=9). The FREE boundary
speci�cation is used to satisfy the far�eld 
ow requirement. This boundary condition has
been utilized extensively for both ducted and unducted fan propulsion systems including
angle of attack cases.

Boundary Data File Format

The boundary data �le speci�cation for the mesh interfaces indicated in the illustrative
graphic for the FREE boundary condition are given below:

FREE 2 2 J J M M I K 9 9 1 65 1 13 1 65 1 13 Block 2

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 10.0

FREE 4 4 J J M M I K 9 9 1 49 1 13 1 49 1 13 Block 4

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 10.0
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Note that a complete FREE speci�cation requires two additional lines following the FREE
boundary data �le speci�cation line. Failure to properly specify the data in these additional
lines is a common FREE speci�cation error.

Description

The FREE statement speci�es that an external, free 
ow boundary condition is to be
applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by LBLOCK1.
The FREE boundary condition is primarily used for external 
ow problems at a far �eld
boundary to simulate the e�ects of the atmosphere or other large reservoir with known
properties. The FREE procedure utilizes a Reimann invariant formulation to compute the
local 
ow quantities, and permits both in
ow and out
ow through the bounding surface
based on the nature of the local 
ow with respect to the known far �eld conditions. This
boundary condition requires the speci�cation of additional data, as shown in the boundary
data format descriptor above. The �rst additional line following the FREE speci�cation
is assumed to be a label and may contain any information; however, for consistency it is
recommended that the labels PTOT, TTOT, EMINF, and ALPHA be used. The next
line contains the values imposed for the variables PTOT, TTOT, EMINF, andALPHA,
which represent the far �eld nondimensional reservoir total pressure and total temperature,
along with the Mach number and Cartesian angle of attack, respectively, used in the FREE
characteristic solution sequence. The value of the PTOT variable is the desired normalized
far �eld total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized far �eld total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variable EMINF represents the
far �eld Mach number. The far �eld 
ow is always assumed to progress primarily along
the positive x axis, and therefore mesh systems should be generated with this in mind.
Finally, the variable ALPHA represents the far�eld Cartesian angle of attack, in degrees,
relative to the x axis, with positive angles resulting in far �eld velocity components in the
z coordinate direction. The angle of attack velocities are always in the x-z plane and the
velocity components in the y coordinate direction are always zero. If there is out
ow along
the FREE boundary, then some small y component velocities may occur as a result of
extrapolation from the near �eld 
ow. Naturally, poor convergence or solution divergence
can occur if PTOT, TTOT, EMINF or ALPHA suggest boundary values which are
signi�cantly di�erent from the remainder of the 
ow�eld. In such cases where this occurs,
it is recommended that the solution be started with more conservative boundary values,
and then restarted using the �nal boundary values.

Restrictions/Limitations
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The FREE boundary speci�cation is not restricted to 3-D mesh surfaces, although 2-D
mesh surfaces may use the FRE2D boundary speci�cation for consistency. The far �eld

ow angle of attack must be speci�ed relative to the x axis, and produces additional velocity
components in the z coordinate direction only. Imposed far-�eld velocity components in
the y coordinate direction will always be zero.

Common Errors

� Application of FREE to a boundary for which far �eld y coordinate direction velocity
components are required.

� Failure to specify the additional data values PTOT, TTOT, EMINF, or ALPHA.

� Failure to generate the mesh with +x as the downstream 
ow direction.
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INLETA

Cartesian Angle of Attack In
ow Boundary Condition Proce-
dure

Mesh Block #4
(49x9x13)

Inlet Boundary with Angled
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Mesh Block #3
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Mesh Block #1
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Mesh Block #2
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Application

The INLETA speci�cation is used to impose a Cartesian angle of attack in
ow boundary
condition with uniform 
ow properties at a local mesh surface. The illustrative graphic
above depicts a four block mesh system for a turbofan engine geometry. The INLETA
speci�er is utilized at the inlet of mesh blocks 1 and 2 to set the angled in
ow necessary to
simulate angle of attack. This boundary condition has been utilized extensively as an inlet

ow speci�er for inlet, nacelle, and propfan geometries at angle of attack.

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundaries indicated in the illustrative
graphic for the INLETA boundary condition are given below:

INLETA 1 1 I I P P J K 1 1 1 9 1 13 1 9 1 13

PTOT TTOT ALPHA

1.0 1.0 20.0

INLETA 2 2 I I P P J K 1 1 1 9 1 13 1 9 1 13
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PTOT TTOT ALPHA

1.0 1.0 20.0

Note that a complete INLETA speci�cation requires two additional lines following the
INLETA boundary data �le speci�cation line. Failure to properly specify the data in
these additional lines is a common INLETA speci�cation error.

Description

The INLETA keyword speci�es that a uniform property angle of attack in
ow boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. INLETA is valid for both cylindrical and Cartesian solution meshes (see
the description of the input variable FCART). The INLETA procedure utilizes a Reimann
invariant formulation to compute in
ow velocities based on a speci�ed upstream reservoir
total pressure and total temperature, and a single Cartesian 
ow angle as shown in the illus-
trative graphic, above. Included in the INLETA procedure is a special correction scheme
which forces the 
ow to pass into the 
ow domain. In other words, if the computed velocities
result in a local out
ow at the INLETA boundary, no matter how small the magnitude of
the out
ow, the velocities are reset to zero at that point. This boundary condition requires
the speci�cation of additional data, as shown in the boundary data format descriptor above.
The �rst additional line following the INLETA speci�cation is assumed to be a label and
may contain any information; however, for consistency it is recommended that the labels
PTOT, TTOT, and ALPHA be used. The next line contains the values imposed for
the variables PTOT, TTOT and ALPHA which represent the upstream reservoir total
pressure, total temperature, and Cartesian 
ow angle, respectively, used in the INLETA
characteristic solution sequence. The value of the PTOT variable is the desired normalized
upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variable ALPHA represents the 
ow
angle in degrees referenced to the x axis. For 3-D applications, positive 
ow angles generate
components of the 
ow in the positive z direction, and inlet velocity component in the y
direction are set to zero. For 2-D applications, positive 
ow angles generate components
of the 
ow in the positive y direction, and inlet velocity component in the z direction
are set to zero. Values of ALPHA must lie between +/- 90 degrees. Naturally, poor
convergence or solution divergence can occur if PTOT or TTOT suggest boundary values
which are signi�cantly di�erent from the remainder of the 
ow�eld, or if ALPHA is very
large. In cases where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary values.
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Restrictions/Limitations

The INLETA boundary speci�cation may be applied to either 3-D or 2-D mesh surfaces.
For 2-D applications, the angle speci�ed by ALPHA is assumed to be in the positive y
coordinate. An example of this type of application is for a planar cascade 
ow where x is the
primary 
ow direction, and the in
ow is at an angle of 20 degrees relative to the x axis, thus
resulting in a y component of velocity (2-D only). The angle of the velocity components
speci�ed by the INLETA procedure must always be referenced to the x coordinate axis,
and it is left to the user to generate a mesh which is consistent with this feature.

Common Errors

� Application of INLETA to a 3-D mesh boundary for which non-zero y component
velocities are required.

� Application of INLETA to a 2-D mesh boundary for which non-zero z component
velocities are required.

� Failure to specify the additional data values PTOT, TTOT, or ALPHA.
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INL2DG

Generic In
ow Boundary Condition

2−D Mesh Block #1
(28x23x1)

i

j

Flow

2−D Mesh Block #2
(28x9x1)

Inlet with Uniform
Normal Flow Requires an
INL2DG Specification

Application

The INL2DG speci�cation is used to impose a generic in
ow boundary condition with
uniform 
ow properties where the in
ow velocity is normal to the local mesh surface. The
example graphic above illustrates a 2-D 2-block mesh system mixing two adjacent streams
of varying inlet properties. In this case, the INL2DG boundary speci�cation is used to set
the in
ow boundary separately for each block to provide the desired incoming stream 
ow
properties. This boundary condition has been utilized extensively as an inlet 
ow speci�er
for 2-D duct 
ows.

Boundary Data File Format

The boundary data �le speci�cation for the two mesh surfaces indicated in the illustrative
graphic for the INL2DG boundary condition are given below:

INL2DG 1 1 I I P P J K 1 1 1 23 1 2 1 23 1 2
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PTOT TTOT

1.0 1.0

INL2DG 2 2 I I P P J K 1 1 1 9 1 2 1 9 1 2

PTOT TTOT

1.2 1.8

Note that a complete INL2DG speci�cation requires two additional lines following the
INL2DG boundary data �le speci�cation line. Failure to properly specify the data in
these additional lines is a common INL2DG speci�cation error.

Description

The INL2DG statement speci�es that a generic, uniform normal in
ow boundary condi-
tion is to be applied to the 2-D mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. The INL2DG boundary condition should be applied for those cases where
any other \specialized" in
ow boundary condition (such as INL2DT, etc.) does not apply.
The INL2DG boundary condition is also likely to be somewhat more e�cient computation-
ally than the other in
ow boundary condition procedures, at the expense of some physical
simpli�cation. INL2DG is valid for either cylindrical or Cartesian-based (see the input
variable FCART) solutions on 2-D meshes. The INL2DG procedure utilizes a Reimann
invariant formulation to compute in
ow velocities based on a speci�ed upstream reservoir
total pressure and total temperature. The velocity components at an INL2DG boundary
are always computed to be normal (no transverse velocity components) to the local cell
face at which the procedure is applied. Included in the INL2DG procedure is a special
correction scheme which forces the 
ow to pass into the 
ow domain. In other words, if
the computed velocities result in a local out
ow at the INL2DG boundary, no matter how
small the magnitude of the out
ow, the velocities are reset to zero at that point. This
boundary condition requires the speci�cation of additional data, as shown in the boundary
data format descriptor above. The �rst additional line following the INL2DG speci�cation
is assumed to be a label and may contain any information; however, for consistency it is
recommended that the labels PTOT and TTOT be used. The next line contains the values
imposed for the variables PTOT and TTOT, which represent the upstream reservoir total
pressure and total temperature, respectively, used in the INL2DG characteristic solution
sequence. The value of the PTOT variable is the desired normalized upstream total pres-
sure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. Naturally, poor convergence or solution
divergence can occur if PTOT or TTOT suggest boundary values which are signi�cantly
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di�erent from the remainder of the 
ow�eld. In such cases where this occurs, it is rec-
ommended that the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values.

Restrictions/Limitations

The INL2DG boundary speci�cation is not restricted to 2-D mesh surfaces, although for
consistency 3-D mesh surfaces may use the INLETG boundary speci�cation.

Common Errors

� Application of INL2DG to a boundary for which transverse in
ow velocity compo-
nents are required.

� Failure to specify the additional data values PTOT or TTOT.
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INLETG

Generic In
ow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Inlet with Uniform
Normal Flow Requires an
INLETG Specification
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Application

The INLETG speci�cation is used to impose a generic in
ow boundary condition with
uniform 
ow properties where the in
ow velocity is normal to the local mesh surface. This
boundary condition has been utilized extensively as an inlet 
ow speci�er for duct 
ows
and turbine blade cooling 
ow.

Boundary Data File Format

The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the INLETG boundary condition is given below:

INLETG 1 1 I I P P J K 1 1 1 33 1 33 1 33 1 33

PTOT TTOT AKIN ARIN

1.0 1.0 0.001 0.0001
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Note that a complete INLETG speci�cation requires two additional lines following the
INLETG boundary data �le speci�cation line. Failure to properly specify the data in
these additional lines is a common INLETG speci�cation error.

Description

The INLETG statement speci�es that a generic, uniform normal in
ow boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The INLETG boundary condition should be applied for those cases where
any other \specialized" in
ow boundary condition (such as INLETR, INLETT, etc.)
does not apply. The INLETG boundary condition is also likely to be somewhat more e�-
cient computationally than the other in
ow boundary condition procedures, at the expense
of some physical simpli�cation. INLETG may be utilized on either cylindrical or Carte-
sian solution meshes (see the description of the input variable FCART). The INLETG
procedure utilizes a Reimann invariant formulation to compute in
ow velocities based on a
speci�ed upstream reservoir total pressure and total temperature. The velocity components
at an INLETG boundary are always computed to be normal (no transverse velocity com-
ponents) to the local cell face at which the procedure is applied. Included in the INLETG
procedure is a special correction scheme which forces the 
ow to pass into the 
ow domain.
In other words, if the computed velocities result in a local out
ow at the INLETG bound-
ary, no matter how small the magnitude of the out
ow, the velocities are reset to zero at
that point. This boundary condition requires the speci�cation of additional data, as shown
in the boundary data format descriptor above. The �rst additional line following the IN-
LETG speci�cation is assumed to be a label and may contain any information; however, for
consistency it is recommended that the labels PTOT, TTOT,AKIN, and ARIN be used.
The next line contains the values imposed for the variables PTOT, TTOT, AKIN, and
ARIN, which represent the upstream reservoir total pressure, total temperature, turbu-
lence kinetic energy, and turbulence Reynolds number, respectively, used in the INLETG
characteristic solution sequence. The value of the PTOT variable is the desired normalized
upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. Naturally, poor convergence or solution
divergence can occur if PTOT or TTOT suggest boundary values which are signi�cantly
di�erent from the remainder of the 
ow�eld. In such cases where this occurs, it is rec-
ommended that the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values.

The variable AKIN and ARIN are only used when the 2-equation (k�R) turbulence
model is enabled (see the description of the input �le variable F2EQ). When enabled, the
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variable AKIN represents the value of the nondimensional freestream turbulence kinetic
energy de�ned by k=V 2

ref where k is the freestream turbulent kinetic energy and Vref is the

reference velocity de�ned by
p
RrefTref . Here Rref is the gas constant (see [21] for addi-

tional details). The variable ARIN represent the so-called freestream turbulence Reynolds
number (again see [21]) and is calculated as R/VrefLref , where Lref is the reference length
de�ned by the input variable DIAM.

Restrictions/Limitations

The INLETG boundary speci�cation is not restricted to 3-D mesh surfaces (although for
consistency 2-D mesh surfaces may use the INL2DG boundary speci�cation).

Common Errors

� Application of INLETG to a boundary for which transverse in
ow velocity compo-
nents are required.

� Failure to specify the additional data values PTOT or TTOT.
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INLETR

Radial Flow Turbomachinery In
ow Boundary Condition
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(illustrated in Boundary Data File Format
statements below)
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Application

The INLETR speci�cation is used to impose an in
ow boundary condition with axially
varying 
ow properties for radial 
ow turbomachinery. The example graphic above illus-
trates adjacent passages of a mesh system designed to predict the 
ow through a radial
di�user. The inlet boundary is a radial surface of revolution with properties which vary
in the axial direction, and therefore INLETR is used to supply the desired 
ow char-
acteristics at this boundary. INLETR has been successfully used for several radial 
ow
turbomachinery geometries.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the INLETR boundary condition is given below:

INLETR 1 1 I I P P J K 1 1 1 13 1 17 1 13 1 17

NDATA

4

AXIAL PTOT TTOT BETAX BETAT

0.1 0.99 0.99 5.0 -73.3
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0.2 0.98 1.01 4.0 -75.8

0.3 0.97 1.00 3.0 -77.2

0.4 0.96 1.01 2.0 -79.0

A complete INLETR speci�cation requires at least six additional lines (de�ning at least
3 points on the inlet data distribution) following the INLETR boundary data �le spec-
i�cation line. Failure to properly specify the data in these additional lines is a common
INLETR speci�cation error.

Description

The INLETR statement speci�es that an axial 
ow turbomachinery inlet 
ow boundary
condition with axially varying 
ow properties is to be applied to the mesh surface speci�ed
by LFACE1 on the block speci�ed by LBLOCK1. The INLETR boundary condition was
speci�cally designed as an in
ow boundary procedure for pure radial 
ow turbomachinery
geometries (axial and mixed 
ow turbomachinery in
ow boundaries may be speci�ed by the
INLETT boundary condition). The INLETR procedure utilizes a Reimann invariant for-
mulation to compute in
ow velocities based on a speci�ed axial variation in 
ow properties
(upstream reservoir total pressure,total temperature, axial 
ow angle, and circumferential

ow angle). Included in the INLETR procedure is a special correction scheme which forces
the 
ow to pass into the 
ow domain. In other words, if the computed velocities result in a
local out
ow at the INLETR boundary, no matter how small the magnitude of the out
ow,
the velocities are reset to zero at that point. This boundary condition requires the speci�-
cation of additional data, as shown in the boundary data format descriptor above. The �rst
additional line following the INLETR speci�cation is assumed to be a label and may con-
tain any information; however, for consistency it is recommended that the label NDATA
be used. The line following the NDATA label contains the number of axial data points
which will be used to specify the desired axial variation of properties at the in
ow boundary.
At least 3 axial data locations must be speci�ed to use the INLETR boundary condition.
The third line following the INLETR speci�er is again a label which outlines the variables
AXIAL, PTOT, TTOT, BETAX and BETAT. The remaining NDATA lines contain
the numeric information which de�nes the axial variation of the 
ow properties speci�ed by
these variables. The variable AXIAL is the axial coordinate (remember, the centerline is
the x axis) at which the data is speci�ed. This value should be nondimensionalized in the
same manner as the mesh is nondimensionalized. This implies that the AXIAL variable,
when multiplied by the input variable DIAM will result in the true geometric measure-
ment in feet. Due to the interpolation procedures which will ultimately be performed on the
NDATA lines of radial in
ow data, it is essential that the axial variations be speci�ed in
a monotonic (constantly increasing) fashion. The variables PTOT and TTOT represent
the local upstream reservoir total pressure and total temperature, respectively, used in the
INLETR characteristic solution sequence. The value of the PTOT variable is the desired
normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:
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TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variables BETAX and BETAT

represent the local axial and circumferential 
ow angles expressed in degrees according to
the coordinate orientation de�ned in Figure 3.8.

Naturally, poor convergence or solution divergence can occur if any of the values of
PTOT,TTOT,BETAX, or BETAT suggest boundary values which are signi�cantly dif-
ferent from the remainder of the 
ow�eld, or if the axial variation of these values is exces-
sively large. In such cases where this occurs, it is recommended that the solution be started
with more conservative boundary values, and then restarted using the �nal boundary val-
ues.

Restrictions/Limitations

The INLETR boundary condition assumes that the mesh is oriented in such a fashion
that the radial coordinate is de�ned as r =

p
y2 + z2. For radial 
ow turbomachinery,

this implies that the axis of rotation (or the centerline) coincides with the x axis. It is
also required that the axial-like direction of the mesh be de�ned by the j coordinate. An
example of this type of mesh system can be found in the illustrative graphic included at
the beginning of this description.

Common Errors

� Failure to specify the additional data values NDATA, AXIAL, PTOT, TTOT,
BETAX. or BETAT.

� Axial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAX and/or BETAT orientation incorrectly interpreted.

� AXIAL, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.
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The INL2DT speci�cation is used to impose an in
ow boundary condition with radially
varying 
ow properties for 2-D axisymmetric mesh systems. The example graphic illus-
trated above depicts an EXT2DT speci�cation for a 2-D (axisymmetric) 
ow solution for
a turbomachinery blade row. This boundary condition has been utilized extensively as an
inlet 
ow speci�er for 2-D turbomachinery 
ow passages and solutions for embedded blade
rows with imposed axisymmetric body forces.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the INL2DT boundary condition is given below:

INL2DT 1 1 I I P P J K 1 1 1 17 1 2 1 17 1 2

NDATA

7

RAD PTOT TTOT BETAR BETAT

0.20 1.01 0.98 5.0 5.1
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0.25 1.01 0.99 4.0 5.7

0.30 1.00 1.00 3.0 6.3

0.35 0.99 1.01 2.5 6.8

0.40 0.97 1.00 2.0 7.4

0.45 0.96 1.01 1.0 8.0

0.50 0.95 1.01 0.0 7.7

A complete INL2DT speci�cation requires at least six additional lines (de�ning at least 3
points on the inlet data distribution) following the INL2DT boundary data �le speci�cation
line. Failure to properly specify the data in these additional lines is a common INL2DT
speci�cation error.

Description

The INL2DT statement speci�es that a turbomachinery-based radially varying in
ow
boundary condition is to be applied to the 2-D mesh surface speci�ed by LFACE1 on
the block speci�ed by LBLOCK1. The INL2DT boundary condition was speci�cally
designed as an in
ow boundary procedure for axial and mixed 
ow axisymmetric turboma-
chinery geometries (radial 
ow turbomachinery in
ow boundaries may be speci�ed by the
INL2DR boundary condition). The INL2DT procedure utilizes a Riemann invariant for-
mulation to compute in
ow velocities based on a speci�ed radial variation in 
ow properties
(upstream reservoir total pressure, total temperature, radial 
ow angle, and circumferential

ow angle). Included in the INL2DT procedure is a special correction scheme which forces
the 
ow to pass into the 
ow domain. In other words, if the computed velocities result in a
local out
ow at the INL2DT boundary, no matter how small the magnitude of the out
ow,
the velocities are reset to zero at that point. This boundary condition requires the speci�-
cation of additional data, as shown in the boundary data format descriptor above. The �rst
additional line following the INL2DT speci�cation is assumed to be a label and may con-
tain any information; however, for consistency it is recommended that the label NDATA be
used. The line following theNDATA label contains the number of radial data points which
will be used to specify the desired radial variation of properties at the in
ow boundary. At
least 3 radial data locations must be speci�ed to use the INL2DT boundary condition.
The third line following the INL2DT speci�er is again a label which outlines the variables
RAD, PTOT, TTOT, BETAR and BETAT. The remaining NDATA lines contain the
numeric information which de�nes the radial variation of the 
ow properties speci�ed by
these variables. The variable RAD is the radius (remember, the centerline is the x axis) at
which the data is speci�ed. This value should be nondimensionalized in the same manner as
the mesh is nondimensionalized. This implies that the RAD variable, when multiplied by
the input variable DIAM will result in the true geometric measurement in feet. Due to the
interpolation procedures which will ultimately be performed on the NDATA lines of radial
in
ow data, it is essential that the radial variations be speci�ed from the inner to the outer
radius in a monotonic (constantly increasing) fashion. The variables PTOT and TTOT
represent the local upstream reservoir total pressure and total temperature, respectively,
used in the INL2DT characteristic solution sequence. The value of the PTOT variable is
the desired normalized upstream total pressure computed as:
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PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variables BETAR and BETAT

represent the local radial and circumferential 
ow angles expressed in degrees according to
the coordinate orientation de�ned in Figure 3.9. Naturally, poor convergence or solution
divergence can occur if any of the values of PTOT, TTOT, BETAR, or BETAT suggest
boundary values which are signi�cantly di�erent from the remainder of the 
ow�eld, or if
the radial variation of these values is excessively large. In cases where this occurs, it is
recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values.

Restrictions/Limitations

The INL2DT boundary condition assumes that the mesh is oriented in such a fashion
that the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the radial-like direction of the mesh be de�ned by the j coordinate. Examples
of this type of mesh system can be found in the chapter de�ning standard con�gurations.
The INL2DT boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the INLETT boundary speci�cation).

Common Errors

� Application of INL2DT to a 3-D mesh system.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR. or
BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.
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The INLETN speci�cation is used to impose a non-re
ecting in
ow boundary condition
for time-dependent 
ow calculations. This boundary condition has been utilized for time-
dependent 
ows where spurious numerical re
ections from other boundary algorithms are
undesirable.

Boundary Data File Format

The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the INLETN boundary condition is given below:

INLETN 1 1 I I P P J K 1 1 1 33 1 33 1 33 1 33
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Description

The INLETN statement speci�es that a generic, non-re
ecting in
ow boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The INLETN boundary condition should only be applied for time-dependent

ow calculations where spurious numerical re
ections such as those normally expected from
other boundary speci�cations (such as INLETR, INLETT, etc.) are undesirable. IN-

LETN may be utilized on either cylindrical or Cartesian solution meshes (see the descrip-
tion of the input variable FCART). The INLETN procedure utilizes a characteristic-based
formulation to compute in
ow velocities based on local 
ow conditions only.

Restrictions/Limitations

The INLETN boundary speci�cation is not restricted to 3-D mesh surfaces but should only
be applied for time-dependent 
ow calculations where a non-re
ecting in
ow boundary is
desired.

Common Errors

� Application of INLETN for a steady state solution.
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The INLETT speci�cation is used to impose an in
ow boundary condition with radially
varying 
ow properties. The illustrative graphic above depicts an application of the IN-
LETT in
ow boundary condition for an H-type mesh for a turbomachinery fan rotor blade
passage. The INLETT speci�cation provides the radial variation of 
ow properties at
the in
ow boundary resulting from experimental conditions, upstream blade rows, or other
known inlet property variation. This boundary condition has been utilized extensively as
an inlet 
ow speci�er for turbomachinery blade passages and annular ducts.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the INLETT boundary condition is given below:

INLETT 1 1 I I P P J K 1 1 1 17 1 17 1 17 1 17

NDATA

7
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RAD PTOT TTOT BETAR BETAT

0.20 1.01 0.98 5.0 5.1

0.25 1.01 0.99 4.0 5.7

0.30 1.00 1.00 3.0 6.3

0.35 0.99 1.01 2.5 6.8

0.40 0.97 1.00 2.0 7.4

0.45 0.96 1.01 1.0 8.0

0.50 0.95 1.01 0.0 7.7

A complete INLETT speci�cation requires six or more additional lines (de�ning at least 3
points on the inlet data distribution) following the INLETT boundary data �le speci�cation
line. Failure to properly specify the data in these additional lines is a common INLETT
speci�cation error.

Description

The INLETT statement speci�es that a turbomachinery-based radially varying in
ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The INLETT boundary condition was speci�cally designed as
an in
ow boundary procedure for axial and mixed 
ow turbomachinery geometries (radial

ow turbomachinery in
ow boundaries may be speci�ed by the INLETR boundary condi-
tion). As such, the INLETT boundary procedure is only valid on mesh systems employing
the cylindrical solution algorithm (see the description of the input variable FCART). The
INLETT procedure utilizes a Riemann invariant formulation to compute in
ow velocities
based on a speci�ed radial variation in 
ow properties (upstream reservoir total pressure,
total temperature, radial 
ow angle, and circumferential 
ow angle). Included in the IN-
LETT procedure is a special correction scheme which forces the 
ow to pass into the 
ow
domain. In other words, if the computed velocities result in a local out
ow at the INLETT
boundary, no matter how small the magnitude of the out
ow, the velocities are reset to
zero at that point. This boundary condition requires the speci�cation of additional data, as
shown in the boundary data format descriptor above. The �rst additional line following the
INLETT speci�cation is assumed to be a label and may contain any information; however,
for consistency it is recommended that the label NDATA be used. The line following the
NDATA label contains the number of radial data points which will be used to specify the
desired radial variation of properties at the in
ow boundary. At least 3 radial data locations
must be speci�ed to use the INLETT boundary condition. The third line following the
INLETT speci�er is again a label which outlines the variables RAD, PTOT, TTOT,
BETAR and BETAT. The remaining NDATA lines contain the numeric information
which de�nes the radial variation of the 
ow properties speci�ed by these variables. The
variable RAD is the radius (remember, the centerline is the x axis) at which the data
is speci�ed. This value should be nondimensionalized in the same manner as the mesh is
nondimensionalized. This implies that the RAD variable, when multiplied by the input
variable DIAM will result in the true geometric measurement in feet. Due to the interpo-
lation procedures which will ultimately be performed on the NDATA lines of radial in
ow
data, it is essential that the radial variations be speci�ed from the inner to the outer radius
in a monotonic (constantly increasing) fashion. The variables PTOT and TTOT represent
the local upstream reservoir total pressure and total temperature, respectively, used in the
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INLETT characteristic solution sequence. The value of the PTOT variable is the desired
normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variables BETAR and BETAT

represent the local radial and circumferential 
ow angles expressed in degrees according to
the coordinate orientation de�ned in Figure 3.9. Naturally, poor convergence or solution

divergence can occur if any of the values of PTOT, TTOT, BETAR, or BETAT suggest
boundary values which are signi�cantly di�erent from the remainder of the 
ow�eld, or if
the radial variation of these values is excessively large. In cases where this occurs, it is
recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values.

Restrictions/Limitations

The INLETT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate. Examples of this
type of mesh system can be found in the chapter de�ning standard mesh con�gurations.
The INLETT boundary speci�cation is restricted to 3-D mesh surfaces (2-D mesh surfaces
should use the INL2DT boundary speci�cation).

Common Errors

� Application of INLETT to a 2-D mesh system.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR, or
BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.
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The INLETX speci�cation is used to impose a non-re
ecting turbomachinery in
ow bound-
ary condition with radially varying 
ow properties. The illustrative graphic above depicts an
application of the INLETX in
ow boundary condition for an H-type mesh for a turboma-
chinery fan rotor blade passage. The INLETX speci�cation provides the radial variation
of 
ow properties at the in
ow boundary resulting from experimental conditions, upstream
blade rows, or other known inlet property variation. This boundary condition has been
utilized extensively as an inlet 
ow speci�er for turbomachinery blade passages and annular
ducts.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the illustrative graphic
for the INLETX boundary condition is given below:

INLETX 1 1 I I P P J K 1 1 1 17 1 17 1 17 1 17

NDATA



162 INLETX - ADPAC07 Boundary Data File Speci�cations

7

RAD PTOT TTOT BETAR BETAT

0.20 1.01 0.98 5.0 5.1

0.25 1.01 0.99 4.0 5.7

0.30 1.00 1.00 3.0 6.3

0.35 0.99 1.01 2.5 6.8

0.40 0.97 1.00 2.0 7.4

0.45 0.96 1.01 1.0 8.0

0.50 0.95 1.01 0.0 7.7

A complete INLETX speci�cation requires six or more additional lines (de�ning at least
3 points on the inlet data distribution) following the INLETX boundary data �le spec-
i�cation line. Failure to properly specify the data in these additional lines is a common
INLETX speci�cation error.

Description

The INLETX statement speci�es that a non-re
ecting turbomachinery-based radially vary-
ing in
ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1
on the block speci�ed by LBLOCK1. The INLETX boundary condition was speci�cally
designed as a non-re
ecting in
ow boundary procedure for steady state analysis of axial
and mixed 
ow turbomachinery geometries (radial 
ow turbomachinery in
ow boundaries
may be speci�ed by the INLETR boundary condition). As such, the INLETX bound-
ary procedure is only valid on mesh systems employing the cylindrical solution algorithm
(see the description of the input variable FCART). The INLETX procedure utilizes a
characteristic-based 
ow decomposition to compute in
ow velocities based on a speci�ed
radial variation in 
ow properties (upstream reservoir total pressure, total temperature,
radial 
ow angle, and circumferential 
ow angle). Due to the non-re
ective nature of the
boundary procedure (described in more detail in the �nal report [21]), the circumferential
average of the numerical solution at each radial station matches the speci�cations imposed
by the INLETX speci�cation (rather than a point by point matching). This feature per-
mits circmferential variation of 
ow properties across the boundaries, where other boundary
procedures do not. This boundary condition requires the speci�cation of additional data, as
shown in the boundary data format descriptor above. The �rst additional line following the
INLETX speci�cation is assumed to be a label and may contain any information; however,
for consistency it is recommended that the label NDATA be used. The line following the
NDATA label contains the number of radial data points which will be used to specify the
desired radial variation of properties at the in
ow boundary. At least 3 radial data locations
must be speci�ed to use the INLETX boundary condition. The third line following the
INLETX speci�er is again a label which outlines the variables RAD, PTOT, TTOT,
BETAR and BETAT. The remaining NDATA lines contain the numeric information
which de�nes the radial variation of the 
ow properties speci�ed by these variables. The
variable RAD is the radius (remember, the centerline is the x axis) at which the data
is speci�ed. This value should be nondimensionalized in the same manner as the mesh is
nondimensionalized. This implies that the RAD variable, when multiplied by the input
variable DIAM will result in the true geometric measurement in feet. Due to the interpo-
lation procedures which will ultimately be performed on the NDATA lines of radial in
ow
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data, it is essential that the radial variations be speci�ed from the inner to the outer radius
in a monotonic (constantly increasing) fashion. The variables PTOT and TTOT represent
the local upstream reservoir total pressure and total temperature, respectively, used in the
INLETX characteristic solution sequence. The value of the PTOT variable is the desired
normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT <0.0 are not permitted. The variables BETAR and BETAT

represent the local radial and circumferential 
ow angles expressed in degrees according to
the coordinate orientation de�ned in Figure 3.9. Naturally, poor convergence or solution
divergence can occur if any of the values of PTOT, TTOT, BETAR, or BETAT suggest
boundary values which are signi�cantly di�erent from the remainder of the 
ow�eld, or if
the radial variation of these values is excessively large. In such cases, it is recommended
that the solution be started with more conservative boundary values, and then restarted
using the �nal boundary values.

Restrictions/Limitations

The INLETX boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial 
ow turbomachinery, this implies

that the axis of rotation (or the centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate. This implies
that INLETX can only be applied to either constant i or constant k index mesh surfaces.
INLETX is only valid for steady state solutions (the INLETN boundary procedure is
available for time-dependent non-re
ecting in
ow boundaries).

Common Errors

� Application of INLETX to a Cartesian mesh solution.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR, or
BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� Application of INLETX to a constant j mesh surface.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.
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� RAD, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

� Application of INLETX for a time-dependent solution.
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The KIL2D keyword is a tool to e�ectively neutralize or \kill" the time-marching solution
over a segment of the computational domain for a two-dimensional mesh. The example
graphic above illustrates a single block 2-D mesh system used to predict the 
ow through a
converging/diverging nozzle system with a square-edged obstruction. Rather than construct
a multiple block mesh system to treat this case (whereby the obstruction is essentially
gridded as block boundaries), the KIL2D speci�cation is used to neutralize the advancing
solution within the obstruction, and boundary conditions are applied along the surface of
the obstruction to predict this 
ow.

Boundary Data File Format

The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the KIL2D boundary condition is given below:

KIL2D 1 1 I I M M L L 40 60 21 31 1 2 21 31 1 2

LSTART LEND

40 60

Note that a complete KIL2D speci�cation requires two additional lines following the
KIL2D boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common KIL2D speci�cation error.
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Description

In cases where a portion of a 2-D mesh does not represent a valid 
ow region, the KIL2D
speci�cation can be used, in conjunction with boundary conditions speci�ed about the
region to be \killed", to e�ectively remove a portion of a given mesh block from the com-
putational domain. An example of this technique is illustrated in the illustrative graphic
above. The �gure depicts a single block mesh for the 
ow through a simple nozzle. Suppose
that for whatever reason, the user wished to remove an internal rectangular portion of the
mesh (as if there were an obstruction placed in the 
owpath). This could be accomplished
by subdividing the original mesh into several smaller pieces, and applying the appropriate
boundary conditions along the outer boundaries of each block. This same con�guration
could also be modeled using the original mesh by invoking the KIL2D speci�cation for the
points inside the obstruction, followed by an application of the proper boundary speci�ca-
tions along the obstruction internally on the single-block mesh. This boundary condition
(although really, this is more than a boundary condition) requires the speci�cation of ad-
ditional data, as shown in the format descriptor above. The variable following the label
LSTART indicates the starting index of the LFACE1 coordinate direction (in the ex-
ample above, this would be the I coordinate direction) for the region to be \killed". The
variable following the label LEND indicates the �nal index in the LFACE1 coordinate
direction (again, the I coordinate in the example above) for the region to be \killed". The
remaining coordinate indices for the region to be \killed" are determined by the variables
M1LIM1, M1LIM2 for the J coordinate direction and N1LIM1, and N1LIM2 for the
K coordinate direction. The additional speci�cation of the LSTART, LEND variables
imply that the variables L1LIM, L2LIM are not used in this speci�cation. The KIL2D
routine fuctions by constantly resetting the 
ow variables inside the region to be killed to
the initial values speci�ed by the RMACH input variable. So, in e�ect, the solution is
still being performed in the region to be killed, but the updated results are constantly reset
to a uniform 
ow value. This routine is not without drawbacks. First of all, although the
mesh points are e�ectively neutralized by the KIL2D speci�cation, other routines such as
the residual smoothing algorithm are unaltered, and under certain circumstances, this may
cause poor convergence. It is also possible that divergence may occur within the \killed"
cells in spite of the resetting procedure. The best advice is to manipulate block structures
to eliminate the need for the use of the KIL2D routine, but the user should be aware that
under dire circumstances this facility is available. The KILL speci�cation should be given
prior to any other boundary conditions to avoid \wiping out" previously speci�ed boundary
speci�cations.

Restrictions/Limitations

The KIL2D boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the KILL boundary speci�cation).

Common Errors

� Application of KIL2D to a 3-D mesh system.
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� Poor convergence due to residual smoothing across a \killed" region (The residual
smoothing operator can be turned o� through the RESID input variable, although
the time step must be restricted (see variable CFL) to maintain numerical stability).

� Failure to specify the additional data values LSTART, LEND.
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KILL

Solution Kill Routine

Mesh Block #1
(93x25x17)

Internal Mesh Obstruction
Requires a KILL Specification

i

j

k

Application

The KILL keyword is a tool to e�ectively neutralize or \kill" the time-marching solution
over a segment of the computational domain for a three-dimensional mesh. The example
graphic above illustrates a single block 3-D O-type mesh system used to predict the 
ow
through a turbomachinery compressor rotor blade passage with a surface-mounted square-
edged obstruction. Rather than construct a multiple block mesh system to treat this case
(whereby the obstruction is essentially gridded as block boundaries), theKILL speci�cation
is used to neutralize the advancing solution within the obstruction, and boundary conditions
are applied along the surface of the obstruction to predict this 
ow.

Boundary Data File Format
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The boundary data �le speci�cation for the mesh system indicated in the illustrative graphic
for the KILL boundary condition is given below:

KILL 1 1 I I P P L L 49 49 1 19 1 5 1 19 1 5

LSTART LEND

49 51

KILL 1 1 I I P P L L 49 49 19 21 1 5 19 21 1 5

LSTART LEND

49 52

Note that a complete KILL speci�cation requires two additional lines following the KILL
boundary data �le speci�cation line. Failure to properly specify the data in these additional
lines is a common KILL speci�cation error.

Description

In cases where a portion of a 3-D mesh does not represent a valid 
ow region, theKILL spec-
i�cation can be used, in conjunction with boundary conditions speci�ed about the region to
be \killed", to e�ectively remove a portion of a given mesh block from the computational
domain. An example of this technique is illustrated in the illustrative graphic above. The
�gure depicts a single mesh block for the 
ow through a high speed rotor passage upon which
surface instrumentation is mounted. The blockage associated with the surface instrumenta-
tion is incorporated into the solution through the application of the appropriate boundary
conditions on the surface of the instrumentation, and by applying the KILL procedure to
negate the 
ow variables of the cells within the instrumentation itself. It should be noted
that this e�ect could be accomplished by subdividing the original mesh into several smaller
pieces, and applying the appropriate boundary conditions along the outer boundaries of
each block. This boundary condition (although really, this is more than a boundary condi-
tion) requires the speci�cation of additional data, as shown in the format descriptor above.
The variable following the label LSTART indicates the starting index in the LFACE1
coordinate direction (in the example above, this would be the I coordinate direction) for
the region to be \killed". The variable following the label LEND indicates the �nal index
in the LFACE1 coordinate direction (again, the I coordinate in the example above) for
the region to be \killed". The remaining coordinate indices for the region to be \killed"
are determined by the variables M1LIM1, M1LIM2 for the J coordinate direction and
N1LIM1, and N1LIM2 for the K coordinate direction. The additional speci�cation of
the LSTART, LEND variables imply that the variables L1LIM, L2LIM are not used
in this speci�cation. The KILL routine fuctions by constantly resetting the 
ow variables
inside the region to be killed to the initial values speci�ed by the RMACH input variable.
So, in e�ect, the solution is still being performed in the region to be killed, but the updated
results are constantly reset to a uniform 
ow value. This routine is not without drawbacks.
First of all, although the mesh points are e�ectively neutralized by the KILL speci�cation,
other routines such as the residual smoothing algorithm are unaltered, and under certain
circumstances, this may cause poor convergence. It is also possible that divergence may
occur within the \killed" cells in spite of the resetting procedure. The best advice is to
manipulate block structures to eliminate the need for the use of the KILL routine, but the
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user should be aware that under dire circumstances this facility is available. The KILL
speci�cation should be given prior to any other boundary conditions to avoid \wiping out"
previously speci�ed boundary speci�cations.

Restrictions/Limitations

The KILL boundary speci�cation is not restricted to 3-D mesh surfaces (although for
consistency, 2-D mesh surfaces may use the KIL2D boundary speci�cation).

Common Errors

� Application of KILL to a 2-D mesh system.

� Poor convergence due to residual smoothing across a \killed" region (The residual
smoothing operator can be turned o� through the RESID input variable, although
the time step must be restricted (see variable CFL) to maintain numerical stability).

� Failure to specify the additional data values LSTART, LEND.
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LAMSS

Porous Solid Surface Viscous No-Slip Boundary Condition

Mesh Block #1
(151x17x11)

Blade Surface Porous
Boundary Requires a
LAMSS Specification

i

k

j

Essentially Solid, But Porous
Surface Simulated Using LAMSS
Boundary Specification

Application

The LAMSS speci�cation is used to impose a porous injection, no-slip boundary condition
for solid surfaces used in a viscous 
ow solution. The graphic above illustrates a 3-D body-
centered O-type mesh system for a turbine vane cascade. The LAMSS speci�cation is
used to simulate the e�ects of a �ne array of discrete cooling holes (porous injection) which
are too small to be individually gridded. The LAMSS provides a \smeared out" normal
injection which essentially simulates the global e�ects of the individual cooling sites.

Boundary Data File Format

The boundary data �le speci�cations for the hub and blade surfaces in the application de-
scribed above and indicated in the illustrative graphic for the LAMSS boundary condition
are given below:

LAMSS 1 1 K K P P I K 1 1 1 151 1 11 1 151 1 11

PT TT RPMLOC TWALL ARATIO

1.1 0.70 0.0 0.00 0.10

Note that a complete LAMSS speci�cation requires two additional lines following the
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LAMSS boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common LAMSS speci�cation error.

Description

The LAMSS statement speci�es that a solid surface viscous (no-slip) boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The LAMSS boundary condition may be applied to either a rotating or non-
rotating surface and may indicate a rotational speed which is di�erent than the rotational
speed of the mesh (RPM) to which the boundary condition is applied (the most common
example of this type of application is a mesh embedded in a rotating blade passage with
an endwall which is non-rotating). This boundary condition requires the speci�cation of
additional data, as shown in the boundary data format descriptor above. The �rst addi-
tional line following the LAMSS speci�cation is assumed to be a label and may contain any
information; however, for consistency it is recommended that the labels PTOT, TTOT,
RPMLOC, TWALL, and ARATIO be used. The next line contains the values imposed
for the variables PTOT, TTOT, RPMLOC, TWALL, and ARATIO. The value of the
PTOT and TTOT variables represent the total pressure and total temperature of the
injected 
ow. These variables are de�ned as:

(Ptotal)non�dimensional =
Ptotal

Pref

(Ttotal)non�dimensional =
Ttotal

Pref

The value of the RPMWALL variable is the desired solid wall dimensional rotational
speed in revolutions per minute. This value is sign dependent and follows the orientation
for rotation as described in Figure 3.10. The variable TWALL determines which type
of temperature condition is applied to the surface. If TWALL=0.0, an adiabatic wall is
assumed. For TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall

Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le variable
TREF. A value of TWALL<0.0 is not permitted. Naturally, poor convergence or solution
divergence can occur if RPMWALL or TWALL suggest boundary values which are sig-
ni�cantly di�erent from the remainder of the 
ow�eld. In such cases where this occurs, it
is recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values. Finally, the value of the variable ARATIO
represents the geometric \porosity" of the surface in the form of the ratio of open (injection)
surface area to total surface area for the boundary segment being de�ned. In other words,
if the porous surface has an injection area of .01 square inch per square inch of total surface,
then ARATIO would be 0.01. ARATIO values less than zero or greater than 1.0 are not
permitted.
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Restrictions/Limitations

The boundary rotational speed imposed by the LAMSS boundary condition can only be
nonzero when using the cylindrical coordinate solution algorithm in the ADPAC07 code.
When using the Cartesian coordinate solution algorithm FCART and/or FCARB= 1:0,
the boundary rotational speed must be zero (RPMWALL= 0:0 when FCART orFCARB=
1:0). Refer to the Chapter on input �le parameters for a description of TREF, RPM,
FCARB, and FCART. The injection process modeled by LAMSS is always normal to
the local surface topography. Arbitrary injection angle speci�cation is not currently possi-
ble.

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a nonzero boundary rotational speed with the Cartesian coordinate
solution algorithm.

� ARATIO value less than 0.0 or greater than 1.0.

� PTOT value signi�cantly di�erent than freestream.

� TTOT value signi�cantly di�erent than freestream.

� TWALL value signi�cantly di�erent than freestream.
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MBCAVG

Multiple Block Circumferential Averaging Routine for Multiple
Blade Row Turbomachines

Mixing Plane Interface Between Adjacent
Blade Rows of Multistage Turbomachinery
Utilize the MBCAVG Specification

Mesh Block #1
(81x6x7)

Mesh Block #2
(81x6x7)

i

j

k

i

j

k

Application

The MBCAVG speci�cation is used in applications involving neighboring relatively rotat-
ing blade rows which may consist of one or more mesh blocks. TheMBCAVG speci�cation
permits time-averaged interconnection between these adjacent, blade row local mesh sys-
tems based on the \mixing plane" approximation discussed in Chapter 2.0. The sample
graphic illustrates the application of the MBCAVG boundary condition for the case of a
single stage turbine, whereby a single mesh block is used to represent a single blade passage
for each blade row in the turbine stage, and the MBCAVG boundary routine is used to
perform the mixing plane (circumferential/time-averaged) coupling of the relatively rotating
blade rows.
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Boundary Data File Format:

The boundary data �le speci�cations for the mesh interfaces indicated in the illustrative
graphic for theMBCAVG boundary condition are given below. Note that block 1 requires
multiple speci�cations due to the location of the O-grid cut line.

MBCAVG 1 2 K K M M I J 7 7 1 6 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 1 2 K K M M I J 7 7 76 81 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 2 1 K K M M I J 7 7 36 46 1 6 1 6 1 6

NSEGS

2

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 1 6 1 6

1 K M 7 76 81 1 6

Note that a complete MBCAVG speci�cation generally requires at least two MBCAVG

statement lines in the boundary data �le for each mesh interface. In the example above,
the �rst two speci�cations provide the interblock communication for block 1 from block 2,
and the third speci�cation provides the communication for block 2 from block 1. It is a
common error to underspecify an MBCAVG boundary by only providing a single line per
interface.

Description:

The MBCAVG speci�cation provides a \circumferential mixing plane" mesh block com-
munication scheme for steady state (time-averaged) analysis of multiple blade row turboma-
chines. The MBCAVG operator permits the speci�cation of multiple neighboring blocks
upon which the circumferential averaging is applied to provide boundary data for the cur-
rent block of interest. This multiple block averaging scheme permits the use of MBCAVG

for body-centered mesh systems (see the illustrative graphic above) and also for multiple
blade passage representations of neighboring blade rows. Due to the complex nature of the
circumferential averaging operator, this boundary condition is restricted to speci�c mesh
con�gurations. The following chart describes the permitted mesh con�gurations for the
MBCAVG speci�cation:

MBCAVG Boundary Speci�cation Mesh Coordinate Restrictions

LFACE1 LFACE2 Circumferential Grids Must be
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(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

J J only K I

K I or K K or I J

A second mesh restriction is that the interface separating two adjacent blade rows must be
a surface of revolution, and that meshes along this interface have common axial and radial

grid distributions. This restriction simpli�es the averaging scheme provided by the
MBCAVG speci�cation.

The MBCAVG boundary condition requires the speci�cation of additional data, as shown
in the format descriptor above. The variable following the label NSEGS de�nes the num-
ber of neighboring mesh block surfaces from which the circumferentially averaged data is
obtained. In the illustrative graphic above, this value is simply 1 for the upstream inter-
blade row boundaries, but is 2 for the downstream inter-blade row boundary because of the
fact that the matching boundary of the upstream blade row is composed of two distinct
mesh segments even though it is taken from a single mesh block. The next line follow-
ing the NSEGS variable is a label indicating the variables which must be input for each
of the NSEGS segments in the mixing plane. The variables LBLOCK2B, LFACE2B,
LDIR2B, L2LIMB,M2LIM1B,M2LIM2B,N2LIM1B, andN2LIM2B represent the
values of LBLOCK2, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1, and
N2LIM2 (see the beginning of this section for an explanation of these variables) for each
of the individual NSEGS segments used in the mixing plane construction. The segments
may be speci�ed in any order.

Restrictions/Limitations

The MBCAVG boundary speci�cation is restricted to mesh interfaces which lie on a com-
mon surface (no signi�cant overlap), and have common axial and radial mesh coordinates.
The mesh must obey the coordinate restrictions outlined in the description above.

Common Errors

� Failure to provide 2 or moreMBCAVG statements for each inter-blade row interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1B,M2LIM2B, N2LIM1B, N2LIM2B

do not correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B)

� Meshes do not obey the mesh coordinate restrictions listed in the description above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Application of MBCAVG to mesh interfaces which do not share a common surface,
or which have excess overlap.
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� Application of MBCAVG to Cartesian solution mesh systems.
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PATCH

Contiguous Mesh Block Interface Patching Scheme

Mesh Block #1
(151x17x11)

Mesh Block #2
(17x17x11)

Mesh Block #3
(17x17x11)

i

k

i

k

i k

Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PATCH Specification
(illustrated in Boundary Data File Format
statements below)

(j direction is
out of page)

Spatially Periodic Mesh
Block Interface
on Grid 1 Requires a
PATCH Specification

Self−connected Mesh Block
Interface (O−type mesh)
on Grid 1 Requires a
PATCH Specification

Application

The PATCH speci�cation is used in any application involving neighboring mesh blocks with
a contiguous (common mesh points) interface. The graphic above illustrates aPATCH con-
nection between mesh blocks in a combination O-H mesh system for a turbine vane cascade.
The PATCH boundary speci�cation is used to provide block-to-block communication be-
tween mesh blocks #1 and #2, and mesh blocks #1 and #3, as well as providing periodic

ow boundary conditions for blocks #1, #2, and #3. In addition, the PATCH routine
is used to provide aerodynamic communication across the O-mesh slit for mesh block #1.
The PATCH boundary condition is perhaps the most common speci�cation resulting from
the use of the multiple blocked mesh capabilities of the ADPAC07 code.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the PATCH boundary condition are given below:

PATCH 1 1 K K M M I J 11 11 6 71 1 17 146 81 1 17 Blk #1 Per

PATCH 1 1 K K M M I J 11 11 81 146 1 17 71 6 1 17 Blk #1 Per

PATCH 2 2 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #2 Per
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PATCH 2 2 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #2 Per

PATCH 3 3 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 3 3 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 1 1 I I M P J K 151 1 1 17 1 11 1 17 1 11 Blk #1 O-Grid

PATCH 1 1 I I M P J K 1 151 1 17 1 11 1 17 1 11 Blk #1 O-Grid

PATCH 1 2 K I M M J I 11 17 71 81 1 17 1 17 1 11 Blks #1-#2

PATCH 2 1 I K M M K J 17 11 1 17 1 11 71 81 1 17 Blks #1-#2

PATCH 1 3 K I M P J I 11 1 1 6 1 17 1 17 6 1 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 1 6 6 1 1 17 Blks #1-#3

PATCH 1 3 K I M P J I 11 1 146 151 1 17 1 17 11 6 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 6 11 151 146 1 17 Blks #1-#3

Note that a complete PATCH speci�cation generally requires two PATCH statement
lines in the boundary data �le. For any two grid blocks (1 and 2 for example), the �rst
speci�cation provides the interblock communication for block 1 from block 2, and the second
speci�cation provides the communication for block 2 from block 1. It is a common error to
underspecify a PATCH boundary by only providing a single line per interface.

Description

The PATCH statement is utilized to provide direct block to block communication between
mesh blocks with contiguous grid points. This is perhaps the most common, and most
useful of the boundary condition speci�cations, and therefore, a lengthy discussion is given
to complete this description. For many complicated geometries requiring a multiple block
mesh system, a common approach is to generate mesh systems with coincident mesh points
along all, or at least part of the mesh block interfaces. This property is henceforth referred
to as a contiguous mesh block interface (coincident mesh points). By default, the boundary
condition speci�cationmust have a one to one correspondence between mesh points in block
LBLOCK1 and mesh points in block LBLOCK2. This type of boundary is particularly
e�ective in the �nite-volume 
ow solver due to the fact that local and global conservation
of the 
ow variables can be accomplished without special treatment, by direct substitution
of the neighboring block 
ow variables into the phantom cells of the block of interest. The
PATCH boundary condition performs this direct substitution between blocks to provide
an aerodynamic communication between neighboring blocks with a contiguous interface.
A PATCH speci�cation can also be imposed connecting a block to itself. In fact, this is
the manner by which spatial periodicity is enforced in many cases, including the Standard
Con�gurations described in Chapter 5. The PATCH boundary condition requires no addi-
tional data beyond the initial speci�cation line, but does require the proper speci�cation of
the variables LSPEC1 and LSPEC2. For boundary conditions involving more than one
mesh block (such as PATCH), it is possible that the connection between blocks may in-
volve communication between di�erent grid surfaces (for example, an i=constant mesh face
in LBLOCK1 connects to a j=constant mesh face in LBLOCK2) and that the remain-
ing indices in block LBLOCK2 correspond to di�erent coordinates in block LBLOCK1.
The speci�cation of the variables LSPEC1, LSPEC2 serve to eliminate any confusion
between contiguous boundary patches involving dissimilar mesh coordinates. In every case,
when a particular coordinate direction is speci�ed by the variable LFACE1, the remain-
ing coordinate indices de�ning the extent of the patch on LFACE1 are speci�ed in their
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\natural" (i, j, k) order. For example, if LFACE1 is an i=constant mesh surface, then the
variables M1LIM1, M1LIM2 control the indices in the j coordinate direction and the
variables N1LIM1, N1LIM2 control the indices in the k coordinate direction. Similarly,
if LFACE2 is a k=constant mesh surface, then the variables M2LIM1, M2LIM2 control
the indices in the i coordinate direction and the variables N2LIM1, N2LIM2 control the
indices in the j coordinate direction, and so on. Now, in order to relate the coordinate
indices in block LBLOCK2 with the indices speci�ed in block LBLOCK1, the special
terms LSPEC1 and LSPEC2 are utilized. The variables LSPEC1 and LSPEC2 should
be de�ned as either I, J, or K, based on the connection scheme between the two blocks.
The LSPEC1 variable should de�ne the coordinate direction in block LBLOCK1 which
corresponds to the �rst remaining coordinate in block LBLOCK2 (whose range is de�ned
by M2LIM1, M2LIM2), and the LSPEC2 variable should de�ne the coordinate direc-
tion in block LBLOCK1 which corresponds to the second remaining coordinate in block
LBLOCK2 (whose range is de�ned by N2LIM1, N2LIM2). The PATCH speci�cation
may also be used for two-dimensional meshes as long as the third coordinate direction (k)
limits N1LIM1, N1LIM2, and N2LIM1, N2LIM2 are \1" and \2", respectively (2-D
patches are speci�ed as if the mesh were actually 2 cells deep in the k direction).

Restrictions/Limitations

The PATCH boundary speci�cation is restricted to mesh interfaces which have a one to
one mesh point correspondance. To maintain the conservative property of the governing
equations, the PATCH routine assumes that the mesh points between the 2 blocks of
interest are either contiguous, or share a spatially periodic relationship, and it is left to the
user to verify that this is so.

Common Errors

� Failure to provide 2 PATCH statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed block coordinate direction relationships (values of LSPEC1,
LSPEC2 do not correctly de�ne the coordinate connection scheme between block
LBLOCK1 and block LBLOCK2).

� PATCH boundary speci�cation for a periodic boundary is applied to a nonperiodic
mesh.

� PATCH boundary speci�cation applied to a spatially periodic Cartesian geometry
using the cylindrical coordinate solution scheme or vice versa (results in incorrect
spatial periodicity relationships) The PATCH boundary speci�cations for Cartesian
geometries must use the Cartesian solution algorithm in ADPAC07 (see input variable
FCART).
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PINT

Non-Contiguous Mesh Block Interface Patching Scheme

Mesh Block #1
(51x11x45)

Mesh Block #2
(51x11x51)

Non−Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PINT Specification
(illustrated in Boundary Data File Format
statements below)

i
k j

 
 

Application

The PINT speci�cation is used in any application involving neighboring mesh blocks which
share a common mating surface (either contiguous or non-contiguous). The example graphic
above illustrates a two-dimensional plane of a two block 3-D mesh system used to predict the

ow through a converging/diverging nozzle. The mesh points at the interface between the
two grids (near the nozzle throat) are non-contiguous, and therefore, the PINT speci�cation
is used to provide communication between the adjacent mesh blocks.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the PINT boundary condition are given below:

PINT 1 2 I I M P L L 51 1 1 11 1 45 1 11 1 51

PINT 2 1 I I P M L L 1 51 1 11 1 51 1 11 1 45

Note that a complete PINT speci�cation generally requires two PINT statement lines in
the boundary data �le. In the example above, the �rst speci�cation provides the interblock
communication for block 1 from block 2, and the second speci�cation provides the commu-
nication for block 2 from block 1. It is a common error to underspecify a PINT boundary
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by only providing a single line per interface.

Description

ThePINT boundary statement provides a means for block to block communication for cases
involving neighboring meshes which share a common surface, but not necessarily common
grid points along a block boundary (meshes with contiguous mesh points should use the
PATCH boundary speci�cation, meshes with contiguous points in one coordinate direc-
tion should use the BCINT1 boundary speci�cation). The PINT speci�cation instructs
the ADPAC07 code to perform a weighted interpolation to determine the appropriate 
ow
variables for the phantom cells, based on the non-contiguous data structure of the neigh-
boring mesh. An example of this type of boundary is given in the illustrative graphic. The
bounding surfaces of each block should lie on a common surface (no signi�cant overlap).
The interpolation scheme used in the PINT speci�cation is not conservative, and therefore
the solution accuracy can be degraded by this procedure. During code execution, the �rst
time the PINT speci�cation is encountered, the code initiates a search to determine the
interpolation stencil for the given array of points in block LBLOCK1 based on the data
in block LBLOCK2. This stencil is then saved to eliminate the search routine at every
application of PINT. In order to provide storage for the interpolation stencil information,
a separate array system based on the dimensioning parameter NRAINT (see Section 3.3
) is utilized. The PINT boundary condition requires no additional data beyond the initial
speci�cation line, but does require some extra care when used. The primary precaution
is that the PINT procedure is based entirely on a simpli�ed interpolation scheme, and
hence, does not maintain either global or local conservation of 
ow variables across the
mesh interface.

Restrictions/Limitations

The PINT boundary speci�cation is restricted to mesh interfaces which lie on a com-
mon surface (no signi�cant overlap). The PINT procedure is only applicable to 3-D mesh
systems. PINT can not be used across multiple processors in a parallel computing envi-
ronment.

Common Errors

� Failure to provide 2 PINT statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Attempt to use PINT for a periodic boundary (no special spatial periodicity arrange-
ment is available in PINT.

� Attempt to use PINT on a 2-D mesh block.
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� Failure to provide enough storage for thePINT interpolation stencils via theNRAINT
parameter.

� Application of PINT to mesh interfaces which do not share a common surface, or
which have excess overlap.

� Attempt to use PINT across multiple processors in a parallel computing environment.
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SS2DIN

2-D Solid Surface Inviscid No Through-Flow Boundary Condi-
tion

Blade Surface No Through−Flow
Boundary Requires an
SS2DIN Specification
(Illustrated in Boundary
Data File Format Statement
Below)

i

j

2−D Mesh Block #1
(193x13x1)

x

y

Application

The SS2DIN speci�cation is used to impose a no through-
ow inviscid solid surface con-
dition for any solid surface in a 2-D solution. The illustrative graphic above depicts a 2-D
C-type Cartesian mesh system for a planar turbine airfoil cascade. The SS2DIN descriptor
is applied to denote the airfoil no through-
ow surface boundary condition. Applications for
2-D turbmomachinery calculations are typically the endwall (axisymmetric 
ow) or airfoil
(Cartesian 
ow) surfaces.

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundary indicated in the illustrative
graphic for the SS2DIN boundary condition is given below:

SS2DIN 1 1 J J P P I K 1 1 65 161 1 2 65 161 1 2

No additional data beyond the boundary data �le descriptor is required.
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Description

The SS2DIN statement speci�es that a solid surface inviscid (no through-
ow) bound-
ary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The SS2DIN procedure is the 2-D equivalent of SSIN. The
SS2DIN boundary condition may be applied to either rotating or non-rotating surfaces.
The rotational speed of the boundary is irrelevant for an inviscid surface on a properly de-
�ned mesh (either the boundary rotates with the mesh, or, in the case where the rotational
speeds of the mesh and boundary di�er, there is no di�erence in the aplication of an inviscid
surface boundary condition). SS2DIN may be applied for either cylindrical or Cartesian
solution meshes (see the description of the input variable FCART). The SS2DIN algo-
rithm imposes no 
ow normal to the local mesh surface, but permits tangential velocity
components at the boundary. The current SS2DIN algorithm is based on a loose speci-
�cation of the local static pressure ( @p

@n
= 0) and is known to introduce some nonphysical

loss. However, it has been the authors experience that this formulation provides the best
mix of accuracy and reliability for most applications. It should be noted that the SS2DIN
boundary condition is also very useful as a method of imposing a symmetry plane in a solu-
tion for geometries which possess spatial symmetry. Naturally, the mesh must be generated
in a manner which represents this spatial symmetry as well.

Restrictions/Limitations

The SS2DIN boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the SSIN boundary speci�cation).

Common Errors

� Application of SS2DIN to a 3-D mesh system.

� Application of SS2DIN as a symmetry plane condition for a mesh which does not
represent a spatially symmetric geometry.
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SS2DVI

2-D Solid Surface Viscous No-Slip Boundary Condition

Blade Surface No−Slip
Boundary Requires an
SS2DVI Specification
(Illustrated in Boundary
Data File Format Statement
Below)

i

j

2−D Mesh Block #1
(193x33x1)

x

y

Application

The SS2DVI speci�cation is used to impose a no-slip boundary condition for any solid
surface used in a 2-D viscous 
ow solution. The example graphic above illustrates a 2-D
C-type mesh system used to predict the 
ow through a planar 2-D turbine vane cascade.
Applications for 2-D turbmomachinery calculations are typically the endwall surfaces (both
rotating and non-rotating surfaces) for an axisymmetric 2-D solution or non-rotating solid
surfaces in Cartesian 2-D solutions.

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the SS2DVI boundary condition are given below:

SS2DVI 1 1 J J P P I K 1 1 65 161 1 2 65 161 1 2

RPMWALL TWALL
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0.0 0.0

Note that a complete SS2DVI speci�cation requires two additional lines following the
SS2DVI boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common SS2DVI speci�cation error.

Description

The SS2DVI statement speci�es that a solid surface viscous (no-slip) boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The SS2DVI procedure is the 2-D equivalent of SSVI. The SS2DVI bound-
ary condition may be applied to either a rotating or non-rotating surfaces and may indicate
a rotational speed which is di�erent than the rotational speed of the mesh (RPM) to which
the boundary condition is applied. This boundary condition requires the speci�cation of
additional data, as shown in the boundary data format descriptor above. The �rst addi-
tional line following the SS2DVI speci�cation is assumed to be a label and may contain any
information; however, for consistency it is recommended that the labels RPMWALL and
TWALL be used. The next line contains the values imposed for the variables RPMWALL

and TWALL. The value of the RPMWALL variable is the desired solid wall dimensional
rotational speed in revolutions per minute. This value is sign dependent and follows the ori-
entation for rotation as described in Figure 3.10. The variable TWALL determines which

type of temperature condition is applied to the surface. If TWALL=0.0, an adiabatic wall
is assumed. For TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall

Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le variable
TREF.) A value of TWALL<0.0 is not permitted. Naturally, poor convergence or solu-
tion divergence can occur if RPMWALL or TWALL suggest boundary values which are
signi�cantly di�erent from the remainder of the 
ow�eld. In such cases where this occurs,
it is recommended that the solution be started with more conservative boundary values,
and then restarted using the �nal boundary values.

Restrictions/Limitations

The SS2DVI boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the SSVI boundary speci�cation). The boundary rotational speed imposed by
the SS2DVI boundary condition can only be non-zero when using the cylindrical coordinate
solution algorithm in the ADPAC07 code, and may only be applied to axisymmetric 2-D
meshes. When using the Cartesian coordinate solution algorithm (FCART= 1:0), the
boundary rotational speed must be zero (RPMWALL= 0:0 when FCART= 1:0). Refer
to the chapter on input �le parameters for a description of TREF, RPM, and FCART.

Common Errors
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ADPAC Rotational Speed Orientation

xO

r

ADPAC rotation is always about the X axis

RPM (+)
ADVR (+)

RPM (−)
ADVR (−)

Figure 3.10: ADPAC07 rotational speed orientation illustration
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� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a non-zero boundary rotational speed with the Cartesian coordinate
solution algorithm.

� Application of SS2DVI to a 3-D mesh system.
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SSIN

Solid Surface Inviscid No-Through-Flow Boundary Condition

Mesh Block #1
(151x17x11)

Blade Surface No Through−Flow
Boundary Requires an
SSIN Specification

i

k

j

Hub Surface No Through−Flow
Boundary Requires an
SSIN Specification

Application

The SSIN speci�cation is used to impose a no-through-
ow inviscid solid surface condition
for any solid surface in a solution. The graphic above illustrates a 3-D body-centered O-
type mesh system for a turbine vane cascade. For turbomachinery calculations, the SSVI
speci�cation is normally used to de�ne the blade and endwall surfaces (both rotating and
non-rotating surfaces may be described).

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundary indicated in the illustrative
graphic for the SSIN boundary condition is given below:

SSIN 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

SSIN 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17
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No additional data beyond the boundary data �le descriptor is required.

Description

The SSIN statement speci�es that a solid surface inviscid (no through-
ow) boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. The SSIN boundary condition may be applied to either rotating or non-
rotating surfaces. The rotational speed of the boundary is irrelevant for an inviscid surface
on a properly de�ned mesh (either the boundary rotates with the mesh, or, in the case
where the rotational speeds of the mesh and boundary di�er, there is no di�erence in the
application of an inviscid surface boundary condition). The SSIN algorithm imposes no

ow normal to the local mesh surface, but permits tangential velocity components at the
boundary. The current SSIN algorithm is based on a loose speci�cation of the local static
pressure ( @p

@n
= 0) and is known to introduce some nonphysical loss. However, it has been the

authors experience that this formulation provides the best mix of accuracy and reliability
for most applications. It should be noted that the SSIN boundary condition is also very
useful as a method of imposing a symmetry plane in a solution for geometries which possess
spatial symmetry. Naturally, the mesh must be generated in a manner which represents
this spatial symmetry as well.

Restrictions/Limitations

The SSIN boundary speci�cation is restricted to 3-D mesh surfaces (2-D mesh surfaces
should use the SS2DIN boundary speci�cation).

Common Errors

� Application of SSIN to a 2-D mesh system.

� Application of SSIN as a symmetry plane condition for a mesh which does not repre-
sent a spatially symmetric geometry
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SSVI

Solid Surface Viscous No-Slip Boundary Condition

Mesh Block #1
(151x17x11)

Blade Surface No−Slip
Boundary Requires an
SSVI Specification

i

k

j

Hub Surface No−Slip
Boundary Requires an
SSVI Specification

Application

The SSVI speci�cation is used to impose a no-slip boundary condition for solid surfaces
used in a viscous 
ow solution. The graphic above illustrates a 3-D body-centered O-
type mesh system for a turbine vane cascade. For turbomachinery calculations, the SSVI
speci�cation is normally used to de�ne the blade and endwall surfaces (both rotating and
non-rotating surfaces may be described).

Boundary Data File Format

The boundary data �le speci�cations for the hub and blade surfaces in the application
described above and indicated in the illustrative graphic for the SSVI boundary condition
are given below:
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SSVI 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

RPMWALL TWALL

0.0 0.0

SSVI 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17

RPMWALL TWALL

0.0 0.0

Note that a complete SSVI speci�cation requires two additional lines following the SSVI
boundary data �le speci�cation line. Failure to properly specify the data in these additional
lines is a common SSVI speci�cation error.

Description

The SSVI statement speci�es that a solid surface viscous (no-slip) boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The SSVI boundary condition may be applied to either a rotating or non-
rotating surface and may indicate a rotational speed which is di�erent than the rotational
speed of the mesh (RPM) to which the boundary condition is applied (the most common
example of this type of application is a mesh embedded in a rotating blade passage with
an endwall which is non-rotating). This boundary condition requires the speci�cation of
additional data, as shown in the boundary data format descriptor above. The �rst addi-
tional line following the SSVI speci�cation is assumed to be a label and may contain any
information; however, for consistency it is recommended that the labels RPMWALL and
TWALL be used. The next line contains the values imposed for the variables RPMWALL

and TWALL. The value of the RPMWALL variable is the desired solid wall dimensional
rotational speed in revolutions per minute. This value is sign dependent and follows the ori-
entation for rotation as described in Figure 3.10. The variable TWALL determines which
type of temperature condition is applied to the surface. If TWALL=0.0, an adiabatic wall
is assumed. For TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall

Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le variable
TREF.) A value of TWALL<0.0 is not permitted. Naturally, poor convergence or solu-
tion divergence can occur if RPMWALL or TWALL suggest boundary values which are
signi�cantly di�erent from the remainder of the 
ow�eld. In such cases where this occurs,
it is recommended that the solution be started with more conservative boundary values,
and then restarted using the �nal boundary values.

Restrictions/Limitations

The SSVI boundary speci�cation is restricted to 3-D mesh surfaces (2-D mesh surfaces
should use the SS2DVI boundary speci�cation). The boundary rotational speed imposed
by the SSVI boundary condition can only be nonzero when using the cylindrical coordinate
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solution algorithm in the ADPAC07 code. When using the Cartesian coordinate solution
algorithm FCART and/or FCARB= 1:0, the boundary rotational speed must be zero
(RPMWALL= 0:0 when FCART and/or FCARB= 1:0). Refer to the Chapter on input
�le parameters for a description of TREF, RPM, FCARB, and FCART.

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a nonzero boundary rotational speed with the Cartesian coordinate
solution algorithm.

� Application of SSVI to a 2-D mesh system.
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SYSTEM

ADPAC07 UNIX System Call Speci�cation

BBBBBBBBBBBB
BBBBBBBBBBBB
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BBBBBBBBBBBB
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BBBBBBBBBBBB
BBBBBBBBBBBB

ADPAC

@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@

Boundary
Condition
Loop

....

....

....

....

....

....
SYSTEM

Time−Marching Loop

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBB
BBBBBBB

UNIX>

Application

The SYSTEM speci�cation is not a boundary condition as such, but directs the AD-

PAC07 code to perform a UNIX system call at every application of the boundary condition
loop. In the application illustrated above, every time the ADPAC07 code encounters the
boundary condition speci�cation SYSTEM the code is directed to perform a UNIX system
call of the command updatebc, which is presumably a user-speci�ed code used to update
certain boundary variables (see sample format below). This new data could then be im-
ported using the BDATIN boundary speci�cation. The SYSTEM function can quickly
lead to trouble due to the number of times it is called within the time-marching strategy,
and the user should thoroughly review the documentation below before attempting to use
this facility.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the SYSTEM boundary condition are given below:

SYSTEM 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11
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INTERVAL

1

COMMAND

/usr/local/bin/updatebc

Note that a complete SYSTEM speci�cation requires the speci�cation of additional data
beyond the standard boundary speci�cation line.

Description

The SYSTEM statement is provided to permit the speci�cation of a UNIX system call
from within the ADPAC07 code. Once the SYSTEM speci�cation is directed into the
ADPAC07 code, at a speci�ed interval of iterations, during every execution of the bound-
ary condition loop, when the SYSTEM speci�cation is encountered, the code executes
the command provided by the SYSTEM speci�cation and pending successful completion,
continues execution. The SYSTEM speci�cation is based on the FORTRAN intrinsic sys-
tem function which must be available in the compiling system. It should be noted that
the command dictated by the SYSTEM speci�cation could be performed every time the
boundary condition loop is encountered. This suggests that the system call could be made
a minimum of four times for each iteration of the time-marching scheme (for the four stage
scheme). This number can grow rapidly if more complicated iteration strategies are used
such as multigrid, subiterations, etc., and the user should be warned that such redundant
system calls can wreak havoc on an otherwise friendly solution. A SYSTEM speci�cation,
in conjunction with the BDATIN/BDATOU boundary data speci�ers can be e�ectively
combined to provide a run time interface between the ADPAC07 code and an external 
ow
solver.

A SYSTEM speci�cation requires four additional lines in addition to the normal bound-
ary data �le descriptor, as shown above. The �rst additional line simply contains the label
for the iteration interval INTERVAL, followed by the actual value of INTERVAL. The
SYSTEM routine will only be invoked every INTERVAL time-marching iterations. The
next line contains the label for the system call command (COMMAND) variable. The fol-
lowing line contains the actual UNIX command to be issued at every SYSTEM encounter
in the boundary condition loop.

Restrictions/Limitations

Data provided in the SYSTEM speci�cation should represent a valid UNIX system com-
mand. The FORTRAN intrinsic function systemmust be available on the compiling system.
The SYSTEM function is not available on the Cray or nCUBE computers.

Common Errors

� Invalid UNIX system command provided in SYSTEM boundary speci�cation.
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� Failure to provide the additional data INTERVAL andCOMMAND for SYSTEM
speci�cation.

� FORTRAN intrinsic function system unavailable at compile time.

� User unaware that SYSTEM action occurs four or more times per iteration.

� Attempt to use the SYSTEM speci�cation on a Cray, nCUBE, or other incompatible
computer system.
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TRAF

TRAF2D/3DType Non-ContiguousMesh Block Interface Patch-
ing Scheme

Mesh Block #2
(51x11x51)

i
k j

 

 

 
 

Non−Contiguous Mesh Block Interface Along
Wake Cut Line Requires a TRAF Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #1
(193x25x1)

Application

The TRAF speci�cation was developed speci�cally to treat C-type mesh systems for
airfoil cascades with a noncontiguous wake cut line such as those developed using the
TRAF2D/TRAF3D [20] 
ow solver. The example graphic above illustrates a two-dimensional
mesh system used to predict the 
ow through a turbine vane passage. This mesh was gen-
erated using the JERRYC/TOMC mesh generation package which was developed for the
TRAF2D/TRAF3D 
ow solver. The C-type mesh utilizes a noncontiguous wake cut line as
shown in the trailing edge detail. The TRAF speci�cation is applied along either side of
the wake cut line to permit communication of 
ow variables across the noncontiguous mesh
interface.

Boundary Data File Format
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The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the TRAF boundary condition are given below:

TRAF 1 1 J J P P L L 1 1 1 33 1 2 177 193 1 2

TRAF 1 1 J J P P L L 1 1 177 193 1 2 1 33 1 2

Note that a complete TRAF speci�cation generally requires two TRAF statement lines in
the boundary data �le. In the example above, the �rst speci�cation provides the interblock
communication for one side of the C-grid wake cut, while the second speci�cation provides
the communication for the other side of the C-grid wake cut. It is a common error to
underspecify a TRAF boundary by only providing a single line per interface.

Description

The TRAF boundary statement provides a means for block to block communication for
cases involving neighboring mesh boundaries which share a common surface, but are non
contiguous in one grid index. The standard example of this type of mesh is a C-type
mesh about an airfoil where the points along the C-grid wake cut line are noncontiguous.
This type of mesh system has been utilized extensively in the TRAF2D/TRAF3D [20]

ow solver system, and the TRAF boundary speci�cation has been provided to permit
ADPAC07 execution on these meshes. The implied restriction of the TRAF boundary
speci�cation is that the mesh is only misaligned in one coordinate direction, speci�cally the
i coordinate. It is also assumed that the endpoints of the TRAF boundary speci�cation
are contiguous. As such, the TRAF boundary speci�cation is fairly restrictive, and should
not be used as a general purpose misaligned mesh routine. (The BCINT1, BCINTM
and PINT boundary speci�cations are available for connecting generalized misaligned mesh
boundaries.) An example of an appropriate application of the TRAF speci�cation is given
in the illustrative graphic. The TRAF boundary speci�cation is valid for either 2-D or 3-D
mesh blocks. For 2-D mesh blocks, the TRAF speci�cation must be applied to a j=constant
boundary. For 3-D mesh blocks, the TRAF speci�cation must be applied to a k=constant
boundary. The TRAF boundary condition requires no additional data beyond the initial
speci�cation line, but does require some extra care when used. The primary precaution
is that the TRAF procedure is based entirely on a simpli�ed cubic spline interpolation
scheme, and hence, does not maintain either global or local conservation of 
ow variables
across the mesh interface.

Restrictions/Limitations

The TRAF boundary speci�cation is restricted to mesh interfaces which lie on a common
surface (no signi�cant overlap). The TRAF procedure permits only that the i coordinates
between adjacent mesh surfaces are misaligned. The TRAF procedure is only valid if the
misaligned i coordinates either increase or decrease in the x direction monotonically. The
endpoints of the TRAF speci�cation surface must be contiguous. The TRAF speci�cation
may only be applied to j=constant surfaces for 2-D mesh blocks, and k=constant surfaces
for 3-D mesh blocks.
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Common Errors

� Failure to provide 2 TRAF statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,

M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Attempt to use TRAF for a boundary which has 2 misaligned coordinates.

� Attempt to use TRAF for boundaries which are not monotonic in the x direction.

� Application of TRAF to mesh interfaces which do not have contiguous end points.

� Application of TRAF to an i=constant or k=constant mesh surface in a 2-D block.

� Application of TRAF to an i=constant or j=constant mesh surface in a 3-D block.
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3.8 Mesh File Description

The ADPAC07 case.mesh �le is a data �le containing the x; y; z grid coordinates of the
multiple mesh blocks which are read in to de�ne the physical grid points used in the time-
marching solution (see Section 3.5 for a description of the case name and the mesh �le
naming convention). The mesh coordinates are speci�ed in a Cartesian frame of reference,
as shown in Figure 3.11, although the ADPAC07 program may ultimately convert these
coordinates to a cylindrical coordinate system during execution. Regardless of whether the
user intends to utilize the ADPAC07 code in a Cartesian or cylindrical solution mode, the
mesh �le coordinates are always de�ned by the Cartesian coordinates x, y, and z. The
mesh coordinates are stored in what is known as PLOT3D multiple grid format, and are
formatted using the Scienti�c Database Library (SDBLIB). (The SDBLIB system allows
machine-independent binary �le storage.) The case.mesh �le must be available for every
ADPAC07 run. At the beginning of program execution, the ADPAC07 program attempts
to open the mesh �le and read in the mesh size to make sure that enough memory has been
allocated for the given problem. If the mesh �le is not found, or if the mesh is too large,
the appropriate error message is issued, and the program will terminate.

Mesh coordinates are assumed to be nondimensional numbers. The ADPAC07 code
employs a dimensional scaling factor (see input �le variable DIAM) to convert the nondi-
mensional mesh coordinates into dimensional coordinates with units of feet. If the mesh
is generated with units of feet, then the dimensionalizing factor is simply 1.0. Proper
nondimensionalization and speci�cation of the dimensionalizing factor DIAM is required
in order to accurately achieve the desired 
ow Reynolds number and rotational speed (see
the discussion of input variable ADVR is Section 3.6). It is also required that the ordering
of the mesh points form a \left-handed" mesh. This implies that at every point in the mesh,
the vectors representing the positive i, j, and k coordinate directions form a left-handed
coordinate system (see Figure 3.12). Consider the case of a sheared H-grid discretizing a
single blade passage of a compressor (this type of mesh is used extensively in the Standard
Con�gurations described in Chapter 5). If we assume that looking downstream through
the blade passage is essentially the positive i direction, and that the radial direction from
hub to tip is essentially the positive j direction, a left-handed mesh would require that the
positive k direction be from right to left (counterclockwise) in this orientation.

In order to understand the PLOT3D multiple-grid mesh �le format, and the utilization
of the SDBLIB routines, a comparison of the FORTRAN coding for each method is given
below for comparison.

The FORTRAN coding to read a PLOT3D unformatted multiple-block mesh �le might
be given as:

PLOT3D Mesh File Format FORTRAN Coding Example

OPEN(UNIT=IGRID,FILE=FNAME,FORM='UNFORMATTED',STATUS='OLD')

READ(IGRID) MG

READ(IGRID) (IL(L), JL(L), KL(L),L=1,MG)

DO 10 L = 1, MG

READ(IGRID) (((X(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((Y(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),
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Cartesian Coordinate
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Cylindrical Coordinate
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ADPAC Coordinate System Reference
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Figure 3.11: ADPAC07 mesh coordinate reference description
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ADPAC Left−Handed Coordinate Description

ik

All ADPAC Mesh Blocks Must Be
Based on a Left−Handed Indexing System

j

Left−Handed Mesh System

Right−Handed Mesh System

k

j i

Figure 3.12: ADPAC07 left-handed coordinate system description
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. (((Z(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

10 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned below:

IGRID FORTRAN unit number for read statement

FNAME File name for mesh �le

MG number of grid blocks

IL(L) maximum i grid index for block L

JL(L) maximum j grid index for block L

KL(L) maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in block L

An example of the corresponding FORTRAN coding to read an ADPAC07 binary mesh
�le using the Scienti�c Database Library (SDBLIB) routines is given below:

PLOT3D Mesh File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN( IGRID, FNAME, JE )

CALL QDGETI( IGRID, MG , JE )

DO L = 1, MG

CALL QDGETI( IGRID, IL(L), JE )

CALL QDGETI( IGRID, JL(L), JE )

CALL QDGETI( IGRID, KL(L), JE )

ENDDO

IPOINT = 1

DO 10 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDGEEA( IGRID, X(IPOINT), ILENGTH, JE )

CALL QDGEEA( IGRID, Y(IPOINT), ILENGTH, JE )

CALL QDGEEA( IGRID, Z(IPOINT), ILENGTH, JE )

IPOINT = IPOINT + ILENGTH

10 CONTINUE

CALL QDCLOS( IGRID, JE )

A listing of the additional terms used in the coding above is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length ILENGTH

QDGETE SDBLIB routine to get a real number

QDGEEA SDBLIB routine to get a real array of length ILENGTH
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QDCLOS SDBLIB routine to close a �le

IGRID FORTRAN logical unit number for grid input

JE An error trigger; 0 for no error, 6= 0 if an error occurs

IB Integer array containing the IL, JL, and KL grid block sizes

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial memory lo-
cation for a block of data

The x; y; z coordinates are read in as a single-dimensioned array in the SDBLIB for-
mat, and the ADPAC07 program includes a conversion routine (source �le convas.f) which
converts the single dimension array data to a three-dimensional data array.

The mesh �le may be utilized directly with the PLOT3D program when the default
real number size of the compiled PLOT3D code is de�ned as 32 bits (as it is on many
workstations). The corresponding PLOT3D read command for an ADPAC07 mesh �le are:

PLOT3D PROMPT> read/mg/bin/x=case.mesh

Obviously, the user should substitute his/her own case name in the PLOT3D input line.

Unformatted mesh �les may be converted to ADPAC07 format using the MAKEAD-

GRID program described in Chapter 7. It should be emphasized that the phantom cells
used in the application of boundary conditions are automatically de�ned within the AD-
PAC07 code, and the user need not be concerned about generating �ctitious points within
the mesh to accommodate the boundary condition application procedure (mesh points need
only be generated for the actual 
ow domain).

3.9 Body Force File Description

The ADPAC07 body force �le is a data �le containing the blade blockage, body force, and
energy source terms used in a 2-D axisymmetric representation of an embedded blade row
(see 2-D/3-D Solution Concepts, Section 2.3). Individual body force �les contain the cell-
centered blade blockage, body forces, and energy source terms for a speci�c mesh block. As
a result, the �le naming procedure for the body force �le is somewhat di�erent than the
mesh, plot and restart �les, where a single �le contains all the data for a multiple-block
solution (a complete description of the ADPAC07 �le naming procedure is given in Section
3.5).

The terms in the body force �le are stored in binary format, based on the Scienti�c
Database Library routines. (The SDBLIB system permits machine-independent binary
�le storage.) The blockage, body forces, and energy sources are stored as nondimensional
numbers using the nondimensionalization strategy described in the Final Report [21].

In order to understand the body force �le format, and the utilization of the SDBLIB
routines, a representative FORTRAN coding example to read in a body force �le is given
below for comparison.
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Body Force File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN( IBODY, FNAME, JE )

CALL QDGETI( IBODY, NG , ILENGTH, JE )

CALL QDGETI( IBODY, IMX, ILENGTH, JE )

CALL QDGETI( IBODY, JMX, ILENGTH, JE )

CALL QDGETI( IBODY, KMX, ILENGTH, JE )

ILENGTH = IMX * JMX * KMX

CALL QDGETE( IBODY, DUMMY, JE )

CALL QDGETE( IBODY, DUMMY, JE )

CALL QDGETE( IBODY, DUMMY, JE )

CALL QDGETE( IBODY, DUMMY, JE )

CALL QDGEEA( IBODY, BFR (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BFRU (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BFRV (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BFRW (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BFRE (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BL (IPOINT(L)), ILENGTH, JE )

CALL QDGEEA( IBODY, BP (IPOINT(L)), ILENGTH, JE )

CALL QDCLOS( IBODY, JE )

A listing of the FORTRAN variables and their meanings is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGETE SDBLIB routine to get a real number

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IBODY FORTRAN logical unit number for body force �le input

JE An error trigger; 0 for no error, 6= 0 if an error occurs

NG Number of blocks in body force �le (must be 1)

IMX Mesh size+1 in the i coordinate direction

JMX Mesh size+1 in the j coordinate direction

KMX Mesh size+1 in the k coordinate direction

ILENGTH Integer length of an array of data

IPOINT(L) Integer pointer for block L to locate the initial memory lo-
cation for a block of data

BFR Body force for density (continuity equation)

BFRU Body force for axial momentum

BFRV Body force for radial momentum

BFRW Body force for circumferential momentum

BFRE Body force for internal energy
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BL Blockage term

BP Pressure correction term (currently unused)

The body force data are read and written as a single-dimensioned array in the SDBLIB
format, and the ADPAC07 program includes a conversion routine (source �le convas.f)
which converts the one-dimensional array data to three dimension array data.

3.10 Standard Output File Description

The ADPAC07 standard output �le case.output provides information regarding the status
of a particular calculation during code execution. The status information includes startup,
code response to input �les (mesh, restart, standard input, and boundary data), convergence
history, error messages, and output �le generation (plot �les, restart �les, body force �les).
The information given in the standard output �le is essentially self explanatory, so no further
description is given here. A sample output �le is included in the standard distribution of
the ADPAC07 code for the test case described in Appendix A. Additional details may be
found in this Appendix.

3.11 Plot File Description

The ADPAC07 case.p3dabs and case.p3drel plot �les contain predicted absolute and rel-
ative frame of reference 
ow data values, respectively, for each of the mesh points in a
multiple-block mesh ADPAC07 solution. The grid-centered aerodynamic data is obtained
by algebraically averaging the cell-centered data generated by the �nite-volume solver during
the time-marching process. As a result of the averaging procedure, this data can occasion-
ally appear inconsistent at the corners of a mesh block, and should therefore only be used
for graphical viewing, and not for post processing to obtain performance data, mass 
ow
rates, pressure rise, etc. The 
ow plot data are speci�ed in a Cartesian coordinate sys-
tem (velocities are vx; vy; vz) to be consistent with the representation of the mesh �le (see
Section 3.8). The plot �les are written in what is known as PLOT3D multiple grid binary
format. The plot data are formatted using the Scienti�c Database Library (SDBLIB). (The
SDBLIB system permits machine-independent binary �le storage.) The 
ow data are listed
as nondimensional numbers using the nondimensionalization strategy described in the Final
Report [21].

In order to understand the PLOT3D multiple-grid 
ow �le format, and the utilization
of the SDBLIB routines, a comparison of the FORTRAN coding for each method is given
below for comparison.

The equivalent FORTRAN coding for an unformatted PLOT3D 
ow �le could be given
as:

PLOT3D Flow File Format FORTRAN Coding Example

WRITE( ) MG

WRITE( ) (IL(L), JL(L), KL(L),L=1,MG)

DO 20 L = 1, MG
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WRITE( ) EM(L), REY(L), ALF(L), TIME(L)

WRITE( ) (((R (I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RU(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RV(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RW(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RE(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

20 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned below:

MG number of grid blocks

IL(L) maximum i grid index for block L

JL(L) maximum j grid index for block L

KL(L) maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in block L

EM(L) PLOT3D Reference Mach number for block L

REY(L) PLOT3D Reference Reynolds number for block L

ALF(L) PLOT3D Reference angle for block L

TIME(L) PLOT3D Reference time for block L

R (I,J,K,L) � at point (I,J,K) in block L

RU(I,J,K,L) �ux at point (I,J,K) in block L

RV(I,J,K,L) �uy at point (I,J,K) in block L

RW(I,J,K,L) �uz at point (I,J,K) in block L

RE(I,J,K,L) �e at point (I,J,K) in block L

PLOT3D Flow File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN( IFLOW, FNAME, JE )

CALL QDPUTI( IFLOW, MG , JE )

DO L = 1, MG

CALL QDPUTI( IFLOW, IL(L), JE )

CALL QDPUTI( IFLOW, JL(L), JE )

CALL QDPUTI( IFLOW, KL(L), JE )

ENDDO

IPOINT = 1

DO 20 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDPUTE( IFLOW, EM(L) , JE )

CALL QDPUTE( IFLOW, REY(L) , JE )

CALL QDPUTE( IFLOW, ALF(L) , JE )
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CALL QDPUTE( IFLOW, TIME(L), JE )

CALL QDPUEA( IFLOW, R (IPOINT), ILENGTH, JE )

CALL QDPUEA( IFLOW, RU(IPOINT), ILENGTH, JE )

CALL QDPUEA( IFLOW, RV(IPOINT), ILENGTH, JE )

CALL QDPUEA( IFLOW, RW(IPOINT), ILENGTH, JE )

CALL QDPUEA( IFLOW, RE(IPOINT), ILENGTH, JE )

IPOINT = IPOINT + ILENGTH

20 CONTINUE

CALL QDCLOS( IFLOW, JE )

A listing of the additional terms used in the coding above is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDPUTI SDBLIB routine to write an integer

QDPUTE SDBLIB routine to write a real number

QDPUEA SDBLIB routine to write a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IFLOW FORTRAN logical unit number for 
ow input

JE An error trigger; 0 for no error, 6= 0 if an error occurs

IB Integer array containing the IL, JL, and KL grid block sizes

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial memory lo-
cation for a block of data

The plot �les may be utilized directly with the PLOT3D program when the default
real number size of the compiled PLOT3D code is de�ned as 32 bits (as it is on many
workstations). The corresponding PLOT3D read commands for an ADPAC07 mesh and

ow �le are:

PLOT3D PROMPT> read/mg/bin/x=case.mesh/q=case.p3dabs

Obviously, the user should substitute his/her own case name in the PLOT3D input line.

For solutions employing the two-equation k-R turbulence model, an additional PLOT3D-
compatible �le is written for plotting the turbulence parameter data. The case.p3d2eq �le
is identical in format to that given above except that the variables RU and RV are replaced
with the turbulence parameters �k and �R, respectively. The user must be cautioned to
avoid using this �le in conjunction with PLOT3D functions which require speci�cation of
all the velocity components (pressure and temperature are two examples).

3.12 Restart File Description

The ADPAC07 restart �le is a data �le containing the cell-centered 
ow variables generated
during an ADPAC07 solution. This �le is intended to permit continued execution of the
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code from the point at which a previous calculation was terminated. This feature permits
breaking large jobs into smaller computational pieces. This process of job restarting is
considered a good practice to avoid loss of data due to computer malfunctions and job
quota limitations. At the end of a given job, whether the calculation is a restart run or not,
the ADPAC07 program will attempt to write out the current cell centered data to the �le
case.restart.new (see Section 3.2 for a description of the �le naming convention). The restart
�le may then be used to continue the calculation at this same point by simply renaming
the �le case.restart.new to case.restart.old, setting the input trigger appropriately (see the
description of FREST in Section 3.6), and rerunning the code. The restart data are written
in either the cylindrical or Cartesian coordinate system depending on the variable format
used during execution of the ADPAC07 code for each particular mesh block. Velocities
are speci�ed as either vx; vy; vz (Cartesian) or vx; vr; v� (cylindrical), and all 
ow variables
utilize the nondimensionalization strategy described in Section 1.2 of the companion Final
Report [4].

In order to demonstrate the format of the restart �le, a sample of the FORTRAN coding
utilizing the SDBLIB library required to read a restart �le is given below.

ADPAC07 Restart Flow File Format FORTRAN Coding Example

CALL QDOPEN( IREST, FNAME, JE )

CALL QDGETI( IREST, MG , JE )

DO 1 N = 1, MG

CALL QDGETI( IREST, IMX(N), JE )

CALL QDGETI( IREST, JMX(N), JE )

CALL QDGETI( IREST, KMX(N), JE )

1 CONTINUE

DO 10 N = 1, MG

LENGTH = IMX(N) * JMX(N) * KMX(N)

CALL QDGEEA( IREST, R (IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RU(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RV(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RW(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RE(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, P (IJK(N)), LENGTH, JE )

10 CONTINUE

NLENGTH = MG

CALL QDGEIA( IREST, NCYC , NLENGTH , JE )

CALL QDGEIA( IREST, DTHETA , NLENGTH , JE )

CALL QDGEIA( IREST, OMEGAL , NLENGTH , JE )

optional additional data for implicit calcaulations

CALL QDGETI( IREST, IDATA, JE )

DO 20 N = 1, MG

LENGTH = IMX(N) * JMX(N) * KMX(N)

CALL QDGEEA( IREST, RM1 (IJK(N)), LENGTH, JE )
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CALL QDGEEA( IREST, RUM1(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RVM1(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RWM1(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, REM1(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RM2 (IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RUM2(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RVM2(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, RWM2(IJK(N)), LENGTH, JE )

CALL QDGEEA( IREST, REM2(IJK(N)), LENGTH, JE )

20 CONTINUE

CALL QDCLOS( IREST, JE )

Each of the terms used in the FORTRAN code given above are de�ned below:

MG number of grid blocks

IMX(L) maximum i grid index for block L

JMX(L) maximum j grid index for block L

KMX(L) maximum k grid index for block L

R (IJK(L)) � at point IJK(L) in block L

RU(IJK(L)) �ux at point IJK(L) in block L

RV(IJK(L)) �uy at point IJK(L) in block L

RW(IJK(L)) �uz at point IJK(L) in block L

RE(IJK(L)) �e at point IJK(L) in block L

P (IJK(L)) pressure at point IJK(L) in block L

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length ILENGTH

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IREST FORTRAN logical unit number for restart input

JE An error trigger; 0 for no error, 6= 0 if an error occurs

IB Integer array containing the IMAX, JMAX, and KMAX grid block
sizes

ILENGTH Integer length of an array of data

IJK(L) Integer pointer for block L to locate the initial memory location
for a block of data

NCYC Iteration number when restart �le was written

DTHETA Block rotation increment (��)

OMEGAL Block rotational speed (nondimensional)
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IDATA Implicit restart data trigger (0-no implicit data, 1-restart data
follows)

RM1 (IJK(L)) � at point IJK(L) in block L (N-1 time level)

RUM1(IJK(L)) �ux at point IJK(L) in block L (N-1 time level)

RVM1(IJK(L)) �uy at point IJK(L) in block L (N-1 time level)

RWM1(IJK(L)) �uz at point IJK(L) in block L (N-1 time level)

REM1(IJK(L)) �e at point IJK(L) in block L (N-1 time level)

RM2 (IJK(L)) � at point IJK(L) in block L (N-2 time level)

RUM2(IJK(L)) �ux at point IJK(L) in block L (N-2 time level)

RVM2(IJK(L)) �uy at point IJK(L) in block L (N-2 time level)

RWM2(IJK(L)) �uz at point IJK(L) in block L (N-2 time level)

REM2(IJK(L)) �e at point IJK(L) in block L (N-2 time level)

The restart data are read as a single-dimensioned array in the SDBLIB format, and the
ADPAC07 program includes a conversion routine (source �le convas.f) which converts the
one-dimensional array data to three-dimensional array data.

For solution employing the iterative implicit time-marching algorithm, several time levels
of data must be stored in the restart �le to properly restart the solution. The additional
time levels of data are stored immediately following the current time level data and a simple
trigger variable (IDATA, above) which informs the code of the existance of the additional
time level data. If no additional data are present in the restart �le, and an implicit solution
is being restarted, the code initializes the additional time level data arrays with the best
available values.

3.13 Convergence File Description

The ADPAC07 convergence history �le case.converge (see Section 3.5 for a description of
the ADPAC07 �le naming convention) is an ASCII data �le which contains the residual
convergence history of the time-marching solution. The residual history is useful for deter-
mining whether the numerical solution has converged su�ciently to permit interrogation of
the numerical results, or whether additional restarted calculations are required to obtain
an accurate solution. Typically, a solution is deemed converged when the residuals have
been reduced by three orders of magnitude or more. The data in the case.converge �le are
organized in the following format:

CYCLE MAXIMUM RMS MASS MASS PRESSURE ADIABATIC NUMBER NUMBER

NUMBER ERROR ERROR INFLOW OUTFLOW RATIO EFFICIENCY SS PTS SEPPTS

------ --------- --------- -------- -------- --------- --------- ------ ------

301 -2.17895 -5.52081 3.46778 3.46781 1.58615 0.88737 308 0

302 -2.42051 -5.57462 3.46777 3.46656 1.58762 0.89150 315 0

303 -2.65891 -5.64842 3.46774 3.46646 1.58949 0.89685 317 0

304 -2.78033 -5.71740 3.46765 3.46781 1.59123 0.90145 320 0

. . . . . . . . .
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. . . . . . . . .

. . . . . . . . .

The residual R at any cell in the �nite volume solution is calculated as the sum of the
changes in the 5 conservation variables �, �u, �v, �w, and �e. The maximum residual is then
de�ned as the maximum of all the residuals over all the cells of all mesh blocks. The root-
mean square residual is the square root of the sum of the squares of all the cells for all mesh
blocks. The case.converge �le residual data are reported as the base 10 logarithm of the
actual residuals in order to quickly evaluate the convergence of the solution (if the reported
log10 maximum residual starts at -2.5 and ends up at -5.5, the solution has converged
three orders of magnitude). Several additional data are also output to the convergence
�le based on 
ow parameters occurring across in
ow and out
ow boundaries. Since many

ow cases involve a single inlet and a single exit, a useful measure of convergence is the
di�erence between the inlet and exit mass 
ow rate, and how much the mass 
ow rate varies
from iteration to iteration. For 2-D Cartesian 
ow calculations a unit depth (1.0 in mesh
coordinates) is assumed for the third coordinate direction to determine the mass 
ow rate.
For 2-D cylindrical 
ow calculations, the geometry is assumed to be axisymmetric (in the x-
r plane) and a multiple of 2� is used in the mass 
ow integration (the mass 
ow is computed
as if the full circumference of the axisymmetric geometry were employed). Data are provided
in the convergence �le for the sum of all mass crossing any in
ow boundary (INLETG,
INLETG, INLETT, INLETM, INLETR and all mass crossing any exit boundary
EXITG, EXITX, EXITT, EXITP. The pressure ratio, or ratio of mass-averaged total
pressures from all inlet and exit boundaries is also reported in the convergence �le, as
well as the adiabatic e�ciency computed based on mass-averaged total temperature and
total pressure of the in
ow and out
ow boundaries, respectively. Finally, the number of
computational cells with supersonic 
ow and the number of computational cells indicating
separated 
ow (negative vx) are also reported in the convergence history �le.

The case.converge �le is formatted in columns to permit convenient plotting using any
of a number of x-y plotting programs (the FULLPLOT program described in Reference [6]
is one example).

In the event that the k�R turbulence model is enabled (F2EQ==1.0), the convergence
characteristics of the turbulence transport equations is output immediately following the
convergence characteristics of the continuity, momentum, and energy equations at every
iteration. This \alternating line" output somewhat complicates the contents of the conver-
gence �le, but has been found useful to simultaneously monitor both the momentum and
turbulence transport equation convergence characteristics.

3.14 Image File Description

The ADPAC07 graphics display system (see Chapter 9) has the capability of saving a raster
image of the local graphics screen to a �le at speci�c iteration intervals using the Silicon
Graphics image �le format. This feature is included as a simple means of constructing 
ow-
�eld animations. The input variables dealing with this facility FGRAFIX, FGRAFINT,
FIMGSAV, FIMGINT are described in Section 3.6, and the image �le naming conven-
tion is described in Section 3.5. In short, image �les can be saved when the graphics display
system is running on a single Silicon Graphics workstation or across a network between
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two Silicon Graphics workstations supporting the IRIX Operating System Version 4.0.1 or
above, and also supporting the IRIX scrsave command. Image �les can be viewed after
they have been saved by issuing the command

ipaste case.img.#

Other Silicon Graphics IRIX Operating System-speci�c commands such as imgview, movie
and others may also be suitable for viewing image �les. Additional information on the IRIS
image format and the image manipulation commands are available in the Silicon Graphics
system documentation.

3.15 Running ADPAC07With 2-Equation TurbulenceModel

3.16 2-Equation Turbulence Model Solution Sequence

In order to run ADPAC07 with the two-equation k�R turbulence model enabled, the follow-
ing steps must be taken. First, the input �le trigger F2EQ must be enabled (value=1.0).
This activates the additional partial di�erential equation solution scheme for the k � R
model. Note that this completely disables the standard algebraic (Baldwin-Lomax) tur-
bulence model and the wall function formulation. The lack of wall functions implies that
the mesh must be su�ciently re�ned to adequately resolve the inner (laminar sublayer)
of the turbulent boundary layer 
ow. There is, at present, no built in mechanism in the
ADPAC07 code to verify that this restriction has been met, and it is therefore up to the
user to perform this check. In addition to the modi�ed input �le, the boundary data �le
must also be modi�ed slightly. The boundary data �le modi�cations apply only to in
ow
boundary speci�cations, speci�cally the boundary descriptor INLETG. At present, only
the INLETG speci�cation may be used to properly de�ne an in
ow boundary in the k�R
solution. Since the k�R turbulence model is based on transport equations, it is necessary
to properly specify the in
ow values of k and R much in the same manner that other in-

ow properties (total pressure, etc) must be speci�ed. The in
ow values for k and R are
speci�ed on the 2 lines following the INLETG speci�cation as shown in the example below:

INLETG 1 1 I I P P J K 1 1 1 73 1 2 1 73 1 2

PTOT TTOT AKIN ARIN

1.0 1.0 0.0001 0.001

Here, the extra variables labeled as PTOT, TTOT, AKIN, ARIN are the inlet non-
dimensional total pressure, total temperature, turbulent kinetic energy (k), and turbulent
Reynolds number (R), respectively. Note that AKIN and ARIN are also input as non-
dimensional variables using the non-dimensionalization scheme previously described. Typi-
cal values ofAKIN andARIN are 0.0001 and 0.001, respectively. More accurate values for
speci�c cases where detailed in
ow turbulence characteristics are known can be determined
based on the de�nitions of k and R.

The modi�cations described above are all that is necessary to initiate the 2-equation tur-
bulence model solution sequence. Unfortunately, only a limited amount of experience with
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this turbulence model is available to guide the user in case a problem arises. The behavior of
the partial di�erential equations can be monitored in both the standard output and conver-
gence �le iteration histories of maximum and RMS residual. Separate convergence history
lines are tabulated by the ADPAC07 code for the k and R transport equations. This data
is printed immediately following the continuity, momentum, and energy equation residual
information at each iteration. It should be mentioned that the multigrid solution strat-
egy employed to solve the continuity, momentum, and energy equations is not completely
enabled for the k � R transport equations. This is an area of algorithmical research and
may be completed in future releases of the ADPAC07 code. The \full" multigrid solution
initialization sequence is available to rapidly initiate the k�R equation solution variables.

The best practice found to date in employing the k �R solution scheme is to run the
code with relatively small values ( 3.0) of the input variable CFL and run large numbers
of iterations. The full multigrid start-up procedure has been found to be somewhat helpful
(FFULMG=1.0). The k � R solution scheme converges relatively slowly, and make take
2-3 time the number of iterations as the algebraic turbulence model to completely converge.
In addition, the cost of a given iteration when the k�R turbulence model is enabled may be
up to 40% greater than a corresponding iteration using the algebraic turbulence model. It
should be noted that there is no added numerical dissipation in the k�R solution scheme.
A naturally dissipative �rst order upwind di�erencing is used in the discretization of the
convective 
uxes in the k � R equations. This implies that the input variables VIS2,
VIS4 have no e�ect on the two-equation turbulence model solution sequence. Implicit
residual smoothing is applied to the k�R equations, and therefore the variables CFMAX,

EPSX, EPSY, EPSZ, FRESID can drastically alter the k � R convergence behavior.
The k �R solution scheme cannot currently be restarted which is a serious drawback for
three-dimensional applications which require large amount of CPU time. Finally, upon
completion, a PLOT3D-based data �le representing the mesh point-averaged data �, �k,
�R, and �turbulent is written to the �le casename.p3d2eq. This �le, in conjunction with
the ADPAC07 mesh �le (casename.mesh) may be employed to graphically examine the
predicted turbulence characteristics of the 
ow�eld.

In the event that the k � R solution sequence diverges, or simply does not converge,
the best known handle to stabilize the solution is controlled by the input variable CFL.
Generally, lowering the value of CFL will help stabilize the solution. Unfortunately, this
also decreases the convergence rate of the solution and increases the overall CPU time
required for a given run. Limited experience with this model, and interruptions in the AD-
PAC07 development schedule prevented a more thorough implementation of this promising
model.

3.17 Troubleshooting an ADPAC07 Failure

The ADPAC07 code contain a large number of error checking and handling facilities to
determine and report to the user when a problem in the calculation occurs. Unfortunately,
some problems simply cannot be detected and it may occur that for a particular case the
solution will diverge (uncontrolled increase in solution residual) or simply \blow up" as a
result of numerical di�culties or an invalid numerical operation (divide by zero for example).
These cases are notoriously frustrating for the user because the cause is often di�cult to
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identify. The paragraphs below attempt to provide a structured approach to rectifying
numerical problems for an ADPAC07 run based on the author's experience.

Step 1.) Carefully Check the ADPAC07 Input File for Errors

The ADPAC07 standard input �le controls the overall characteristics
of the computational process, and as such, plays a large role in determining the behavior
of a job. Typical parameters to check are to make sure that the CFL variable is negative
for steady state calculations, and positive for time-accurate calculations, and to make sure
that the absolute value is not too large (5.0 is a typical magnitude). If the CFL value is
greater than theCFMAX variable, or generally if the magnitude ofCFL is larger than 2.5,
then residual smoothing must be activated (FRESID=1.0, the default value). Naturally,
the values for VIS2 and VIS4 should also be within their suggested limits. A common
problem for rotating geometries is an incorrect rotational speed, or simply the wrong sign
on the rotational speed (rotating the wrong way), so check the values of RPM and/or
ADVR carefully. The user can also selectively turn o� features such as the turbulence
model (see FTURBB) and/or multigrid (see FMULTI) to check on their in
uence on the
stability of the solution. Finally, the user should make sure that the proper CASENAME

and DIAM variables are speci�ed in the input �le. Other problems are discussed in the
individual input �le variable descriptions in Section 3.6.

Step 2.) Carefully Check the ADPAC07 Boundary Data File for Er-

rors

The ADPAC07 boundary data �le controls the application of bound-
ary conditions on the various mesh surfaces necessary to de�ne the 
ow characteristics of
an ADPAC07 run. Common errors in the boundary data �le include mismatched PATCH
speci�cations, incorrectly specifying in
ow data (particularly when INLETT is used), and
incorrectly specifying rotational speeds for solid surfaces using SSVI. If the solution will
run for a few iterations, it may be helpful to get a PLOT3D output �le at this point and
examine the solution using PLOT3D or FAST. Check for obvious solution features such
as 
ow going the right direction, 
ow that doesn't penatrate a solid boundary, contour lines
matching at PATCH boundaries (although contour lines may not match exactly at any
mesh corner), and obvious radical changes in 
ow variables (total pressures and/or total
temperatures which are very large or negative). The user can often trace a faulty boundary
condition by selectively commenting several speci�cations from the boundary data �le and
rerunning to see if the same problem occurs. If the solution diverges even when no boundary
conditions are speci�ed, then a problem exists in the mesh or input �le. Other boundary
condition speci�c common errors are discussed in the individual boundary data �le variable
descriptions in Section 3.7.

Step 3.) Carefully Check the ADPAC07 Mesh File for Errors The

immediate question to be answered when a mesh problem is suspected is \does the mesh
�le exist?". The user should verify the existance of the �le with the proper name in the
current working directory. The size of the �le should be examined (obviously a �le of length
0 is unacceptable). The user can next check to make sure the �le can be read with the
PLOT3D [14] graphical plotting program. Any mesh �le which has been created using
the PLOT3D binary �le write option is not acceptable due to the format of the Scienti�c
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Database Library (although it can be made so by appending 1024 bytes of any data to the
end of the mesh �le). The MAKEADGRID program is available to convert unformatted
mesh �les to ADPAC07 compatible mesh �les.

Most common problems encountered when the ADPAC07 code does
not perform adequately can be traced to poor mesh quality. Although the mesh may be free
from obvious 
aws such as crossed mesh lines and/or zero volumes, this does not guarantee
that numerical di�culties will be avoided. The most common overlooked features of mesh
quality are the mesh expansion ratio and the mesh shear angle. Mesh expansion ratio
relates to the change in physical mesh spacing along a given coordinate direction from one
point to another. For stability, the maximum mesh expansion ratio at any point should
not exceed 1.3. The ADPAC07 code provides a listing of maximum mesh expansion ratios
for each grid block and issues a warning if the mesh expansion ratio exceeds 1.3. The
code can tolerate larger ratios in many cases, but de�nite problems can be expected if the
maximum expansion ratio gets larger than 2.0. Mesh shear can also cause problems. The
more orthogonal the mesh, the less likely mesh-induced numerical di�culties will occur.
Another potential mesh problem involves mesh cells with very small radii (such as along a
sting upstream of a propeller, etc.) which may require increasing the diameter of the sting
to prevent problems. Application of the multigrid iteration strategy and reducing the value
of EPSY in the input �le have been found to be e�ective remedies for such problems.

Step 4.) Check for the Possibility of an Invalid Flow Condition

The author's experience has been that many users feel if a problem
can be de�ned then it should possess a solution. In 
uid dynamics this is certainly not
true. If a solution is attempted for a fan rotor, for example, at a pressure ratio which is
beyond the stall point for that rotor, then no solution exists and the code will very likely
diverge without explanation. In many cases, the numerical equivalent of an invalid 
ow
condition is that the solution will either not converge, or will simply diverge. Another
common example is attempting to extract a steady state solution for a problem which is
truly time-dependent. Blunt body 
ows often result in a time-dependent solution due to
vortex shedding, and the steady state analysis of this 
ow will likely never converge. This
behavior also occurs frequently when a strong adverse pressure gradient or 
ow separation is
present in the solution. Now it is true that in some cases, the level of convergence may also
be limited by such factors as mesh quality, numerical accuracy, and/or turbulence model
limit cycles, and it is di�cult to determine whether the cause is numerical or physical. This
is unfortunately a matter of experience and the user is encouraged to question whether their
case can truly have a \steady" solution.

Step 5.) Determine if the Problem is Computer Dependent

The ADPAC07 code was developed and tested on UNIX-based oper-
ating systems using FORTRAN 77 standard coding techniques. In spite of the standardiza-
tion in the computer industry, not all machines produce the same answer for a given problem
due to compiler optimizations and code handling features. It has been the author's expe-
rience that compilers are often a source of problems, particularly when the code has been
compiled for the �rst time on a speci�c architecture, or when a new release of the operating
system or FORTRAN compiler has been installed. Before reporting an unsolvable problem,
it is a good practice to completely recompile the code on a known stable machine with a
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well tested version of FORTRAN without using optimization (the user may be required to
modify the ADPAC07 Make�le to do this). If the code displays the same error, then it is
possible that a bug has been uncovered and this should be reported so future versions do
not encounter the same problem. If the compiler supports static memory allocation, then
this option should be enabled whenever possible.

Step 6.) Determine the e�ect of key input variables

Some \�ne-tuning" of input variables is occasionally required to ob-
tain a converged solution, or to prevent an instability from forming. The following sugges-
tions may be useful to aid in establishing the sensitivity of the solution to various inputs:

6.1 Try to run the problem for a few cycles without any boundary con-
ditions. This is essentially a uniform 
ow test. If the code diverges,
then the problem is either in the input �le or the mesh.

6.2 Vary the parameter CFMAX. Lower values imply more smoothing.
It is possible to have too much smoothing, so both larger and smaller
values should be tested.

6.3 Make sure FRESID is set to 1.0 if the magnitude of CFL is larger
than 2.0.

6.4 Examine and vary the values of VIS2 and VIS4.

6.5 Turn o� all multigrid (FMULTI, FFULMG = 0.0).

6.6 Turn o� the turbulence model FTURBB = 999999999.0. If the
problem still exists, try to run inviscid 
ow (FINVVI = 0.0).

6.7 Clear the input �le and boundary data �le of all speci�cations (ex-
cept the case name, which must be activated). Now, if the code
diverges, there is almost certainly a problem with the grid. Examine
the code output to determine where the maximum error occurs, and
carefully check the grid in this region.

Step 7.) Report the Problem

In the event that no other cause of the problem can be detected, the problem should be
reported to NASA. The recommended contact for problems (or successes) is:

Dr. Chris Miller

Mail Stop 77-6

NASA-Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

(216) 433-6179

cmiller@lerc.nasa.gov

The author is also interested in keeping up with known problems and may be reached at:
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Dr. Ed Hall

Speed Code T-14A

Allison Engine Company

Indianapolis, IN 46206-0420

(317) 230-3722

ehall@nas.nasa.gov

ieeh1@agt.gmeds.com



Chapter 4

RUNNING ADPAC07 IN

PARALLEL

4.1 Parallel Solution Sequence

In order to run ADPAC07 in parallel, ADPAC07 must be compiled for parallel execution.
The chapter on code compilation in this User's Manual describes the proper compilation
procedure.

ADPAC07 is parallelized using the Application Portable Parallel Library (APPL) mes-
sage passing library, developed at NASA Lewis. Reference [22] explains how to write code
using APPL and how to run codes written with APPL. While APPL runs on many plat-
forms, this manual will deal with only two of them: workstation clusters and nCUBE mas-
sively parallel computers. These two platforms are representative of how ADPAC07 runs
in parallel. The APPL document should be consulted for cases not covered in this manual.

Regardless of the platform, running ADPAC07 in parallel requires the APPL compute
function and a procdef �le. Codes running under APPL are not initiated by typing the
executable name, but use the APPL compute function instead. The syntax for executing
ADPAC07 is as follows:

compute < casename.input > output

The compute function controls the execution of ADPAC07 on the various processors,
taking additional input from the procdef �le. The procdef �le contains the names of the
executable images and the processors that they are to be loaded on. The compute func-
tion establishes communications with each processor speci�ed in the procdef �le, loads the
ADPAC07 executable image, and initiates the run on each processor. Also, the compute
function oversees the running processes, monitoring the processors for abnormal termina-
tions. If a communications error is trapped, or if a process has died unexpectedly, the
compute function shuts down all of the remaining processes gracefully. This feature is
most important on workstation clusters, which have no built-in mechanism for monitoring
parallel jobs.

The normal ADPAC07 input �le is redirected from standard input to the compute
function. The redirected input is available to all of the processes (although ADPAC07 cur-
rently does all reading from node 0). The output �le may be redirected, or allowed to
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stream to the terminal, just as in serial.

The procdef �le should appear in the directory where the job is being run. It has a
di�erent syntax for the various parallel platforms. The simplest formulation is for hypercube
machines (nCUBE and Intel). A sample procdef �le for an nCUBE 2 is as follows:

someuser frntend . ./adpacp.ncube -1 32

The �rst token in the procdef �le is the user name (someuser). The second token is
the name of the front-end processor to the nCUBE 2. The third token is the path to
the directory for input and output �les (in this case, the current directory, \." is used).
The fourth token is the executable name (the path may be speci�ed to be sure the correct
executable is used). The �fth token speci�es how the processors are mapped (-1 indicates
hypercube ordering, -2 indicates mapping into a ring). Hypercube ordering is generally
preferred. The last token speci�es the number of processors to be allocated (32 in this
case).

Similarly, a sample procdef �le for a workstation cluster is as follows:

someuser host1 . 1 adpacp.aix

someuser host2 . 1 adpacp.aix

someuser host3 . 2 adpacp.aix adpacp.aix

In this example, the �rst three tokens represent the user name, host name and the path
to the working directory, just as before. The fourth token indicates the number of processes
to be run on the host, and the remaining tokens are the executable images corresponding
to the processes. The last line of the example shows 2 processes running on host3. Using
this procdef �le, the virtual parallel computer will consist of four processes running on three
workstations.

The host machines in a workstation cluster must be connected by ethernet, but do not
have to share disks, or be part of the same subnet. This provides tremendous 
exibility in
constructing a workstation cluster. However, most performance bottlenecks encountered on
workstation clusters involve the network. The bene�ts of adding processors may be o�set
by poor network performance. The tradeo� varies with the problem and with the hardware
con�guration.

In general, the behavior of ADPAC07 in parallel is the same as in serial. This is
especially true if there are no input errors. The output �les may be di�erent if there are
input errors. There are two general types of input errors detected in ADPAC07 . Errors
involving the grid or the input �le will generally be detected by all processors, and the error
messages will appear as they do in serial.

If, however an error is discovered in a boundary condition routine, the output messages
will probably appear di�erently in the output �le, and may not appear at all. Since AD-

PAC07 boundary conditions are applied in parallel, node 0 does not execute all of them,
but only those involving a block assigned to node 0. If node 0 does not encounter the error,
then a di�erent node writes the error message. Since the writing node is out of sync with
node 0, the error message may be written to a di�erent place in the output �le than if node
0 had written it.
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Bu�ering of output on the various processors can also cause a problem. Usually, after
an error message is printed, execution is stopped on all processors. If execution is stopped
before the bu�er is 
ushed, then output may be lost from some processors. The result is
that an error message could be caught in the bu�er and never appear in the output �le. If
ADPAC07 terminates for no apparent reason, this may explain the problem. The solution
is to rerun the job without redirecting the output. If output is not redirected, it is normally
not bu�ered, and all of the output will appear.

It is also possible to get multiple copies of an error message if more than one processor en-
counters the error. Wherever possible, ADPAC07 has been coded to avoid these problems,
but these unfortunate possibilities still exist. Therefore, running ADPAC07 interactively
is the best way to track down input problems.

Aside from these considerations, running ADPAC07 in parallel is very much like running
ADPAC07 in serial. The input �les are identical, and the output �les are very similar. The
most common problems in running ADPAC07 in parallel are failing to use the compute
function, improperly specifying the parallel con�guration in the procdef �le, and attempting
to run a serial executable in parallel.

4.2 SIXPAC (Block Subdivision) Program

SIXPAC , which stands for Subdivision and Information eXchange for Parallel ADPAC
Calculations, enables the user to rede�ne the block structure of an ADPAC07 job. Using
SIXPAC , large grid blocks can be subdivided to improve load balance, or to make use of
smaller memory processors in parallel calculations. SIXPAC generates new input, mesh,
restart, and boundata �les for the subdivided problem, creating new blocks according to
user speci�cations. The resulting �les represent a problem equivalent to the original, but
with more, smaller, blocks. Although the number of unique grid points is unchanged, the
total number of points is larger because of duplication at interfaces.

The motivation for SIXPAC comes from the way ADPAC07 was parallelized. Rather
than parallelize the interior point solver, ADPAC07 was parallelized through the boundary
conditions. An individual block can't be run across multiple processors; each processor must
contain only whole blocks. This implies that a problem with a single large block couldn't
be run in parallel. SIXPAC enables large blocks to be recast as groups of smaller blocks,
so that they can be run in parallel. SIXPAC is not required to run a problem in parallel,
but it simpli�es the process of setting up a problem for optimal parallel performance.

4.2.1 SIXPAC Input

The input �les required by SIXPAC are the casename.input �le, the casename.mesh �le, the
casename.boundata �le, and the casename.sixpac �le. If a new restart �le is to be created,
then a casename.restart.old �le is also required. Of this group, only the casename.sixpac
�le is di�erent from the standard ADPAC07 input.

The casename.sixpac �le contains information which speci�es how the blocks are to be
subdivided. The required information includes the number of original blocks, and how
each block is to be subdivided in each indicial direction (i, j, and k). In each direction,
the number of subdivided blocks, and possibly the locations of the subdivisions, must be
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speci�ed. If the number of subdivided blocks in a particular coordinate direction is set to
1, then the block is not divided in that coordinate direction.

By default, blocks are split into the speci�ed number of equal sized pieces. If there is a
remainder, it is spread over the processors to create nearly equal sized pieces. If unequal
divisions are required in a particular direction, then the location of each division must be
speci�ed in that direction.

Unequal divisions are often employed to preserve levels of multigrid, or to put the edge of
a geometric feature on a block boundary. Figure 4.1 illustrates how di�erent block strategies
a�ect multigrid. If, for example, there are 21 points in the I direction of a block, 3 levels of
multigrid are possible. If this block is divided into two equal pieces of 11 points each, then
only 2 levels of multigrid are possible. However, if the block is split into a block with 13
points and a block with 9 points, 3 levels of multigrid are still possible.

4.2.2 casename.sixpac File Contents

For equal divisions of the blocks in each direction, the casename.sixpac is simple to construct.
The �rst line is a comment, and the second line contains the number of blocks in the original
problem. Input is free format. The third line is a comment, and there is an additional line
for each original block, in ascending order. These lines contain the block number, and
the number of subdivided blocks in each coordinate direction. The following is a sample
casename.sixpac �le:

Number of blocks

2

n idiv jdiv kdiv

1 4 2 1

2 4 2 1

In this example, there are two original blocks. The �rst block is to be divided into 4
pieces along the I coordinate, 2 pieces along the J coordinate, and 1 piece along the K
coordinate. The second block is to be divided into 4 pieces along the I coordinate, 2 pieces
along the J coordinate, and 1 piece along the K coordinate. This means that there will be
a total of 16 new blocks generated from the original 2 blocks.

If, however, user-speci�ed divisions are required in a direction, the casename.sixpac �le
must be modi�ed as follows:

� The number of subdivided blocks in the direction to be speci�ed is set to 0. This tells
SIXPAC that user speci�cations are to follow.

� New lines are added to the casename.sixpac immediately following the block to be
modi�ed. First, a comment line is added, which normally identi�es which direction is
being speci�ed. Second, a line containing the number of subdivided blocks is speci�ed
(either nblki, nblkj, or nblkk, depending on the direction). Third, a comment line is
added, which normally indicates that the following line contains block division points.
Fourth, lines are added containing the division positions for the new blocks. There
should be nblki, nblkj, or nblkk of these entries, as speci�ed above, in free-format.
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Subdivision of Blocks to Preserve Levels of Multigrid

1 11 21

1 2113

Subdivision into two equal pieces results in blocks with 11 points. Only two
levels of multigrid are possible, even though three levels were possible for
the original block.

Subdivision into two unequal blocks, one with 13 points and one with 9
points, yields a grid capable of three levels of multigrid, like the original
block.

1 11 1 11

1 13 1 9

Figure 4.1: Careful block division can preserve levels of multigrid.
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� The block division positions are the upper limits of the new blocks in terms of the
original block indices. The last division should be the block size in that direction.

� Block division positions must be speci�ed in ascending order.

� If user-speci�ed subdivisions are required in more than one direction of a single block,
then the additions are made in \natural order," that is I �rst, then J and K, as required.

� All blocks must appear in the casename.sixpac �le in ascending order.

SIXPAC has some sanity checks built in to warn users of problems in the casename.sixpac
�le. A sample casename.sixpac �le appears below. (Note: free format input so alignment
is not important).

Number of blocks

2

n idiv jdiv kdiv

1 4 0 1

number of J divides

2

J break points

3 10

2 4 2 1

As before, there are two original blocks. The �rst is to have 4 I divisions, 2 J divisions
and 1 K division. The J divisions are to be at J=3 and J=10 in block 1. The second block
is to have 4 I divisions 2 J division and 1 K division. This means that there will be a total
of 16 new blocks generated from the original 2 blocks.

4.2.3 Restart Files in SIXPAC

If a restart �le is to be created for the subdivided problem, the input trigger FREST
must be set equal to 1.0 in the casename.input �le. This tells SIXPAC to look for a
casename.restart.old �le, and to subdivide it. A Ncasename.restart.old �le is written, and
the new input �le will be set up to run with the new restart �le.

4.2.4 SIXPAC Output

The output �les produced by SIXPAC are the Ncasename.input �le, the Ncasename.mesh
�le, the Ncasename.boundata �le, and the Ncasename.bacpac �le. An Ncasename.restart.old
�le is also created if required. The casename has been prepended by an \N" to avoid
confusion with the original input �les. The new output �les are themselves ADPAC07 input
�les and can be run in either serial or parallel versions of ADPAC07 .

The Ncasename.bacpac �le is not required to run ADPAC07 , but is used by the code
BACPAC , which reassembles the blocks into their original, undivided structure. The
Ncasename.bacpac �le contains information about the way SIXPAC subdivided the blocks.
There is normally no reason for the user to alter the Ncasename.bacpac �le. The form
of the Ncasename.bacpac is described in the section of the User's Manual dealing with
BACPAC input.
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4.2.5 Running SIXPAC

Running SIXPAC is very much like running ADPAC07 . The command syntax is:
sixpac < casename.input > output

The output �le is similar to an ADPAC07 output �le, because the routines to read the
grid, the input �le and the boundary data �le are taken directly from ADPAC07 . One
addition to the output �le is a table of the new grid blocks and their sizes. After verifying
the new block structure created by SIXPAC , the output �le can be discarded.

4.3 BACPAC

BACPAC , which stands for Block Accumulation and Consolidation for Parallel ADPAC
Calculations, reassembles subdivided ADPAC07 �les into their original, undivided form.
It is used in conjunction with SIXPAC , and performs essentially the inverse operation of
SIXPAC . BACPAC can reconstruct mesh, PLOT3D, or restart �les, producing new �les
which are equivalent to what would have been produced had the problem been run with the
original, undivided blocks. Using SIXPAC and BACPAC , a problem can be subdivided
and reconstructed any number of ways to take advantage of available computer resources.

4.3.1 BACPAC Input

BACPAC queries the user for needed information, and reads from standard input (normally
the keyboard). The user is �rst prompted for the casename. The user then selects which
�les are to be reconstructed by entering appropriate responses to questions about each �le.
Due to the potential size of these �les, they are not created by default.

BACPAC expects to �nd a casename.bacpac �le which contains information detailing
how the original problem was subdivided. The casename.bacpac �le is created automatically
by SIXPAC , and requires no modi�cations by the user. However, if SIXPAC was not used
to create the subdivided blocks, the user must construct a casename.bacpac �le in order to
run BACPAC . A sample casename.bacpac �le resulting from the �rst sample SIXPAC input
�le given previously appears below.

2 original number of blocks

imax jmax kmax

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local km

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local km

In the above example, two blocks are subdivided into eight new blocks each (a total of
16 blocks). The dimensions of the original blocks are 73x10x9, and there are 4, 2, and 1
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subdivided blocks in each coordinate direction for each block. The table underneath each
of the original block size declarations shows the original block number, and the new block
number. The global i, j, and k indices are the position of the bottom right hand corner of
the new block in the original block. For example, the point (1,1,1) in the new block 8 is
the same as the point (17,9,9) in the original block 1. The local im, jm, and km indices are
the block size of the new block. This data essentially maps the new blocks into the original
block structure.

4.3.2 BACPAC Output

The output �les produced by BACPAC are the Ncasename.mesh.bac �le, the Ncase-

name.p3dabs.bac and the Ncasename.p3drel.bac �les, and the Ncasename.restart.bac �le.
The .bac su�x is used to avoid confusion with existing �les. Generally theNcasename.mesh.bac
need not be created because it is identical to the original casename.mesh �le. If success-
fully run and converted, the Ncasename.*.bac �les should replace their original problem
equivalents (casename.*) before starting SIXPAC again.

4.4 Parallel ADPAC07 Block/Processor Assignment

Load balancing is a critical issue for parallel computing tasks. While it is beyond the
scope of this program to perform detailed load balancing analyses for every parallel com-
puting platform tested, it seems reasonable to provide some form of control in order to
distribute computational tasks e�ciently across a parallel computing network. In the par-
allel ADPAC07 code, this is best accomplished through manipulation of the block/processor
distribution scheme. By default, the parallel operation of the ADPAC07 code provides an
automatic block to processor assignment by dividing up the blocks as evenly as possible,
and, to the greatest degree possible, assigning sequential block numbers on a given proces-
sor. For example, if 8 blocks were divided between 3 processors, blocks 1, 2, and 3 would be
assigned to process #0, blocks 4, 5, and 6 to processor #1, and blocks 7, and 8 to processor
#2 (note that the processor numbering scheme is 0, 1, 2, etc.). This procedure is nearly
optimal when each block is the same size, and each processor has the same computational
power. Unfortunately, our experience is that block sizes and computational resources often
vary dramatically. In this regard, a system was developed which permits the user to specify
the block to processor assignment through a special input �le (casename.blkproc). A sample
casename.blkproc �le is given below for an 8 block mesh distributed across 3 processors:

number of blocks

8

block # proc #

1 0

2 1

3 1

4 1

5 1

6 2
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7 2

8 2

In the case described by the above �le, block 1 is assigned to processor #0, blocks 2, 3,
4, and 5 to processor #1, and blocks 6, 7, and 8 to processor #2. This block assignment
might be advisable for the case when block 1 is signi�cantly larger in size than the other
blocks, or if processor #0 has less memory or a slower CPU than the remaining processors.
The original block assignment scheme is selected as the default when the casename.blkproc
�le is not present.
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MAKEADGRID PROGRAM

DESCRIPTION

The standard distribution for the ADPAC07 program includes a program called MAKEAD-

GRID which aids the user in setting up a multiple-block mesh �le from isolated unformatted
mesh �les. This program is useful for creating ADPAC07 compatible multiple-block meshes
from mesh generation programs which do not support the use of the Scienti�c Database
Library (SDBLIB). The MAKEADGRID program is an interactive program which queries
the user for the number of blocks to be assembled for the �nal mesh, and then requests a
�le name for each of the individual mesh blocks. The user is then requested to name the
�nal output �le for the ADPAC07 compatible multiple-block mesh. The individual mesh
blocks are assembled in the order in which the mesh �le names are speci�ed, so care must
be taken to order these names appropriately.

5.1 Con�guring MAKEADGRIDMaximumArray Dimensions

Maximum array dimensions in theMAKEADGRID program are set by the FORTRAN PA-
RAMETER statements listed in the source �le makeadgrid.f included with the standard
distribution. The PARAMETER statement and the descriptions of the various parameter
variables appear at the top of the �le as:

C

C

C makeadgrid: This program assembles an ADPAC-compatible mesh file

C from selected other unformatted PLOT3D mesh files

C

C

C Set parameter size for max grid block to be read in

C

C imax --- > maximum number of grid elements in the i coordinate direction

C for any given mesh block

C jmax --- > maximum number of grid elements in the j coordinate direction

231
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C for any given mesh block

C kmax --- > maximum number of grid elements in the k coordinate direction

C for any given mesh block

C nnames - > maximum number of grid blocks for final mesh

C

parameter(imax=251, jmax=82, kmax=53)

parameter(nnames = 100 )

5.2 Compiling the MAKEADGRID Program

The MAKEADGRID program source directory contains a UNIX-based Make�le facility to
automate compilation for a number of machines. In the directory containing the FORTRAN
source of the MAKEADGRID code, compilation is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically interrogates the �le
Make�le for instructions on how to perform the compilation. The option argument may be
any of the variables listed below:

No argument - same as link below.

link This is the standard UNIX system compilation. This option will
deliver a working executable on most UNIX systems which support
standard naming conventions (f77 as the standard compiler, etc.).
The compilation includes basic compiler optimization (f77 -O).

cray This option is utilized when compiling the standard code on a Cray
computer.

aix This option is used when compiling the standard code on an IBM
RS-6000 workstation running the AIX operating system.

5.3 Running the MAKEADGRID Program

Once the code has been compiled, change directories to the location where the case of
interest has been stored. The MAKEADGRID program requires that each individual mesh
block for the �nal mesh be stored separately as a single-grid unformatted PLOT3D �le .

The MAKEADGRID program is invoked by issuing the command:

path/makeadgrid

where path is the relative or absolute pathname of the directory containing the MAKEAD-

GRID executable �le from the current local directory. For example, if the mesh �le is in
the directory
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/usr/people/me/testcase

and the MAKEADGRID executable is in the directory

/usr/people/me/adpac/src/makeadgrid

then the commands

cd /usr/people/me/testcase

/usr/people/me/adpac/src/makeadgrid/makeadgrid

would begin the MAKEADGRID program process.

5.4 Sample Session Using the MAKEADGRID Program

A sample session using theMAKEADGRID program for the mesh illustrated in Figure 2.4 is
given below. In this case, the mesh was originally generated using a proprietary mesh gener-
ation program, and hence, required some manipulation in order to construct the multiblock
mesh for an ADPAC07 solution. The mesh consists of 3 mesh blocks (the O-grid about the
airfoil, and 2 H-grid caps upstream and downstream of the O-grid) named block1.mesh,
block2.mesh, and block3.mesh. The MAKEADGRID session used to create the �nal
mesh named vbivane.mesh is listed below. The user responses to the MAKEADGRID

program are given in boldfaced type.

************************************************

MAKEADGRID - construction program for

creating ADPAC mesh files

from selected PLOT3D unformatted

mesh files.

************************************************

Enter the number of blocks

3

Enter the name of the 1 grid to process

(Remember: each file must be unformatted PLOT3D style



234 MAKEADGRID Program Description

block1.mesh

Enter the name of the 2 grid to process

(Remember: each file must be unformatted PLOT3D style

block2.mesh

Enter the name of the 3 grid to process

(Remember: each file must be unformatted PLOT3D style

block3.mesh

Getting grid sizes and extra info from grid files

Loop= 1 mg= 0 il,jl,kl= 129 33

33

Loop= 2 mg= 0 il,jl,kl= 17 33

17

Loop= 3 mg= 0 il,jl,kl= 17 33

17

Enter the file name for the final grid

vbivane.mesh

Final grid data in file

vbivane.mesh

Output file array size

Loop = 1 --> 129 33 33

Loop = 2 --> 17 33 17

Loop = 3 --> 17 33 17

Array sizes output to final file
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Reading Grid Data from file

block1.mesh

il, jl, kl ---> 129 33 33

Output grid data to final file

Reading Grid Data from file

block2.mesh

il, jl, kl ---> 17 33 17

Output grid data to final file

Reading Grid Data from file

block3.mesh

il, jl, kl ---> 17 33 17

Output grid data to final file

PROGRAM COMPLETED NORMALLY
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ADPAC07 INTERACTIVE

GRAPHICS DISPLAY

The ADPAC07 program is equipped with an option which permits real time interactive
graphics display of 
ow data in the form of colored contours or velocity vectors on geometries
represented by wiremesh grid surfaces. The interactive graphics are based largely on routines
generated from the PLOT3D visualization program, and many of the features of this option
should be familiar to anyone who has used PLOT3D. All interactive graphics must be
displayed on a Silicon Graphics workstation, IRIX Operating System 4.0.1 or above. The
graphics display can be operated on a single computing platform, or can be directed across
a network for speci�c computer hardware con�gurations. Thus, it is possible to have a
job running remotely on a Cray computer, with interactive graphics displayed locally on a
network-connected Silicon Graphics workstation. When operating across a network which
involves a non-Silicon Graphics computer, the communication programAGTPLT-LCLmust
be running on the local display device in order to capture the graphics commands issued
by the remote compute server (details on AGTPLT-LCL are given below). A graphic
illustrating the possible graphics display operating modes is given in Figure 6.1. It should be
mentioned that the interactive graphics display was actually developed to aid in debugging
the multiple block code. The description of this feature is included in this manual for
completeness, but the user should be cautioned due to the immature nature of this portion
of the code. It is also likely that the graphics option may not port correctly to future
releases of the IRIX operating system, and again, the user is cautioned concerning the use
of this feature.

6.1 Setting up the Program

The �rst step in producing the real time interactive graphics display is to correctly compile
the code to include the graphics libraries. This is accomplished by utilizing the appropriate
option in the ADPAC07 Make�le command (see Section 3.4). The valid graphics options
include graphics, pfagraphics, craygraphics, aixgraphics, and craygraphdbx. These options
incorporate various levels of the included graphics libraries for execution on various machines
(again, see Section 3.4 for speci�c Make�le details).

Once the code has been correctly compiled to include the graphics libraries, several input
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SGI

ADPAC Interactive Graphics Display
Computer Network Configuration Options

----
----
///
///
///
SGI

SGI

----
----
///
///
///SGI SGI

----
----
///
///
///SGI

SGI

----
----
///
///
///
SGI

ADPACexecution and graphics

display on Silicon Graphics Workstation

ADPACexecution on

remote (non−Silicon Graphics)
Computer

Graphics display on a network−connected
Silicon Graphics Workstation

Ethernet

Graphics Transmission via X−Windows

Display System

/

---
---
---

//
//
//
//
// Graphics display on a network−connected

Silicon Graphics Workstation

ADPACexecution on

Silicon Graphics Workstation

(AGTPLT−LCLmust be running on

this machine)

(Code compiled with CGL

libraries)

(Code compiled with graphics option)

(Code compiled with graphics option)

Graphics Transmission via UNIX socket communication

Figure 6.1: ADPAC07 interactive graphics display network con�guration options



ADPAC07 Interactive Graphics Display 239

parameters must be correctly initiated to engage the graphics subroutines during the exe-
cution of the code. The input keyword FGRAFIX must have a value of 1.0 to initiate any
graphics instructions. The keyword FGRAFINT determines the number of time-marching
iterations between graphics window updates. The keyword FIMGSAV is a trigger (0.0
- o�, 1.0 - on) which determines whether periodic image capturing is enabled, and the
keyword FIMGINT determines the number of time-marching iterations between image
captures. Additional details concerning these input �le keywords are available in Section
3.6.

6.2 Graphics Window Operation

Once the graphics window has been initiated on the local display, and the initial data
has been plotted, the program continues and the graphics display data are updated every
FGRAFINT iterations. This process will continue until the program terminates, or until
the user interrupts the process by pressing the left mouse button once with input focus
directed to the graphics display window. A short time later, (the delay may be quite long
for a network which is burdened), the graphics display will freeze, and the computational
portions of the program will be suspended in order to permit the user to interactively
translate, rotate, or scale the graphics image to their liking. When the display has been
frozen, the viewpoint of the display may be altered by one of several mouse controls. The left
mouse button controls rotation, the right mouse button controls translation, and the middle
mouse button controls scaling (zoom in, zoom out). The controlling mouse movements are
illustrated in Figure 6.2. The mouse-directed viewpoint controls are identical to those used
in PLOT3D [14]. Once the viewpoint has been altered, program control is returned to
ADPAC07 by hitting the ENTER key on the keyboard with input focus directed to the
graphics window. At this point, the code will then return to the process of performing
time-marching iterations, with periodic updating of the graphics screen.

It is also possible for the user to change the plotting function by entering any one of the
following characters with input focus directed to the graphics window at any time during
the process:

Key Result

p Set 
ow function to pressure contours

2 Set 
ow function to velocity vectors

The surfaces plotted by the interactive graphics display is currently hardwired in the code. A
wiremesh representation and the corresponding surface contours are generated for the i=1,
j=1, and k=1 mesh surfaces. This restriction could be removed in future developments.

6.3 AGTPLT-LCL Program Description

The program AGTPLT-LCL is the receiving program for local graphics display of an AD-

PAC07 job running on a remote, network-connected computing platform. The AGTPLT-
LCL program is a modi�ed version of the NASA-AMES developed PLOT3D-LCL program.
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Zoom Out
(Shrink)

Zoom In
(Enlarge)

Screen
Translate

Object
Rotate

ADPAC Interactive Graphics Display Mouse Control

Figure 6.2: ADPAC07 interactive graphics display mouse control
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This program can only be run on a Silicon Graphics Workstation running at level 4.0.1
(or above) of the IRIX operating system. As such, compilation of the AGTPLT-LCL pro-
gram has no options, and is performed simply by executing the command make in the
AGTPLT-LCL source directory. Once initiated, the AGTPLT-LCL program waits for an
outside process from ADPAC07 to communicate with the local workstation, and graphics
commands received from the remote job are displayed locally.

An important consideration in setting up a remote calculation with local graphics display
using AGTPLT-LCL is the manner in which the local display is de�ned in the calculation.
The CGL libraries used to permit the network graphics instructions require an internet
network address in order to properly transmit the graphics commands to the correct desti-
nation. This de�nition should be provided in the standard input �le following the normal
keyword parameters (see Section 3.6 for a sample �le and keyword de�nitions). At the end
of the standard input keyword data, the user should use an ENDINPUT statement to
terminate the normal input stream. The ENDINPUT statement should then be followed
by two blank lines, and then a line containing the destination network address of the lo-
cal Silicon Graphics display device. This speci�cation will ultimately be read by the CGL
libraries in setting up the network connection.

The procedure to set up this network-connected graphics display option would be to start the
job on the remote machine, and then immediately start the AGTPLT-LCL program on the
local display. As long as the correct network address has been entered in the case.input �le,
then the remote program should begin communicating with the AGTPLT-LCL program,
and the local graphics window will begin displaying the graphics instructions speci�ed by
the remote computing program.
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ADPAC07 TOOL PROGRAMS

DESCRIPTION

The standard distribution for the ADPAC07 program includes a number of tool programs
designed to assist in examining and manipulating data generated for an ADPAC07 solu-
tion. Although running these programs is generally self-explanatory, a brief description is
provided below to outline the function of each tool program.

7.1 ADPERF Tool Program Description

The ADPERF tool program was designed to provide a simple post processing program
for computing overall integrated thrust and power coe�cients for unducted fan (propeller)
calculations based on a simple H-type mesh discretization strategy (see Standard Con-
�guration #1 in Chapter 5). Upon execution, the ADPERF program asks the user to
input the name of the ADPAC07 mesh and restart �les for the run of interest. The
ADPERF program then opens and reads both �les, and attempts to estimate the num-
ber of blades in the propeller which the user must then verify (presumably the mesh
represents only a single blade passage of the overall geometry). Following this, the AD-

PERF program asks for the value of the ADPAC07 nondimensional parameters RHO0 and
OMEGA. These values are identi�ed in the ADPAC07 output �le under the following head-
ing:

non-dimensional initial values calculated as:

********************************************

rho0 ( initial density ) = .8498 <-----------

u0 ( initial axial velocity ) = .6643

v0 ( initial radial velocity ) = .0000

w0 ( initial theta velocity ) = .0000

ei0 ( initial internal energy ) = 2.5630

h0 ( initial enthalpy ) = 3.5000

p0 ( initial pressure ) = .7962

t0 ( initial temperature ) = .9370
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dmu0 ( initial viscosity ) = .0000

omega ( rotational speed ) = -.0096 <-----------

The �nal parameter to be entered is the propeller diameter in grid units (if the mesh is
in feet, enter the propeller diameter in feet). Following this, the ADPERF program will
compute the propeller power and thrust coe�cients based on blade static pressure loading.

7.2 ADSTAT Tool Program Description

The ADSTAT tool program was designed to provide statistical information about a mesh or

ow (PLOT3D output) �le from an ADPAC07 run. Upon execution, the ADSTAT program
asks the user to select whether information about a mesh �le (m) or 
ow �le (f) is desired.
In either case, the user is then asked to input the appropriate mesh or 
ow �le name. If
the mesh �le option is selected, the ADSTAT program opens the mesh �le and reports
the number of mesh blocks contained within the �le, as well as the individual mesh block
sizes. The ADSTAT program also computes the maximum allowable number of multigrid
levels (based on mesh size alone) which can be used for an ADPAC07 run. In addition,
the ADSTAT program computes and reports the minimum required ADPAC07 array size
parameters for all allowable number of multigrid levels. This capability is the most useful
feature of the ADSTAT program. If the 
ow �le option is selected, in addition to the above,
the extra 
ow �le data (standard in the PLOT3D �le format) is also reported for each block
(normally this includes the Mach number, angle of attack, Reynolds number, and time).

7.3 AOA2AXI Tool Program Description

The AOA2AXI tool program was designed to compute an axisymmetric average of a 3-D
cylindrical coordinate system solution. The program is restricted to H-type meshes similar
to standard con�gurations #1-3 and in Chapter 5 which possess uniform axisymmetric
projections on each mesh plane in the circumferential direction (this simpli�es the averaging
process). When running AOA2AXI, the user is requested to enter the 3-D mesh and 
ow
(PLOT3D format) �le names. Then, the user is o�ered the option of redimensionalizing
the data, and �nally, the user is requested to enter the 2-D axisymmetric mesh and 
ow
(PLOT3D format) �le names. The AOA2AXI code computes the axisymmetric average of
the 3-D mesh and 
ow �le data and stores the result in the 2-D axisymmetric mesh and

ow �les. These data may then be used with PLOT3D and other graphics visualization
tools to examine the axisymmetric average of the 3-D solution.

7.4 PATCHFINDER Tool Programs Description

An ADPAC07 utility program was developed to aid in the construction of boundary condi-
tion �les for complex, interconnected multiple block mesh systems. The new utility, named
PATCHFINDER, reads in an ADPAC07 mesh (a PLOT3D binary multiple-block grid) and
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determines which blocks share matching faces. As the grid is read, the faces are striped o�
into a separate array. Individual points on these faces are compared until a \point" match is
found. Neighboring points are then compared to �nd a \cell" match. This also determines
the relative directions of the matching indicies. From this cell match, a common face area
is swept out and a PATCH boundary condition statement is written using the bounding
indicies of the common face area.

After all the PATCH speci�cations have been written, any remaining surfaces not ac-
counted for will have a solid surface wall (SSVI) boundary condition written out. This
allows the user to simply replace a few solid wall statements with the proper inlet and exit
boundary conditions and start running. The PATCHFINDER user input �le contains ap-
proximately ten variables to customize a PATCHFINDER run to each grid although many
grids can be processed without special input. Since the majority of boundary conditions
prescribed in most geometries are block patches and solid walls, running PATCHFINDER

will greatly simplify the generation of a boundary data �le.

Several methods were implemented to accelerate the PATCHFINDER search and compare
process. Some of these methods include using multi-grid and bounding cube limits. If
a mesh is created to be run with ADPAC07 using multi-grid, this can also be used to
accelerate PATCHFINDER since boundary conditions must be consistent across multi-grid
levels. Each level of multi-grid decreases the number of face points by a factor of 4; therefore,
with 3 levels of multi-grid a decrease in run time of roughly sixteen times can be expected.
The bounding cube limit method creates a limiting cube enclosing all the cell centers of
a block face. Before any individual face points are checked, the corresponding bounding
cubes are checked for intersection. If the cubes do not intersect, then no matching points
are possible; this greatly reduces the number of individual point searches.

Several test cases were run using PATCHFINDER. These included both 2-D and 3-D geome-
tries with and without multi-grid. Each of these runs was timed to evaluate the e�ciency
of the program. The resulting approximate wall clock times are shown in the table in Fig-
ure 7.1. All cases were run on the same machine under similar conditions so that relative
comparisons can be made. Most of the test cases using multi-grid �nished in under two
minutes. One of the largest and most complex test cases was based on a mesh with over
480,000 points and over 800 matching faces. PATCHFINDER was able to correctly identify
all the patches in under 17 minutes (on a Silicon Graphics 4D-35 workstation) as opposed
to the approximately two days required to correctly specify the PATCH connections by
hand. The PATCHFINDER time was limited in this case since the grid contained only one
level of multi-grid. From the times recorded in the table, the advantage of using multi-grid
becomes apparent.

7.5 PLOT3D Tool Programs Description

A number of tool programs originally generated for the PLOT3D program are included with
the ADPAC07 distribution because of their usefulness in manipulating ADPAC07 mesh
and 
ow (PLOT3D output format) �les. A brief description of these codes is given below.
It should be noted that most of these programs are designed to deal with unformatted
�les, rather than the ADPAC07 standard binary format. Fortunately, the PLOT3D or
BIN2UNF tool programs can be used to convert from ADPAC07 binary to unformatted,
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Test Case Grid Grid

Points

Multi−Grid

Levels

Block

Faces

PATCH(es)

Written

Elapsed

Time

2−D Axisymmetric 5,438 36 3 12 0:02
Seal Cavity (Phadke/Owen #5)

O−Grid Capped 34,595 18 1 16 11:14
with H−Grids

Combustion Can 160,040 72 3 72 0:07

Exhaust Mixer 197,190 36 2 22 1:23

Vane Blade Interaction 232,645 30 3 30 0:19

Rotor−Stator−Rotor 259,777 258 2 214 1:05
with Seal Cavity Grid
(Unsteady, Multiple Pitches)

Airplane            483,876 618 1 808 16:31

AE3007 Fan with 642,479 21 3 50 1:46
5−Groove Casing Treatment

Rotor−Stator−Rotor 715,001 90 3 62 1:44
with Seal Cavity Grid

Figure 7.1: Approximate wall clock run times for various PATCHFINDER test case con�g-
urations.
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and the MAKEADGRID program may be used to convert from unformatted format to
ADPAC07 binary.

� CHOPQ Cut a subset out of a (3D, single grid) PLOT3D Q �le and write it out as
a new Q �le.

� CHOPX Cut a subset out of a (3D, single grid) PLOT3D XYZ �le and write it out
as a new XYZ �le.

� CHOPXB Cut a subset out of a (3D, single grid) PLOT3D XYZ+IBLANK �le and
write it out as a new XYZ+IBLANK �le.

� COMBINEQ Combine several (3D, single grid) PLOT3D Q �les into a new multiple
grid Q �le.

� COMBINEX Combine several (3D, single grid) PLOT3D XYZ �les into a new mul-
tiple grid XYZ �le.

� COMBINEXB Combine several (3D, single grid) PLOT3D XYZ+IBLANK �les into
a new multiple grid XYZ+IBLANK �le.

� IJK Generate a (3D, single grid) PLOT3D XYZ �le which is simply the computational
grid, i.e. (x,y,z)=(i,j,k). Good for looking at 
ow quantities in the computational
domain.

� INT3D Interpolate a (3D, single grid) PLOT3D Q �le from one grid onto another.
Old and new XYZ �les may have IBLANK. Various options available on what to do
if a new grid point isn't found within the old grid. Uses trilinear interpolation.

� MIRRORQ Flip a (3D, single grid) PLOT3D Q �le about the x-, y-, or z-axis.

� MIRRORX Flip a (3D, single grid) PLOT3D XYZ �le about the x-, y-, or z-axis.

� PROPER2D Perform 2D grid line crossing check on a (2D, single grid) PLOT3D
XYZ �le.

� PROPER3D Perform tetrahedron decomposition cell volume check on a (3D, single
grid) PLOT3D XYZ �le.

� PROPER3DN Perform tetrahedron decomposition grid crossing check on a (3D,
single grid) PLOT3D XYZ �le.

� REFINEX Generate a new (3D, single grid) PLOT3D XYZ �le which is an integer
re�nement of an existing grid �le. Uses parametric cubic interpolation.

� ROTATEX Rotate a (3D, single grid) PLOT3D XYZ �le about the x-, y-, or z-axis.

� SCALEX Scale a (3D, single grid) PLOT3D XYZ �le.

� SCALEX Scale a (3D, single grid) PLOT3D XYZ+IBLANK �le.

� SPLITQ Split a (3D) multiple grid PLOT3D Q �le into separate single grid Q �les.
Can skip grids if desired.
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� SPLITX Split a (3D) multiple grid PLOT3D XYZ �le into separate single grid XYZ
�les. Can skip grids if desired.

� SPLITXB Split a (3D) multiple grid PLOT3D XYZ+IBLANK �le into separate
single grid XYZ+IBLANK �les. Can skip grids if desired.

� TRANSLATEX Translate a (3D, single grid) PLOT3D XYZ �le.

� TRANSLATEXB Translate a (3D, single grid) PLOT3D XYZ+IBLANK �le.

The UNIX make command may be used to compile and link the PLOT3D tools as follows:

2xxx/3xxx: make -f Makefile.i2

CRAY 2: make -f Makefile.c2

VAX/VMS: @MAKEFILE.VMS

7.6 PLOTBC Tool Programs Description

In order to facilitate a graphical examination of an ADPAC07 boundary data �le, a utility
program called PLOTBC was created. The PLOTBC program reads in a user-speci�able
ADPAC07 mesh and boundary data �le and creates �ve PLOT3D-compatible command
�les. The �ve command �les, in conjunction with the mesh �le, permits the user to graphi-
cally examine (using the PLOT3D program) a number of features of the mesh construction
and boundary condition speci�cations. This utility provides a rapid means of assessing the
completeness of a boundary data �le and provides a visual method for determining the
characteristics of an ADPAC07 computational model.

The PLOTBC program is invoked by simply running the executable as follows:

plotbc

The appropriate path to the executable may also have to be speci�ed if the executable �le
is not locally available. The user is then prompted for the ADPAC07 case name as follows:

Enter ADPAC case name:

After entering the case name, the PLOTBC program reads in the ADPAC07 mesh and
boundary data �les, extracts the boundary conditions and organizes them into categories.
Each category is then used to construct a PLOT3D command �le which allows the user to
visualize all boundary conditions in a common category. The resulting PLOT3D command
�les and their functions are listed in Table 7.6. Each of the ADPAC07 boundary condi-
tions identi�ed by PLOTBC is color-coded such that all the command �les can be read
sequentially, thus displaying all the boundaries at once.

Once created, the PLOTBC command �les may be used with PLOT3D by reading in the
corresponding mesh �le, and then invoking one or more of the scripts as shown below:
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PLOT3D Command Function

File Name

axes.com Grid index orientation
inlext.com In
ow/out
ow boundaries
solid.com Solid surfaces

(viscous and inviscid)
(rotating and non-rotating)

outline.com Mesh block outline
patch.com Inter-block PATCH boundaries

Table 7.1: PLOTBC command �le names and boundary condition categories

UNIX PROMPT> plot3d

Once the PLOT3D program is initialized, the mesh �le should be read in using the standard
PLOT3D commands, and then the command �les may be invoked by a command such as:

PLOT3D V3: @outline

The action of the command �le is to essentially de�ne what is to be plotted. The actual
plotting is not performed until the user enters the plot command at the PLOT3D prompt.
Additional details may be found in the PLOT3D User's Manual [14].
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Appendix A

ADPAC07 DISTRIBUTION AND

DEMONSTRATION

INSTRUCTIONS

A.1 Introduction

This appendix describes the commands necessary to extract the source code and demo
�les from the ADPAC07 standard distribution and run a complete test case for a ducted
fan employing multiple blade rows. The standard ADPAC07 distribution is a compressed
tar �le which can be decoded into the various parts by a sequence of commands on any
standard UNIX system. The sequence listed below is intended to guide the user through
the setup from the standard distribution up to and including a complete demonstration of
a calculation for a ducted propfan employing multiple blade rows. The command sequence
listed below should work on most systems employing the UNIX operating system. Since
portions of this process are inherently machine-dependent, the exact commands listed here
are for a Silicon Graphics Workstation running the IRIX Operating System, Revision 4.0.1.
Alternate commands will be listed when a signi�cant machine dependence exists.

A.2 Extracting the Source Files

The ADPAC07 programs are distributed as a compressed tar �le named

adpac07.tar.Z

This tar �le requires roughly 22.0 megabytes of disk space. It should be possible to extract
and run the code on any standard UNIX system from this distribution �le. The �rst step
necessary to extract the ADPAC07 programs is to uncompress the tar �le with the com-
mand:

uncompress adpac07.tar.Z
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This operation essentially replaces the compressed �le adpac07.tar.Z with an uncompressed
�le adpac07.tar. The uncompressed tar �le requires approximately 41.0 megabytes of disk
space.

The next step is to extract the individual �les and directories from the adpac07.tar �le. The
tar command will create a subdirectory named adpac07 in the current directory, so it is up
to the user to move the adpac07.tar �le to a suitable initial directory before extracting the
embedded subdirectories. Once the tar �le is properly placed, the ADPAC07 distribution
may be extracted with the command

tar xvof adpac07.tar

(On some systems tar xvf adpac07.tar may be su�cient.) Execution of the UNIX list
command ls -l will verify that the adpac directory has been created. The complete extraction
process will require about 90.0 Megabytes of disk space (to hold the adpac07.tar �le and
the extracted contents).

The uncompress and tar steps can be combined in a single operation on most UNIX systems
by issuing the command

zcat adpac07.tar.Z j tar xvf -

This combined operation conserves overall disk space requirements during the extraction
process.

A.3 Compiling the Source Code

After extracting the source �les, the user is naturally interested in compiling the source �les
for execution. A UNIX-compatible Make facility is provided for each of the ADPAC07 pro-
grams. TheMake�lewhich governs the compilation process is necessarily machine-dependent
and requires that the user select from one of a number of precon�gured systems. The Make

command is fully described in Section 3.4. If no option is speci�ed in the make command,
then the standard UNIX compilation is performed.

In order to begin the compilation, it is �rst necessary to enter the adpac directory with the
command:

cd adpac

At this point, several �les and directories will be available. By entering the UNIX command
ls -l, a listing of the individual directories can be obtained. The output of the ls command
will look something like:

README demo/ manual/ report/ src/
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A description of each of these listings is given below:

README This �le is a general description of the contents of the directory.

demo This directory contains several geometry and 
ow input �les for generating
sample runs of the ADPAC07 codes.

manual This directory contains the LaTeX source code for this manual. If LaTeX
is installed on your system, it is possible to reproduce this document (ex-
cluding �gures) with the command latex manual. The resulting device
independent �le manual.dvi may then be converted to PostScript or pre-
viewed on screen through a number of widely available routines.

report This directory contains the LaTeX source code for the �nal report outlin-
ing the technical details of the ADPAC07 codes. If LaTeX is installed on
your system, it is possible to reproduce the �nal report (excluding �gures)
with the command latex report. The resulting device independent �le
�nalreport.dvi may then be converted to PostScript or previewed on screen
through a number of widely available routines.

src This directory contains all the FORTRAN source code for the ADPAC07 pro-
grams including SETUP,ROTGRID,MAKEADGRID, and AGTPLT-LCL.

It is now possible to compile the ADPAC07 code by issuing the commands

cd src/adpac

make

On a Cray, the command make cray is appropriate, while on an IBM workstation make
aix is appropriate. Other compilation options are available by typing make help. The
compilation of the executable module for ADPAC07 will require roughly 20 megabytes of
disk space.

A.4 Running the Distribution Demonstration Test Cases

Once the make facility has properly completed compiling the ADPAC07 source code, it is
possible to run the test cases provided with the standard distribution. It is recommended
that the sample cases be tested to verify proper compilation and extraction of the AD-

PAC07 distribution.

In order to run the demonstration cases, it is necessary to begin in the demo directory.
From the ADPAC07 source code directory, the demo directory may be entered by issuing
the command

cd ../../demo

Several test cases are provided with the standard distribution to illustrate the operation
of the code for many di�erent applications. The commands needed to run any demo are
similar, so only the case listed under the directory nasa will be explained in detail here.
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After entering the demo directory, an ls command will indicate that the following subdi-
rectories (and possibly others) are available:

bump/ markii/ nasa/ rotor67/

These subdirectories contain the ducted fan demonstration case described above (nasa/),
as well as other demonstration test cases for the ADPAC07 code. To run the multiple blade
row ducted fan demonstration case, enter the nasa subdirectory by issuing the command
cd nasa. Now, the ls command reveals:

nasa.input nasa.boundata nasa.mesh

nasa.output.save nasa.converge.save

The nasa directory contains the data to run a test case for the NASA 1.15 pressure ratio
ducted fan. This geometry is representative of a 25:1 bypass ratio turbofan engine fan, and
has been tested extensively both experimentally and numerically. This test case employs
two blade rows (a rotor and a stator) and the multiple blade rows are treated using the
circumferential averaging technique described in Section 2.2. The mesh corresponds to
Standard Con�guration #10, and the mesh and appropriate mesh indices are illustrated in
Figure A.1. The multiple-block mesh for this test case is contained in nasa.mesh, and may
be viewed using the PLOT3D program. The 
ow Mach number is 0.75, and the calculation
is performed at 100% design speed (9167 rpm). For the purposes of this demonstration, an
inviscid calculation using 3 levels of multigrid has been con�gured.

The next step in the solution process is to simply run the ADPAC07 program for this case.
The standard input �le nasa.input and the boundary data �le nasa.boundata are pro-
vided to run the program (these �les are listed in this manual as sample �les in Sections
3.6 and 3.7). The steady 
ow solution is generated by issuing the command

../../src/adpac/adpac <nasa.input >nasa.output

The computation time required to generate the steady state solution may take up to four
hours on a workstation-class computer. Once the steady 
ow solution has been generated,
the ls command will reveal the following �les:

nasa.restart.new nasa.p3drel nasa.p3dabs

nasa.converge nasa.input nasa.output

nasa.converge.save nasa.output.save

The �le nasa.restart.new contains the restart �le necessary to continue this run from the
point of termination. The �les nasa.p3dabs and nasa.p3drel contain the absolute and rela-
tive 
ow PLOT3D 
ow variable information, respectively. The �le nasa.output is the new
standard output �le, and should be compared with the �le nasa.output.save to verify that
the program has performed the calculation correctly. It may be of interest to examine these
steady 
ow results with PLOT3D at this point (see Ref. [14] for details).
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NASA 1.15 Pressure Ratio Fan Test Case Description

Axisymmetric Mesh View

Mesh Block Structure

Block #1

Block #2 Block #4

Block #3

i=81 i=113 i=17 i=49

i=33

i=81

(129x17x17)
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Figure A.1: NASA 1.15 pressure ratio fan test case
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NASA 1.15 Pressure Ratio Fan Test Case

0 100 200 300

Iteration Number

-8

-7

-6

-5

-4

-3

-2

L
og

 1
0 

(R
M

S
 R

es
id

ua
l)

Convergence History
ADPAC      

Figure A.2: ADPAC07 Convergence History for NASA 1.15 Pressure Ratio Fan Test Case

A plot of the convergence history for this case is given in Figure A.2. The "jumps" in the
residual history are a result of the "full" multigrid startup procedure, and should not be
considered inappropriate.

The standard output �le nasa.output should be compared with the listing provided in
Section 3.10 to make sure that the code has performed the calculation properly.
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